Denote by g a symmetric bilinear form defined on $\mathbb{R}^n \times \mathbb{R}^n$ and such that $g(x, x) \geq 0$ for every value of the vector x, including the value 0 (this quadratic form is not necessarily strictly positive definite).

1. Show that

$$[g(x, y)]^2 \leq g(x, x)g(y, y)$$

2. A necessary and sufficient condition for g to be nondegenerate (that is, for the linear form on \mathbb{R}^n that maps y into $g(x, x)$, where x is fixed, to be nonzero when x is not the zero vector) is that the quadratic form $g(x, x)$ be positive definite.

3. If g is degenerate, show that the elements x at which $g(x, x)$ vanishes, constitute a vector subspace of \mathbb{R}^n.

4. If g is nondegenerate, show that the linear mapping α of \mathbb{R}^n into \mathbb{R}^n that leave $g(x, y)$ invariant (that is, such that $g(\alpha x, \alpha y) = g(x, y)$) constitute a group G, where the group operation is the composition of mappings.