1. Show that the determinant of an antisymmetric matrix of odd order is zero. (A square matrix $A = (a_{ij})$ is said to be antisymmetric if

$$a_{ij} + a_{ji} = 0$$

for all i and j.)

2. We recall that the set of continuous mappings of \mathbb{R} into \mathbb{R} has a vector space structure on \mathbb{R} if we define the sum of two mappings and the product of a mapping by a real number in the usual way.

Are the functions f_n defined by

$$f_n(t) = \sin^n(t)$$

independent in this space?

3. A linear mapping f of \mathbb{R}^3 into itself is defined by giving the coordinates (X, Y, Z) of the vector $f(u)$ as a function of the coordinates (x, y, z) of the vector u:

$$X = (m - 2)x + 2y - z$$
$$Y = 2x + my + 2z$$
$$Z = 2mx + 2(m + 1)y + (m + 1)z$$

Show that the rank of f is equal to 3 except for particular values of m and determine these particular values. Find the ranks for these values and define the subspace $f(\mathbb{R}^3)$.