A linear mapping f of \mathbb{R}^3 into itself is defined by giving the coordinates (X, Y, Z) of the vector $f(u)$ as a function of the coordinates (x, y, z) of the vector u:

$$
X = (m - 2)x + 2y - z \\
Y = 2x + my + 2z \\
Z = 2mx + 2(m + 1)y + (m + 1)z
$$

Show that the rank of f is equal to 3 except for particular values of m and determine these particular values. Find the ranks for these values and define the subspace $f(\mathbb{R}^3)$.

MA552. Quiz 5

A linear mapping f of \mathbb{R}^3 into itself is defined by giving the coordinates (X, Y, Z) of the vector $f(u)$ as a function of the coordinates (x, y, z) of the vector u:

$$
X = (m - 2)x + 2y - z \\
Y = 2x + my + 2z \\
Z = 2mx + 2(m + 1)y + (m + 1)z
$$

Show that the rank of f is equal to 3 except for particular values of m and determine these particular values. Find the ranks for these values and define the subspace $f(\mathbb{R}^3)$.

MA552. Quiz 5

A linear mapping f of \mathbb{R}^3 into itself is defined by giving the coordinates (X, Y, Z) of the vector $f(u)$ as a function of the coordinates (x, y, z) of the vector u:

$$
X = (m - 2)x + 2y - z \\
Y = 2x + my + 2z \\
Z = 2mx + 2(m + 1)y + (m + 1)z
$$

Show that the rank of f is equal to 3 except for particular values of m and determine these particular values. Find the ranks for these values and define the subspace $f(\mathbb{R}^3)$.