
MA651 Topology. Lecture 1. Elements of Set Theory 1.

This text is based on the book ”Topology” by James Dugundgji

I have intentionally made several mistakes in this text. The first homework assignment is to find

them.

1 Basic Notation

Symbolic logic notation.

Definition 1.1. If p and q are propositions, then:

p∨ q (read: p or q) denotes the disjunction of p and q. The assertion ”p∨ q” is true whenever at

least one of p,q is true.

p ∧ q (read: p and q) denotes the conjunction of p and q. The assertion ”p ∧ q” is true only in

case both p and q are true.

¬ q (read: not q) denotes the negation of p. The assertion ”¬ q” is true only if q is false.

p ⇒ q is read: p implies q. By definition, ”p ⇒ q” denotes ”(¬p) ∨ q”. In particular, the

statement ”p ⇒ q” is true if and only if the statement ”(¬ q) ⇒ (¬ p)” is true.

p ⇔ q is read: p is logically equivalent to q. By definition, ”p ⇔ q” denotes ”(p ⇒ q)∧ (q ⇒ p)”.

An expression p(x) that becomes a proposition whenever values from a specified domain of dis-

course are substituted for x is called a propositional function or, equivalently, a condition on x;

and p is called a property, or predicate. The assertion ”y has property p” means that ”p(y)” is

true. Thus, if p(x) is the proportional function ”x is an integer”, then p denotes the property ”is

an integer”, and ”p(2)” is true whereas ”p(1/2)” is false.

The quantifier ”there exists” is denoted by ∃, an the quantifier ”for each” is denoted by ∀. The

assertion ”∀x ∃y ∀z : p(x, y, z)” reads ”For each x there exists a y such that for each z, p(x, y, z)

is true”; its negation is obtained mechanically by changing the sense of each quantifier (preserving

the given order of the variables!) and negating the proposition: thus, ”∃x ∀y ∃x : ¬ p(x, y, z)”.
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2 Sets

Intuitively, we think of a set as something made up by all the objects that satisfy some given

conditions, such as the set of prime numbers, the set of points on a line, or the set of objects

named in a given list. The objects making up the set are called the elements, or members, of the

set and may themselves be sets, as in the set of all lines in the plane.

Rigorously, the word set is an undefined term in mathematics, so that definite axioms are required

to govern the use of this term. Although we shall deal with sets on an intuitive basis until we

discuss an axiom systems, whenever we apply the label set to something, we shall later provide

this usage to have been formally justified.

The membership relation is denoted by ∈ and sets are generally indicated by capital letters:

”a ∈ A” is read ”a belongs to (is a member, element, point of) the set A”; ¬(a ∈ A) is written

a 6∈ A. The notation a = b will mean that the objects a and b are the same, and a 6= b denotes

¬(a = b). If A, B sets, then A = B will indicate that A and B have the same elements; that is,

∀x : (x ∈ A) ⇔ (x ∈ B); ¬(A = B) is written A 6= B.

A ⊂ B (or B ⊃ A), read ”A is a subset of (is contained in) B”, signifies that each element of A

is an element of B, that is ∀x : (x ∈ A) ⇒ (x ∈ B); equality is not excluded - we call A a proper

subset of B (A ( B whenever (A ⊂ B) ∧ (A 6= B). The relations ⊂ and ( are called inclusion

and proper inclusion, respectively. the following statements are evident:

Proposition 2.1. A ⊂ A for each set A.

Proposition 2.2. If A ⊂ B and B ⊂ C, then A ⊂ C (that is, C is transitive).

Proposition 2.3. A = B if and only if both A ⊂ B and B ⊂ A.

Of these, the last statement is very important: the equality of two sets is usually proved by show-

ing each of the two inclusions valid.

The axioms of set theory allow only two methods for forming subsets of a given set. One of these

is by appeal to the axiom of choice, and will be discussed later. The other is by use of the following

principle: If A is a set and p is a property that each element of A either has or does not have, then

all the x ∈ A having the property p from a set. This subset of A is denoted by {x ∈ A | p(x)}; it

is uniquely determined by the property p. Clearly, {x ∈ A | p(x)} ⊂ {x ∈ A | q(x)} if and only if

∀x ∈ A : p(x) ⇒ q(x); thus two properties determine the same subset of A whenever each object

in A having one of them also has the other.

Example 2.1. If A is the real line, the closed unit interval is {x ∈ A | 0 6 x 6 1}
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Example 2.2. If A is the real line, {x ∈ A | x2 = 1} = {x ∈ A | x4 = 1} even thought the defining

properties are different. Note that if A was the set of complex numbers, these two properties would

not determine the same subset.

Example 2.3. For each set A, {x ∈ A | x = x} = {x ∈ A | x ∈ A} = A

For each set A, the null subset ØA ⊂ A is {x ∈ A | x 6= x}; it has no members, since each x ∈ A

satisfies x = x.

Proposition 2.4. All null subsets are equal. Thus there is one and only one null set, Ø, and it

is contained in every set: Ø ⊂ A for every set A

Proof. Let A, B be any two sets. If ØA ⊂ ØB were false, these would be at least one element

a in ØA not in ØB; in particular, we would then have as an a ∈ A such that a 6= a and this

is impossible. In the same way. ØB ⊂ ØA; therefore, by (2.3), ØA = ØB and all null sets are

equal.

3 Boolean Algebra

Definition 3.1. Let Γ be a given set, and A, B two subsets. The union, A
⋃

B, of A and B is

{x ∈ Γ | x belongs to at least one of A, B}. The intersection, A
⋂

B, of A and B is {x ∈ Γ | x

belongs to both A and B}.

According to the definition, a necessary and sufficient condition for two sets A, B to have elements

in common is that A
⋂

B 6= Ø; if A
⋂

B = Ø, the sets A and B are called disjoint. The following

two statements are immediate consequences of (3.1):

Proposition 3.1. For any two sets A, B, always A
⋂

B ⊂ A ⊂ A
⋃

B

Proposition 3.2. If A ⊂ C and B ⊂ D, then A
⋃

B ⊂ C
⋃

D and A
⋂

B ⊂ C
⋂

D

The formal properties of the operations
⋃

and
⋂

are given in

Theorem 3.1. Each of the operations
⋃

and
⋂

is

1. Idempotent: ∀A : A
⋃

A = A = A
⋂

A.

2. Associative: A
⋃

(B
⋃

C) = (A
⋃

B)
⋃

C and A
⋂

(B
⋂

C) = (A
⋂

B)
⋂

C

3. Commutative: A
⋃

B = B
⋃

A and A
⋂

B = B
⋂

A
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Furthermore,
⋂

distributes over
⋃

and
⋃

distributes over
⋂

:

A
⋂

(B
⋃

C) = (A
⋂

B)
⋃

(A
⋂

C),

A
⋃

(B
⋂

C) = (A
⋃

B)
⋂

(A
⋃

C).

Proof. Verification of (1)− (3) is trivial. To give an example of a set-theoretic proof, we establish

distributivity of
⋂

over
⋃

. Using (2.3), we find that the proof decomposes into two parts:

(a) Left side ⊂ right side:

x ∈ A
⋂

(B
⋃

C) ⇒ (x ∈ A) ∧ [(x ∈ B) ∨ (x ∈ C)]

⇒ (x ∈ A
⋂

B) ∨ (x ∈ A
⋂

C)

⇒ x ∈ (A
⋂

B)
⋃

(A
⋂

C).

(b) Right side ⊂ left side: All implications in the above string are reversible.

Because of associativity, we can designate A
⋃

(B
⋂

C) simply by A
⋃

B
⋃

C. Similarly, a union

(or intersection) of four sets, say (A
⋃

B)
⋃

(D
⋃

C), can be written A
⋃

B
⋃

C
⋃

D because, by

associativity, the distribution of parentheses is irrelevant, and by commutativity, the order of the

terms plays no role. By induction, the same remarks apply to the union (or intersection) of any

finite number of sets. The union of n sets, A1, · · · , An is written
n⋃
1

Ai.

The relation between
⋂

,
⋃

, and ⊂ is given in

Proposition 3.3. The statements (1) A ⊂ B, (2) A = A
⋂

B, and (3) B = A
⋃

B are equivalent.

Proof. We prove only (1) ⇔ (2) leaving the rest as a homework. If (1), then we have

A = A
⋂

A ⊂ A
⋂

B ⊂ A,

which proves (2). Conversely, if (2), then A = A
⋂

B ⊂ B, establishing (1).

Definition 3.2. The difference A−B of two sets is {x ∈ A | x 6∈ B}

Example 3.1. If A = [0, 1] and B = [1, 2], then A−B = A

Example 3.2. If A−Ø = A and A−B = A− (A
⋂

B).
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The difference operator does not have formal properties so simple as those of
⋃

and
⋂

: for example,

since (A
⋃

A) − A 6= A
⋃

(A − A), the location of parentheses in A
⋃

A − A is important. To

construct a suitable calculus involving the difference operator, we introduce the complementation

operation:

Definition 3.3. If B ⊂ A, the complement CAB of B with respect to A is A−B.

Note that the complementation operation is defined only when one set is contained in the other,

whereas the difference operation does not have such a restriction. The relation between (3.2) and

(3.3) is given in

Proposition 3.4. For any two sets A, B if the compliment is taken with respect to any set E

containing A
⋃

B, then A−B = A
⋂

CEB.

Proof. Since A
⋃

B ⊂ E we have

A−B = {x ∈ E | (x ∈ A) ∨ (x 6∈ B)}

= {x ∈ E | x ∈ A}
⋂
{x ∈ E | x 6∈ B} = A

⋂
CEB.

The following properties of complementation are immediate:

Proposition 3.5. If E any set containing A
⋃

B, then:

1. A
⋂

CEA = Ø, A
⋃

CEA = E

2. CE(CEA) = A

3. CEØ = E, CEE = Ø

4. A ⊂ B if and only if CEB ⊂ CEA

We write C instead of CE whenever the set E has been specified and is to be kept fixed. The

basic relation between
⋃

,
⋂

, and C is

Theorem 3.2. (De Morgan) If complements be taken with respect to any set E containing

A
⋃

B, then:

1. C(A
⋃

B) = (CA)
⋂

(CB)

2. C(A
⋂

B) = (CA)
⋃

(CB)
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Proof. We have

x ∈ C(A
⋃

B) ⇔ x 6∈ A
⋃

B

⇔ (x 6∈ A) ∧ (x 6∈ B)

⇔ x ∈ (CA)
⋂

(CB)

and this establishes 1. The proof of 2 is similar; it can, however, be deducted from 1 by ”comple-

ments”:

C[CA
⋃

CB] = CCA
⋂

CCB = A
⋂

B,

and apply Proposition (3.5) 2.

Remark: the formulas in Propositions (3.1), (3.2), (3.3), (3.4), (3.5), and Theorems (3.2), (3.1)

comprise a short list of results useful for formal calculations with sets; the role of Proposition (3.4)

is to change differences to complements. As examples, we prove:

Example 3.3. (A−B)
⋃

(B −A) = (A
⋃

B)− (A
⋂

B). For taking complements with respect to

E = A
⋃

B, and using Theorem (3.1), (3.3), (3.5), Theorem (3.2), gives

(A−B)
⋃

(B − A) = (A
⋂

CB)
⋃

(B
⋂

CA)

= (A
⋃

B)
⋂

(A
⋃

CA)
⋂

(CB
⋃

B)
⋂

(CB
⋃

CA)

= A
⋃

B
⋂

C(B
⋂

A) = (A
⋃

B)− (A
⋂

B)

Example 3.4. If A
⋃

X = E and A
⋂

X = Ø, then X = CEA. For,

X = E
⋂

X = (A
⋃

CEA)
⋂

X = X
⋂

CEA

= (A
⋂

CEA)
⋃

(X
⋂

CEA) = (A
⋃

X)
⋂

CEA

= E
⋂

CEA = CEA

Remark: A Boolean algebra B is a set together with two binary operations + , · , and a unary

operation ′, satisfying the following axioms:

1. Each operation +, · is commutative.

2. There exist elements 0, 1 with a + 0 = a, a · 1 = a for every a ∈ B.

3. The distributive law

a · (b + c) = a · b + a · c,
a + (b · c) = (a + b) · (a + c)

hold.
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4. a · a′ = 0 and a + a′ = 1 for each a ∈ B.

(it is not necessary to postulate associativity of the + and · operations; this is a consequence of

the axioms.) The collection of all subsets of a fixed set E, with +, ·, ′, 0, 1 interpreted as
⋃

,⋂
, CE, Ø, E, respectively, evidently form a Boolean algebra. By observing that the systematic

interchange of + with · and 0 with 1 in the axioms simply gives the same set of axioms, we obtain

the duality principle: For each formula true in a Boolean algebra, there is a ”dual” true formula

obtained by replacing each occurrence of +, ·, 0, 1 with ·, +, 1, 0, respectively. This is the ”method

of complements”; observe that each one of De Morgan’s rules follows from the other by duality.

The theory of Boolean algebras is equivalent to that of commutative rings with unit, in which

each element is idempotent, a · a = a, (that is, Boolean rings). Indeed, given a Boolean algebra

B, define operators
⊕

,
⊙

by a
⊕

b = (a · b′) + (a′ · b), a
⊙

b = a · b; with
⊕

,
⊙

, B is a Boolean

ring, r(B). Conversely, from a Boolean ring R, one obtains a Boolean algebra b(R) by using the

operations a + b = a
⊕

b− (a
⊙

b), a · b = a
⊙

b in R. These transformations are inverses in that

b[r(B)] = B and r[b(R)] = R.

4 Cartesian Product

The Cartesian product is one of the most important constructions of set theory: it enables us to

express many concepts in terms of sets.

Definition 4.1. With each two objects a, b, there corresponds a new object (a, b), called their

ordered pair. Ordered pairs are subject to the one condition: (a, b) = (c, d) if and only if a = c

and b = d; in particular, (a, b) = (b, a) if and only if a = b. The first (second) element of an

ordered pair is called its first (second) coordinate.

Remark: The concept of an ordered pair can be expressed in terms of sets by defining (a, b) =

{{a}, {a, b}}; in your homework show that {{a}, {a, b}} = {{c}, {c, d}} if and only if a = c and

b = d. For the sequel, we need only know that ordered pairs are uniquely determined by their

first and second coordinates; the means for accomplishing this are immaterial.

Definition 4.2. Let A, B be two sets, distinct or not. Their cartesian product, A×B, is the set

of all ordered pairs {(a, b)|a ∈ A, b ∈ B}.

We have the basic

Proposition 4.1. A×B = Ø ⇔ [A = Ø] ∨ [B = Ø].

The proof of this and the next statements we leave as a homework.

Proposition 4.2. If C ×D 6= Ø, then C ×D ⊂ A×B if and only is [C ⊂ A] ∧ [D ⊂ B].
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It follows at once from this and Proposition (2.3) that for nonempty sets A, B, A × B = B × A

if and only if A = B; the operation A×B is therefore not commutative.

The relation of × to
⋃

and
⋂

is summarized in the following trivial

Theorem 4.1. × distributes over
⋃

,
⋂

, and −:

A× (B
⋃

C) = A×B
⋃

A× C,

A× (B
⋂

C) = A×B
⋂

A× C

A× (B − C) = A×B − A× C

The cartesian product of three sets A, B, C is defined by A × B × C = (A × B) × C, and that

of n sets by induction: A1 × . . . × An = (A1 × . . . × An−1) × An; an element of A1 × . . . × An is

written (a1, . . . , an), and ai is called ith coordinate.

5 Families of Sets

Definition 5.1. If to each element α of some set A 6= Ø there correspond a set Aα, then the

collection of sets {Aα | α ∈ A } is called a family of sets, and A is called an indexing set for the

family.

This definition does not required that sets with distinct indices be different. Observe that any set

F of sets can be converted to a family of sets by ”self-indexing”: one uses the set F itself as an

indexing set and assigns to each member of the set F the set it represents. In this section we

extend the notions of union and intersection to families of sets; it should be noted that this is not

done by any limiting process, but rather by independent definitions that reduce to the previous

ones whenever family is finite.

Definition 5.2. Let Γ be a given set, and {Aα | α ∈ A } a family of subsets of Γ. The union⋃
α

Aα of this family is the set

{x ∈ Γ | ∃α ∈ A : x ∈ Aα},

and the intersection
⋂
α

Aα is the set

{x ∈ Γ | ∀α ∈ A : x ∈ Aα}.

We frequently denote
⋃
α

Aα by
⋃

α∈A

Aα and by
⋃
{Aα | α ∈ A }; similarly for

⋂
α

Aα.

Theorem 5.1.
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1.
⋃
α

distributes over ∩ and
⋂
α

distributes over ∪:

[ ⋃
{Aα | α ∈ A }

]
∩

[ ⋃
{Bβ | β ∈ B}

]
=

⋃
{Aα ∩Bβ | (α, β) ∈ A ×B}[ ⋂

{Aα | α ∈ A }
]
∪

[ ⋂
{Bβ | β ∈ B}

]
=

⋂
{Aα ∪Bβ | (α, β) ∈ A ×B}

2. If complements be taken with respect to Γ, then

C
( ⋃

α

Aα

)
=

⋂
α

CAα and C
( ⋂

α

Aα

)
=

⋃
α

CAα

3.
⋃
α

and
⋂
α

distribute over the cartesian product:

⋃
{Aα | α ∈ A } ×

⋃
{Bβ | β ∈ B} =

⋃
{Aα ×Bβ | (α, β) ∈ A ×B}⋂

{Aα | α ∈ A } ×
⋂
{Bβ | β ∈ B} =

⋂
{Aα ×Bβ | (α, β) ∈ A ×B}

So far, we have assumed that A 6= Ø; there are some formal advantages in allowing the indexing

set to be the null set. If A = Ø, Definition (5.2) gives that
⋃
α

{Aα | α ∈ A } = Ø, since no x ∈ Γ

satisfies the condition ∃α ∈ A : x ∈ Aα; similarly we find that
⋂
α

{Aα | α ∈ A } = Γ, where Γ

is the specified domain of discourse. In the future, we will call a family {Aα | α ∈ A } nonempty

whenever we wish to emphasize that the indexing set A 6= Ø; this, of course, does not exclude

the possibility that some Aα = Ø.

6 Power Set

Definition 6.1. Let A be any set. Its power set P(A) is the set of all subsets of A.

Theorem 6.1.
⋂
α

and P commute:
⋂
α

P(Aα) = P
( ⋂

α

Aα

)
. Though

⋃
α

and P do not

commute,
⋃
α

P(Aα) ⊂ P
( ⋃

α

Aα

)
.

7 Functions, or Maps

Definition 7.1. Let X and Y be two sets. A map f : X → Y (or function with domain X and

range Y ) is a subset f ⊂ X × Y with the property: for each x ∈ X, there is one, and only one,

y ∈ Y satisfying (x, y) ∈ f .
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Definition 7.2. Let f : X → Y . Then:

1 For each A ⊂ X, f(A) = {f(x) | x ∈ A} ⊂ Y is called the image of A in Y under f .

2 For each B ⊂ Y , f−1(B) = {x | f(x) ∈ B} ⊂ X is called the inverse image of B in X under f .

Let f : X → Y be given. Then f induces a map (still denoted by f), f : P(X) → P(Y ) by

A → f(A). The map f : X → Y also induces a map f−1 : P(Y ) → P(X) by B → f−1(B). Of

these two maps, f−1 is the most important because of the following theorem:

Theorem 7.1. Let f : X → Y .Then the induced f−1 : P(Y ) → P(X) preserves the elementary

set operations. Precisely,

1. f−1
( ⋃

α

Bα

)
=

⋃
α

f−1(Bα).

2. f−1
( ⋂

α

Bα

)
=

⋂
α

f−1(Bα).

3. f−1(B1 −B2) = f−1(B1)− f−1(B2).

In contrast to the (7.1) the induced map f : P(X) → P(Y ) behaves less satisfactory. Though it

preserves unions, it does not in general preserves intersections:

Proposition 7.1. If f : X → Y , then for the induced map f : P(X) → P(Y ):

1. f
( ⋃

α

Aα

)
=

⋃
α

f(Aα).

2. f
( ⋂

α

Aα

)
⊂

⋂
α

f(Aα).

For the combined action of f and f−1, it is easy to verify

Proposition 7.2. If f : X → Y , then:

1. For each A ⊂ X, f−1[f(A)] ⊃ A.

2. For each A ⊂ X, and B ⊂ Y , f [f−1(B)
⋂

A] = B
⋂

f(X);

in particular, f [f−1(B)] = B
⋂

f(X).

Given f : X → Y and g : Y → Z, their composition f ◦ g : X → Z is defined as the map

x → g(f(x)). We can clearly compose the induced maps f−1, g−1 and we have

Theorem 7.2. Let f : X → Y and g : Y → Z. Then (f ◦ g)−1 = f−1 ◦ g−1.
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Given an f : X → Y and a subset A ⊂ X, the map f considered only on A is called the restriction

of f to A, is written f | A, and can alternatively be defined as f | A = f
⋂

(A×Y ). In the reverse

direction, if A ⊂ X and g : A → Y is a given map, a map G : X → Y coinciding with g on A

(that is, satisfying G | A = g) is called an extension of g over X relative to Y . The following

result is very useful:

Theorem 7.3. Let X be any set, and {Aα | α ∈ A } any family of subsets with
⋃
α

Aα = X

(a ”covering” of X). For each α ∈ A , let an fα : Aα → Y be given, and assume that

fα | Aα

⋂
Aβ = fβ | Aα

⋂
Aβ for each (α, β) ∈ A ×A .

Then there is one and only one, f : X → Y which is an extension of each fα;

that is, ∀α ∈ A : f | Aα = fα

If {Aα | α ∈ A } is covering of X, and if Aα

⋂
Aβ = Ø whenever α 6= β, then the family

{Aα | α ∈ A } is called a partition of X. We obtain at once the

Corollary 7.1. If {Aα | α ∈ A } is a partition of X and if for each α ∈ A there is a given an

fα : Aα → Y , then there exists a unique f : X → Y which is an extension of each fα.

If f : X → Y takes on every value in its range, f is called surjective (or a surjection; or ”onto”).

Observe that for surjective f (7.2)2 takes the simpler form: ∀B : B ⊂ Y ⇒ f [f−1(B)] = B.

If f sends distinct elements of X to distinct elements of Y , f is called injective (or an injection;

or one-to-one). Evidently f is injective if and only if [x 6= x′] ⇒ [f(x) 6= f(x′)], or equivalently,

[f(x) = f(x′)] ⇒ [x = x′]. The restriction of an injection to any subset is also an injection.

If f is both injective and surjective, f is called bijective (or a bijection; or a one-to-one onto map).

Clearly, f : X → Y is bijective if and only if ∀y ∈ Y : f−1{y} is a single point. Thus, with each

bijection f : X → Y , we have also a map f−1 : Y → X determined by y → f−1({y}) (this differs

from f−1 : P(Y ) → P(X), since the domains are not the same); it is evident that f−1 : Y → X

is also bijective and that (f−1)−1 = f .

The following proposition indicates a simple method for establishing that a given map f (respec-

tively g) is injective (respectively surjective).

Proposition 7.3. Let f : X → Y and g : Y → X satisfy g ◦ f = 1X . then f is injective and g is

surjective.

Proof: The map f is injective, since [f(x) = f(x′)] ⇒ x = g ◦f(x) = g ◦f(x′) = x′. g is surjective,

since for any x0 ∈ X, x0 = g[f(x0)].
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8 Binary Relations; Equivalence Relations

A binary relation R in a set A is, intuitively, a proposition such that for each ordered couple (a, b)

of elements of A, one can determine whether aRb (”a is in relation R to b”) is or is not true. We

state this formally in terms of the set concept.

Definition 8.1. A binary relation R in a set A is a subset R ⊂ A×A. (a, b) ∈ R is written aRb.

Definition 8.2. A binary relation R in A is called an equivalence relation if:

1. ∀a ∈ A : aRa (reflexive)

2. (aRb) ⇒ (bRa) (symmetric)

3. (aRb) ∧ (bRc) ⇒ (aRc) (transitive).

If aRb, we say that a and b are equivalent.

Let R be an equivalence relation in A. For each a ∈ A, the subset Ra = b ∈ A | bRa is called the

equivalence class of a. The fundamental theorem on equivalence relations is a consequence of

Lemma 8.1. Let R be an equivalence relation in A. Then:

1.
⋃
{Ra | a ∈ A} = A.

2. If (aRb), then Ra = Rb.

3. If ¬(aRb), then Ra ∩Rb = Ø.

Theorem 8.1. Let A have an equivalence relation R. Then the collection of distinct equivalence

classes partitions A into mutually disjoint sets, called R-equivalence classes, such that any two

elements of A belong to a common R-equivalence class if, and only if, they are equivalent.

Each element a of an R-equivalence class Aa is called a representative of Aa; observe that a ∈
Aa ⇔ Aa = Ra.

With each equivalence relation R in A, we construct a new set according to the following

Definition 8.3. Let A have an equivalence relation R. The set whose elements are the R-

equivalence classes is called the quotient set of A by R and is written A/R. The map pA : A → A/R

given by a → Ra is called the projection of A onto A/R.

Clearly, pA is surjective, but not in general injective (since Ra = Rb = Aa whenever aRb); note

also that A/R ⊂ P(A). We omit the subscript on pA when no confusion arises. A set of elements,

one from each equivalence class, is called a system of representatives for A/R.

Let A, B be two sets with equivalence relations R, S respectively. A map f : A → B is called

relation-preserving if aRa′ ⇒ f(a)Sf(a′).
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Theorem 8.2. Let f : A → B be relation-preserving. Then there is one, and only one, map

f∗ : A/R → B/S such that the diagram

A
f−−−→ B

pA

y ypB

A/R −−−→
f∗

B/S

commutes (that is, pB ◦f = f∗◦pA). f∗ is called the map induced by f in ”passing to the quotient”.

Conversely, if for any two maps f , f∗ the above diagram commutes, then f is necessarily relation-

preserving, and f∗ is the map induced by f .

9 Axiomatics

Though the intuitive idea of calling any collection of objects a set will suffice for most purposes,

an exposition of general Set Theory requires more precision, for without explicit axioms telling

how the term set can be used, and to what collections it can be applied, various contradictions

arise. There are several different axiomatic set theories, each having technical advantages and

shortcomings; we present here a version based on the Bernays-Gödel-von Neumann axiomatics.

The treatment is not intended to be either complete or formal, nor is the system of axioms asserted

to be independent; these matters properly belong to the domain of Logic. It is desired to indicate

only a framework within which we will work, which avoids the known antinomies and which, at

least until now, has not led to any contradictions.

Ideally, we would like to have associated with each property p a set E(p) consisting of all objects

having property p. The assumption that this is true leads at once to the Russell antimony of the

set of all sets not members of themselves: assuming that the property p(x) = (x is a set)∧ (x 6= x)

determines some set R(p), we must conclude that [R(p) 6∈ R(p)] ⇔ [R(p) ∈ R(p)]. To block this

contradiction, we adopt the attitude that it is not the conversion of properties to collections that

is at fault, but rather the assumption that R(p) is a set and is therefore eligible for membership

in the collection determined by p. The basic idea of this approach is, then, that there are two

types of collections - classes and sets: any collection of objects specified by some property is a

class, whereas only those classes that can be members of a class are sets. Heuristically, a set is a

class that can be regarded as a single entity.

The undefined terms in the axiomatic development are ”class” and a dyadic relation ∈ between

classes, the statement A ∈ B is either true or false. A property p will mean a formula built

up from statements ”A ∈ B” by negation, conjunction, disjunction, and quantification of class

variables by means of predicate calculus.
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We begin by defining classes to be equal if they have the same members; formally,

Definition 9.1.

(A ⊂ B) ⇔ (∀x : x ∈ A ⇒ x ∈ B),

and

(A = B) ⇔ (A ⊂ B) ∧ (B ⊂ A )

This definition permits substitution with respect to the second class variable in the relation x ∈ A ;

that is, (x ∈ A ) ∧ (A = B) ⇔ (x ∈ B); to obtain it also for the first requires

Axiom 9.1. (of Individuality) (x ∈ A ) ∧ (x = y) ⇒ (y ∈ A ).

Next we distinguish between classes and sets by

Definition 9.2. The class A is called a set if there is a class A such that A ∈ A .

Now we wish to postulate that any collection specified by a property that characterizes its members

is a class. However, since nonsets cannot be members of anything, the members of a class must

be sets. We formulate this by

Axiom 9.2. (of Class Formation) For each property p in which only set variables are quantified

and in which the class variable A does not appear, there is a class A whose members are just

those sets having property p; in symbols, (x ∈ A ) ⇔ (x is a set) ∧ p(x).

Because of the Axiom (9.1), the class A is uniquely determined by its defining property; we will

denote A by the notation {x | (x is a set) ∧ p(x)} and sometimes by A (p). Observe that with

this terminology, the Russell antinomy becomes the harmless statement

Proposition 9.1. The Russell class R(p) is not a set

Using Axiom (9.2), the Boolean operations A
⋃

B = {x | (x ∈ A ) ∧ (x ∈ B)} and A
⋂

B =

{x | (x ∈ A ) ∨ (x ∈ B)} with classes, as well as the cartesian product A × B of classes, are

defined and are the classes. the universal class is {x | (x is a set)} ∧ (x = x)}, and the null class

Ø is {x | (x is a set)} ∧ (x 6= x)}; as in Proposition (2.4) , Ø is unique and a subclass of every

class. Equivalence relations in classes can be defined as in the previous section, leading to

Proposition 9.2. An equivalence relation in a class A partitions A into pairwise disjoint sub-

classes.

The next string of axioms guarantees at least one set and postulates that certain constructions

using sets will yield sets.

Axiom 9.3. (of Null Set) Ø is a set.
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Axiom 9.4. (of Pairing) If A, B are distinct sets, then A = {x | (x = A )∨ (x ∈ B)} is a set

(which contains exactly two elements). It is denoted by {A, B}.

Axiom 9.5. (of Union) If {Aα | α ∈ A } is a family of sets (recall that, as defined before, this

means that A and each Aα are sets), then
⋃
{Aα | α ∈ A } = {x | ∃α ∈ A : x ∈ Aα} is a set.

Axiom 9.6. (of Replacement) If A is a set and if f :→ A is a map, then f(A) is a set.

The next axiom deals with subset formation.

Axiom 9.7. (of Sifting) If A is a set, then for any class A , A
⋂

A is a set.

In particular,

Proposition 9.3. If A is a set and p is a property in which only set variables are quantified, then

{x | (x ∈ A) ∧ p(x)} (which we will write as {x ∈ A | p(x)}) is a set.

For, if A is class determined by p, we have A
⋂

A = {x | (x ∈ A) ∧ (x is a set) ∧ p(x)}, and the

requirement x ∈ A makes the stipulation ”(x is a set)” redundant.

Since members of classes must necessarily be sets, the precise definition of the power class P(A )

of a class A is P(A ) = {B | (B is a set) ∧ B ⊂ A }; thus, even if A is a set, P(A ) has for

members only those subclasses of A known to be sets.

Axiom 9.8. (of Power Set) If A is a set, then P(A ) is also a set.

To indicate how these axioms are used, we establish that some frequently occurring constructions

with sets will still yield sets.

Proposition 9.4. If {Aα | α ∈ A } is a family of sets, then
⋂
{Aα | α ∈ A } is a set.

Proof. According to Axiom (9.5), S =
⋂
{Aα | α ∈ A } is a set; letting p(x) = [∀α ∈ A : x ∈ Aα],

in which only the set variable α is quantified, Proposition (9.3) shows that {x ∈ S | p(x)}, which

is precisely S =
⋂
{Aα | α ∈ A }, is a set.

Proposition 9.5. If A is a set, then so is {A}.

Proof. If A = Ø, then Axioms (9.3) and (9.8) give that {Ø} is a set. If A 6= Ø, then {A, Ø} is a

set because of Axiom (9.4). Letting A be the class determined by the property p(x) = (x = A),

we find from Proposition (9.3) that {A, Ø}
⋂

A = {A} is a set.

Proposition 9.6. The cartesian product of two sets is a set.

Proof. Let A, B be sets, and for each a0 ∈ A define a map B → A× B by b → (a0, b); according

to Axiom (9.6), the image, {a0} ×B, is a set; since A×B =
⋃
{{a0} ×B | a0 ∈ A}, Axiom (9.5)

shows that A×B is a set.
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Proposition 9.7. If A and B are sets, then the class of all maps A → B is a set.

Proof. We have just seen that A × B is a set so, by Axiom (9.6), P(A × B) is also a set. Since

a map is a subclass of A× B specified by some property, Proposition (9.3) shows that each map

is a member of the set P(A × B). Using now the property m expressed in Definition (7.1), the

class of all maps A → B is {x ∈ P(A×B) | x has property m} so, again by Proposition (9.6), it

is a set.

Proposition 9.8. The class of all sets is not a set.

Proof. Let R(p) be the Russell class. If the class A of all sets were a set, then Axiom (9.7)

would imply that A
⋂

R(p) is a set; since A
⋂

R(p) = {x | (x is a set) ∧ (x 6= x)} = R(p), this

contradicts Proposition (9.1).

We now add

Axiom 9.9. (of Foundation) In each nonempty set A there is a u ∈ A such that u ∩ A = Ø

(that is, ∀x : x ∈ A ⇒ ¬(x ∈ u)).

Loosely speaking, this axiom asserts that each nonempty set must contain ”atoms” u, which form

its ”foundation”. Its use is shown in

Proposition 9.9.

1. No nonempty set can be a member of itself.

2. If A, B are nonempty sets, then it is not possible that both A ∈ B and B ∈ A are true.

Proof. 1. Assume there were a nonempty set A such that A ∈ A; by Proposition (9.5), {A}
would also be a set, and because A is also the only member of A, the set A would not have

a foundation.

2. Consider the set {A, B} (using Axiom (9.4)) in an analogous way.

We now provide for the existence of infinite sets by

Axiom 9.10. (of Infinity) There exists a set A with the properties: (i) Ø ∈ A, and (ii) if

a ∈ A; then, a ∪ {a} ∈ A.

As an application we have

Proposition 9.10. The class of nonnegative integers is a set
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Proof. Let A be any set having the two properties listed in Axiom (9.10)), and let B ⊂ P(A) be

defined by B = {B ∈ P(A) | B has two properties in Axiom (9.10)}. Each B is a set, and by

Proposition (9.3) and Axiom (9.8), so also is B; it therefore follows from Proposition (9.4) that

N =
⋂
{B | B ∈ B} is also a set. Because each B has the properties (i) and (ii) of Axiom (9.10),

it is evident that N has them also. Refereeing now to the Peano axioms for the integers, and

calling x ∪ {x} ∈ N the successor of x ∈ N , it can be easily verified that all the Peano axioms

are satisfied by N [the principle of mathematical induction is valid because, by definition of N ,

N has no proper subset that satisfies both (i) and (ii)]. Since the Peano axioms are categorical,

it follows that N can be regarded as the set of nonnegative integers. We denote Ø by ”0”, {Ø}
by ”1”, {Ø, {Ø}} by ”2”, and so on.

An easy consequence from this, Proposition (9.6) and Axiom (9.6), is that the class Q of rationals

is a set; we will see later that there is a bijection of P(N) onto the reals; therefore by Axioms

(9.6) and (9.8), Euclidian line E1 is also a set.

According to this axiomatization, the only general method for producing subsets of a given set is

that given in Proposition (9.3). To see that there are subsets that we would like to consider but

that cannot be described by any property, consider the following example of Russell: Let A be an

infinite collection of pairs of shoes; we can define a subset consisting of exactly one shoe from each

pair by the property ”right shoe”. If now A is an infinite collection of pair of stocking, analogy

would indicate that a subset consisting of exactly one stocking from each pair could be formed;

but because stockings are identical in all respects, there can be no property that characterizes

exactly one of each pair; in particular, we are not allowed to call such a collection a subset of A.

Analogous situations arise frequently in mathematics; to give the broadest scope to mathematical

considerations, we adopt as another method for producing subsets,

Axiom 9.11. (of Choice) Given any nonempty family {Aα | α ∈ A } of nonempty pairwise

disjoint sets, there exists a set S consisting of exactly one element from each Aα.

This is the only existential axiom: in contrast to all the others, a set obtained by application of

this axiom is not, in general, uniquely determined by the given conditions. It has been shown

(1938) by K. Gödel that if the set theory based on the first ten axioms is consistent, then the set

theory based on all the eleven axioms is also consistent. Gödel’s result obviously leaves open the

possibility that Axiom (9.11) is derivable from the other axioms, and, in 1963, P.J. Cohen proved

that it is not. Thus, the axiom of choice in fact an independent axiom.

Remark Note that appeal to Axiom (9.11) is not necessary if A if a finite set. Indeed, if A1, · · · , An

are the sets, then each Ai contains some element ai so, by taking pi(x) to be property (x = ai),

we obtain {x ∈
n⋃
1

| p1(x) ∨ · · · ∨ pn(x)} as a set satisfying the requirements of Axiom (9.11).

However, if A is infinite (even though, as in Russell’s example, each Aα is finite), some principle

such as Axiom (9.11) appears to be necessary. A property such as ”contains one element from
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each Aα”is illegitimate because properties carve out unique subsets and it is evident that if there

is one collection satisfying the proposed predicate, then there are others also (unless Aα consists

of a single element). taking pi(x) = (x = ai), the procedure used above for finite A cannot be

emulated, since an infinite ”or” chain is not a proposition. And to use a predicate such as ∃ i : pi(x)

is inadequate: for, assuming about x that ¬ p1(x), ¬ p2(x), · · · , one cannot in general conclude

∀ i : ¬pi(x), that is, ¬∃i : pi(x) [or, that x does not belong to the set determined by ∃ i : pi(x)],

without tampering with the rules of logic in the predicated calculus; from this viewpoint, the need

for Axiom (9.11) is related to the ω-incompleteness of consistent systems.
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