MAG51 Topology. Lecture 12. Mapping in Metric Spaces.

This text is based on the following books:
e "Introduction to Real Analysis” by A.N. Kolmogorov and S.V. Fomin

o "Linear Algebra and Analysis” by Marc Zamansky

I have intentionally made several mistakes in this text. The first homework assignment is to find
them.

66 Uniform continuity

The definition of continuity of a mapping f of a matric space (E,d) into a metric space (F,¢) is
the same as that given in the case of two arbitrary topological spaces. However we can now define
the concept of uniform continuity.

Definition 66.1. Let f be a mapping of a metric space (E,d) into a metric space (F,9). f is
said to be uniformly continuous if for each € > 0 we can find a(g) > 0 such that if d(z,2") < «

then 6(f(x), f(2)) < e.

Example 66.1. If f is uniformly continuous it is continuous, but the converse is false. For
example, the continuous mapping of Rt into R™ defined by v — 1/x.

There are cases where continuity implies uniform continuity. These depend on topological prop-
erties of the space (F,d). For example, let us prove the following result:

Theorem 66.1. Let f be a mapping of a compact metric space (E,d) into a metric space (F,J).
if f s continuous it is uniformly continuous.

Proof. Let € > 0. To each # € E we assign an open ball B(z,r,) of center z and radius r, such
that if 2’ € B(x,r,), 6(f(2'), f(z)) < £/2. This may be done since f is continuous.

Consider the open balls B(x,r,/2). They cover E and, since F is compact, include a finite cover
B(l’i, T'xl/Q)



Let
m = inf(r,,/2)

and consider two points z, 2’ of E such that d(x,z’) < m. The point x is contained in a certain
ball B(z;,7,,/2) and we have

d(2',x;) <d(@',z) +d(z,2") <m+ry, /2 <1y,

It follows that 2’ € B(x;,7,;). We now have

0(f(2'), f(x)) < o(f (), f(x:)) + 6(f(x), f(z:)) <e

since 2’ and x belong to B(x;,rs,).
]

Example 66.2. Let us consider a continuous function defined by distance. The distance d(x, A)
of a point x from a subset A of a metric space E is defined by

d(xz,A) = inf d(z,y)

yeA

We will prove that the function x — d(x, A) is uniformly continuous on E for every set A.

d(z, A) being the lower bound of the d(x,u) for u € A, given € > 0 there exists a ug € A such that

d(z, A) < d(z,up) < d(z,A)+¢
Let y be another point of EI. We have

Ay, uo) < d(a,y) + d(z,u0) < d(y, ) +d(z, A) + ¢
and since

d(.]?,A) = 1n£ d(y7u> < d(y7u0)
ue

it follows that

d(y,A) <d(y,x) +d(xz,A) + ¢

Since € is arbitrary there results

d(y, A) < d(y,r) +d(z, A)

and interchanging x and y
d(z,A) < d(z,y) + d(y, A)
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Thus for each subset A and arbitrary points x, y of E we have

|d(z, A) — d(y, A)| < d(z,y)

which establishes the uniform continuity of the function x — d(z, A).

67 Extension by continuity

The following question arises in a natural way. If F and F' are two spaces, A a dense subspace of
E, and ¢ a continuous mapping of A into F', is there a mapping f of E into I’ which is continuous
in I/ and whose restriction to A is ¢?

This question can be posed more graphically as follows: if f is a continuous mapping of E into F’
and A is dense in E can f be reconstituted from its restriction ¢ to A?

The solution of this problem is called the extension of ¢ from A to E by continuity. This, in
fact, can be done if we impose some quite general conditions satisfied by metric spaces (which are
separated and normal).

We first prove the following statement:

Proposition 67.1. If f and g are two continuous mappings of a space E into a separated space
F, and are equal at the points of a dense subset A of E, then they are equal everywhere in E.

Proof. For, if x € F is adherent to A, f(z), the limit of f(£) when ¢ tends to z, is also the limit
when £ tends to x in A. Since f(§) = g(&) for £ € A, and F is separated, the limits of f and g at

each point x € E are equal.
O

Now let ¢ be a mapping of a set A which is dense in F, into a separated space F. In order to
be able to extend ¢ to E we must suppose that when £ € A tends to x € F, ¢(§) has a limit,
which we shall denote by f(z). (If E is a metric space we can say that for every sequence (&,) of
elements of A converging to z € E, ¢(&,) must have a limit, and this limit must be the same for
every such sequence (§,).) We now prove the following theorem:

Theorem 67.1. Let A be a dense subspace of a space E, F' a normal space, and ¢ a mapping of
A into F such that for every x € E, ¢(&) has a limit f(z) in F when & € A tends to x. Then the
function f is continuous in E.

Proof. See the proof of Theorem 38.1



68 Contraction mapping

68.1 The fixed point theorem

Let A be a mapping of a metric space R into itself. Then x is called a fixed point of A if Az = x,
i.e. A carries x into itself. Suppose there exists a number a < 1 such that

p(Ax, Ay) < ap(x,y)

for every pair of points z,y € R. Then A is said to be a contraction mapping. Every con-
traction mapping is automatically continuous, since it follows from the ”contraction condition”
(p(Az, Ay) < ap(z,y)) that Az, — Az whenever z,, — z.

Theorem 68.1. (Fixzed point theorem). Every contraction mapping A defined on a complete
metric space R has a unique fized point.

Proof. Given an arbitrary point z¢ € R, let

T = Axg, 1o = Az = Axg, ..., Ty = Axp_q = A"y, . ..

where A%z = A(A(2)), A3z = A(A%1) = A(A(A(2))), ete.
Then the sequence {z,} is fundamental. In fact, assuming to be explicit that n < n’, we have

p($n, xn’) = p(Anmm Anll'o) < @np(xoa xn’fn)
< a”[p(zo, 1) + p(x1,22) +++ + P(Tw—n—1, Trr—n)]
<ap(zo,z)[1+a+a® + -+ a¥
1
1—

But the expression on the right can be made arbitrary small for sufficiently large n, since o < 1.

< a"p(xo, 1)

Since R is complete, the sequence {x,}, being fundamental, has a limit
r= lim z,
n—oo
Then, by continuity of A,
Arx = A lim x, = lim Az, = lim 2,1 =2
n—oo n—oo n—oo

This proves the existence of a fixed point . To prove the uniqueness of x we note that is

Ar =z, Ay=y

then by definition of contraction mapping

p(r,y) < ap(z,y)
But then p(z,y) = 0 since o < 1, and hence =z = y ]
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Remark. The fixed point theorem can be used to prove existence and uniqueness theorems for
solutions of equations of various types. Besides showing that an equation of the form Az = x has
a unique solution, the fixed point theorem also gives a practical method for finding the solution,
i.e. calculation of the "successive approximations” (x,, = A™zg). In fact, as shown in the proof,
the approximations actually converge to the solution of the equation Ax = x. For this reason, the
fixed point theorem if often called the method of successive approximations.

Example 68.1. Let f be a function defined on the closed interval [a,b] which maps |[a,b] into
itself and satisfies a Lipschitz condition

(1) |f(21) = f(22)| < K21 — 29|

with constant K < 1. Then f is a contraction map, and hence, by Theorem (68.1), the sequence

(2) Lo, T1 = f(.To)7 Tog = f(Il), “on

converges to the unique root of the equation f(x) = z. In particular, ”contraction condition” (1)
holds if f has a continuous derivative f' on [a,b] such that

[fz)| < K <1

Example 68.2. Consider the mapping A of n—dimensional space into itself given by the system
of linear equations

n

(3) yi:Zaijxj—i-bi (i=1,...,n)

J=1

If A is a contraction mapping, we can use the method of successive approximations to solve the
equation Ax = x. The condition under which A is a contraction mapping depend on the choice of
metric. We now examine three cases:

1. The space R{ with metric

plx,y) = max |z — yil

In this case,
Py, y) = max i — ¥l = max | Zaij(%‘ — 7|
J
< mZTdXZ |aij||(z; — 7;)|
J
< max Y oy | max| (x; = 7)] = (max Y |ay ol 7)
J J
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and the contraction condition is now

(4) D layl <a<l (G=1,....n)
J
. The space R} with metric

ple.y) = |z i
=1

Here

Py, y) = Z |zi — Y| = Z | Zazj(%’ — ;)|
< ZZ |ai;l|(z; — ;)]
< (m?xZ\aiij(:c,f)

and the contraction condition is now

(5) D layl <a<l (G=1,...,n)

J

. Ordinary Fuclidean space R" with metric

p(r,y) =

Using the Cauchy-Schwarz inequality, we have

P0.5) = (X ey — ) < (1D ad)(e, )

J

and the contraction condition becomes

(6) ZZa?j<a<1
(N



Thus, if at least one of conditions (4-6) holds, there exist a unique point x = (1,3, ..., x,) such
that

n
xTr; = Zaijxj +bz (Z = 1,...,n)
i=1
The sequence of successive approzimations to this solution of the equation x = Ax are of the form

l.O = (x(l)alé)v ’x7[')7,>
' = (I%vxéa 7‘7:111)
at = (I’f7x§7 ,Ifl)

where

k 2 : k—1
.Ti = CLZ‘jZEj +bz

i=1
and we can choose any point x° as the "zeroth approximation”.
FEach of the conditions (4-6) is sufficient for applicability of the method of successive approxima-
tions, but none of them is necessary. In fact, examples can be constructed in which each of the
conditions (4-6) is satisfied, but not the other two.

68.2 Contraction mapping and differential equations

The most interesting applications of Theorem (68.1) arise when the space R is a function space.
We can use this theorem to prove a number of existence and uniqueness theorems for differential
and integral equations.

Theorem 68.2. (Picard). Given a function f(x,y) defined and continuous on a plane domain
G containing the point (xo,yo) suppose [ satisfies a Lipschitz condition of the form

|f(x,y) — f(2,9)] < My — 9|

in the variable y. Then there is an interval |x — xo| < & in which the differential equation

dy
7 _— =
7) Y= f(.y)
has a unique solution
y = ¢(z)
satisfying the initial condition
(8) ¢(x0) = Yo



Remark. By an n—dimensional domain we mean an open connected set in Euclidean n—space.

Proof. Together the differential equation (7) and the initial condition (8) are equivalent to the
integral equation

9) o) =0+ [ St o)
zo
By the continuity of f, we have

(10) |flz,y)| < K

in some domain G’ C G (in fact f is bounded on G’ C G) containing the point (zg,yo). Choose
0 > 0 such that

L. (z,y) € G"if |z — 20| <6, |y — yo| < Ko
2. Mo <1

and let C* be the space of continuous functions ¢ defined on the interval |z — x¢| < 0 and such
that |p(z) — yo| < K6, equipped with the metric

ple,9) = max|p(w) — o(2)|

The space C* is complete, since it is closed subspace of the space of all continuous functions on
[zg — 0,29 + 6]. Consider the mapping 1) = Ap defined by the integral equation

b(e) =y + / " fto()dt (jz— o] <)

Clearly A is a contraction mapping carrying C* into itself. In fact, if p € C*, |z — x¢| < ¢ then

o —yo|—\/ Pt p(t)dt] <
/\f )ldt <

\K|JZ—ZE0|\

by (10), and hence ¢ = Ay also belongs to C*. Moreover,

) = )| < [ 11 pte) - 10 B0
< Moje(t) = ¢(t)]
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and hence

(b, ) < Mop(1), )

after maximizing with respect to z. But M¢§ < 1, so that A is a contraction mapping. It follows
from Theorem (68.1) that the equation ¢ = Ay, i.e. the integral equation (9), has a unique
solution in the space C*. [



