
MA651 Topology. Lecture 4. Topological spaces 2

This text is based on the following books:

• ”Linear Algebra and Analysis” by Marc Zamansky

• ”Topology” by James Dugundgji

• ”Fundamental concepts of topology” by Peter O’Neil

• ”Elements of Mathematics: General Topology” by Nicolas Bourbaki

I have intentionally made several mistakes in this text. The first homework assignment is to find

them.

25 Continuous Maps

We have been considering topologies on one given set; we now want to relate different topological

spaces. Given (X, TX) and (Y,TY ), note that the a map f : X → Y relates the sets and also

induces two maps f̂ : P(X) → P(Y ), f̂−1 : P(Y ) → P(X). Of these, f̂−1 should be used to

relate the topologies, since it is the only one that preserves the Boolean operations involved in the

definition of a topology. Thus the suitable maps f : X → Y are those for which simultaneously

f̂−1 : TY → P(X). Formally stated,

Definition 25.1. Let (X, TX) and (Y, TY ) be topological spaces. A map f : X → Y is called

continuous if the inverse image of each set open in Y is open in X (that is f̂−1 maps TY into TX).

Example 25.1. A constant map f : X → Y is always continuous: The inverse image of any set

U open in Y is either Ø or X, which are open.

Example 25.2. Let X be any set, T1, T2 two topologies on X. The bijective map 1 : (X, T1) →
(X, T2) is continuous if and only if T2 ⊂ T1. Note that a continuous map need not send open sets

to open sets, and also that increasing the topology T1 preserves continuity.
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Example 25.3. A map sending open sets to sets is called an open map. An open map need not be

continuous. 1 : (X, T1) → (X, T2) is open if and only if T1 ⊂ T2, but is not continuous whenever

T1 6= T2.

Example 25.4. Let Y ⊂ X. The relative topology TY can be characterized as the smallest topology

on Y for which the inclusion map i : Y → X is continuous. For, if U ∈ T , the continuity of

i requires i−1(U) = U ∩ Y to be open in Y , so that any topology for which i is continuous must

contain TY .

The elementary properties are:

Proposition 25.1.

1. (Composition) If f : X → Y and g : Y → Z are continuous, so also, is g ◦ f : X → Z.

2. (Restriction of domain) If f : X → Y is continuous and A ⊂ X is taken with a subspace

topology, then f |A : A → Y is continuous.

3. (Restriction of range) If f : X → Y is continuous and f(X) is taken with the subspace

topology, then f : X → f(X) is continuous

Proof is left as a homework.

The basic theorem on continuity is:

Theorem 25.1. Let X, Y be topological spaces, and f : X → Y a map. The following statements

are equivalent:

1. f is continuous.

2. The inverse image of each closed set in Y is closed in X.

3. The inverse image of each member of a subbasis (basis) for Y is open in X (not necessarily

a member of a subbasis, or basis for X!).

4. For each x ∈ X and each neighborhood W (f(x)) in Y , there exists a neighborhood V (x) in

X such that f(V (x)) ⊂ W (f(x)).

5. f(A) ⊂ f(A) for every A ⊂ X.

6. f−1(B) ⊂ f−1(B) for every B ⊂ Y .

Proof.

• (1) ⇔ (2), since f−1(Y − E) = X − f−1(E) for any E ⊂ X.
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• (1) ⇔ (3). Let {Uα | α ∈ A } be a subbasis for Y . If f is continuous, each f−1(Uα) is open.

Conversely, if each f−1(Uα) is open, then because any open U ⊂ Y can be written

U =
⋃
{Uα1 ∩ · · · ∩ Uαn | {α1, · · · , αn} ⊂ A },

we have that

f−1(U) =
⋃
{f−1(Uα1) ∩ · · · ∩ f−1(Uαn)}

is a union of open sets and so is open.

• (1) ⇔ (4). Since f−1(W (x)) is open, we can use it for V (x).

• (4) ⇔ (5). Let A ⊂ X and b ∈ A; we show f(b) ∈ f(A) by proving each W (f(b)) intersects

f(A). For, finding V (b) with f(V (b)) ⊂ W (f(b)),

b ∈ A ⇒ Ø 6= V (b) ∩ A

⇒ Ø 6= f(V (b) ∩ A) ⊂ f(V (b)) ∩ f(A) ⊂ W (f(b)) ∩ f(A).

• (5) ⇔ (6). Let A = f−1(B); then f(A) ⊂ f(A) = f [f−1(B)] = B ∩ f(X) ⊂ B, so that

A ⊂ f−1B, as required.

• (6) ⇔ (2). Let B ⊂ Y be closed; then f−1(B) ⊂ f−1(B), and since always f−1(B) ⊂ f−1(B)

(by Proposition 23.2 (a): for every set A: A ⊂ A), this shows that f−1(B) is closed (by

Proposition 23.1).

The formulation (4) of Theorem (25.1) shows that continuity is a ”local” matter, a fact having

many applications. Precisely,

Definition 25.2. An f : X → Y is continuous at x0 ∈ X if for each neighborhood W (f(x0)) in

Y , there exists a neighborhood V (x0) in X such that f(V (x0)) ⊂ W (f(x0)) (i.e. Theorem (25.1)

(4) is satisfied at x0).

From this viewpoint, the equivalence of (1) and (4) in Theorem (25.1) asserts: f is continuous

according to Definition (25.1), if and only if it is continuous at each point of X.

26 Open Maps and Closed Maps

Definition 26.1. A map f : X → Y is called open (closed) if the image of each set open (closed)

in X is open (closed) in Y .
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We have already seen (Example (25.1) that a continuous map need not be an open map, and

(Example (25.3)) that an open map need not be continuous. The following example shows that,

in general, an open map need not be a closed map (even though it is continuous); the concepts

”open map”, ”closed map”, and ”continuous map” are therefore independent.

Example 26.1. Let A ⊂ X and let i : A → X be the inclusion map a → a. By Example (25.4)

i is continuous. Furthermore, i is open (closed) if and only if A is open (closed) in X. Proof for

”open”: If A is open, and U ⊂ A open in A, then by Theorem (24.2) (Let Y be a subspace of X.

If A ⊂ Y is closed (open) in Y , and Y is closed (open) in X, then A is closed (open) in X.),

i(U) = U is open in X. The proof for ”closed” is analogues.

Example 26.2. If f : X → Y is bijective, then the conditions ”f closed” and ”f open are in fact

equivalent. For, if f is open and A ⊂ X is closed, then A = X − U and f(A) = f(X)− f(U) =

Y − f(U), so f(A) is also closed. As Examples (25.2) and (25.3) show, ”bijective open” and

”bijective continuous” are still distinct notions.

The behavior of inverse images further emphasizes the distinction between open maps and closed

maps:

Theorem 26.1.

1. Let p : X → Y be a closed map. Given any subset S ⊂ Y and any open U containing p−1(S),

there exists an open V ⊃ S such that p−1(V ) ⊂ U .

2. Let p : X → Y be an open map. Given any subset S ⊂ Y , and any closed A containing

p−1(S), there exists a closed B ⊃ S such that p−1(B) ⊂ A.

Proof. We prove only (1) since the proof of (2) is similar. Let V = Y −p(X−U); since p−1(S) ⊂ U ,

it follows that S ⊂ V , and because p is closed, V is open in Y . Observing that

p−1(V ) = X − p−1[p(X − U)] ⊃ X − [X − U ] = U

completes the proof.

Theorem (26.1) is particularly important and has significant consequences; its most frequently

occurring form is with S a single point.

We now give some characterization of open maps and of closed maps.

Theorem 26.2. The following fore properties of a map f : X → Y are equivalent:

1. f is an open map.

2. f [Int(A)] ⊂ Int[f(A)] for each A ⊂ X.

4



3. f sends each member of a basis for X to an open set in Y .

4. For each x ∈ X and neighborhood U of x, there exists a neighborhood W in Y such that

f(x) ∈ W ⊂ f(U).

Proof.

• (1) ⇔ (2). Since Int(A) ⊂ A, we have f [Int(A) ⊂ f(A). By hypothesis, f [Int(A)] is open,

and because Int[f(A)] is the largest open set in f(A), we must have f [Int(A)] ⊂ Int[f(A)].

• (2) ⇔ (3). Let U be a member of a basis. Being open U =Int(U) and so f(U) = f [Int(U)] ⊂
Int[f(U)] ⊂ f(U); thus, f(U) = Int[f(U)] and therefore f(U) is open.

• (3) ⇔ (4). Given x and neighborhood U of x, find a member V of the basis for X such that

x ∈ V ⊂ U (by Theorem (21.2)) and let W = f(V ).

• (4) ⇔ (1). Let U be open in X. by hypothesis, each y ∈ f(U) has a neighborhood

W (y) ⊂ f(U) so that f(U) = ∪{W (y) | y ∈ f(U)} shows that f(U) is open.

Theorem 26.3. p : X → Y is a closed map if and only if p(A) ⊂ p(A) for each set A ⊂ X

Proof. If p is closed, then by Proposition (23.1), p(A) is closed; since p(A) ⊂ p(A), we obtain

p(A) ⊂ p(A) = p(A) as required. Conversely, if the condition holds and A is closed, then p(A) ⊂
p(A) ⊂ p(A) = p(A) shows that p(A) ⊂ p(A), so that p(A) is closed.

27 Homeomorphism

Definition 27.1. A continuous bijective map f : X → Y , such that f−1 : Y → X is also

continuous is called a homeomorphism (or a bicontinuous bijection) and denoted by f : X ∼= Y .

Two spaces X, Y are homeomorphic, written X ∼= Y , if there is a homeomorphism f : X ∼= Y .

Example 27.1. The map x → x
1+|x| is a homeomorphism of R and ] − 1, +1[. Interpreting x as

a vector in Rn, this map shows that Rn is homeomorphic to its unit ball B(0; 1).

Example 27.2. The extendended real line R̃ is homeomorphic to [−1, +1], since the map x →
x

1+|x| | (x ∈ R), ±∞→ ±1 is a homeomorphism.

Example 27.3. Let p = (0, 0, 1) be the north pole of the sphere S2; then S2−{p} ∼= R2, since the

stereographic projection from p, which sends

(x1, x2, x3) ∈ S2 − {p} to ( x1

1−x3
, x2

1−x3
, 0) ∈ R2 ⊂ R3

5



is easily verified to be a homeomorphism. This is the familiar process in complex analysis, which

completes the complex numbers (geometrically, R2) by adding a ”point of infinity” to get S2. in

similar fashion, we have Sn − {(0, · · · , 0, 1)} ∼= Rn.

The importance of homeomorphisms results from the observation that a homeomorphism is also an

open map; for, it then follows at once that a homeomorphism f : X ∼= Y provides simultaneously

a bijection for the underlying spaces and for the topologies: that is, both f : X → Y and the

induced f̂ |T (X) : T (X) → T (Y ) are bijective. Then their significance in this: Any assertion

about X as a topological space is also valid for each homeomorphism of X; more precisely, every

property of X expressed entirely in terms of set operations and open sets (that is, any topological

property of X) is also possessed by each space homeomorphic to X.

Somewhat more generally, we call any property of spaces a topological invariant if whenever it

is true for one space X it is also true for every space homeomorphic to X; trivial examples are

cardinal of point set, and cardinal of topology. With this terminology, every topological property

of a space is a topological invariant, homeomorphic spaces have the same topological invariants,

and Topology can be described as the study of topological invariants.

This description of topology can be expressed more formally: Observe that homeomorphism is an

equivalence relation in the class of all topological spaces, since

(a) 1 : X ∼= X

(b) [f : X ∼= Y ] ⇒ [f−1 : Y ∼= X]

(c) [f : X ∼= Y ] ∧ [g : Y ∼= Z] ⇒ [g ◦ f : X ∼= Z]

that is easy to verify. Consequently, the relation of homeomorphism decomposes the class of all

topological spaces into mutually exclusive classes, called homeomorphism types. In these terms,

Topology studies invariants of homeomorphism types.

Homeomorphism frequently allows the reduction of a given problem to a simpler one: A space

that is given, or constructed, in some complicated manner may possible be shown homeomor-

phic to something more familiar, and its topological properties thereby more easily determined.

For example, it is known that the Riemann surface of an algebraic functions is homeomorphic

to a sphere S2 having suitably many attached handles. Unfortunately, to show that two given

spaces are homeomorphic is usually difficult, with construction of a homeomorphism being the

only general method. In some special cases, such as two-dimensional manifolds, other (algebraic)

techniques have been devised.

It is frequently important to know that two spaces are not homeomorphic, as, for example, R

and R2. This problem is somewhat simpler than the former; it is generally solved by displaying a
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topological invariant possessed by only one of spaces. Topological invariants not possessed by all

spaces are therefore important, in this course we will see many such invariants.

Theorem 27.1. Let f : X → Y be bijective. The following properties of f are equivalent:

1. f is a homeomorphism.

2. f is continuous and open.

3. f is continuous and closed.

4. f(A) = f(A) for each A ⊂ X

Proof.

• (1) ⇔ (2). The requirement that the map f−1 : Y → X be continuous is equivalent to the

stipulation that for each open U ⊂ X, the set (f−1)−1(U) = f(U) be open in Y .

• (2) ⇔ (3). This is equivalent to Example (26.2).

• (3) ⇔ (4). Continuity of f yields f(A) ⊂ f(A), and because f is closed, Theorem (26.3)

shows that also f(A) ⊂ f(A).

One frequently used technique for establishing that a given f : X → Y is a homeomorphism is

simply to exhibit a continuous g : Y → X in accordance with

Theorem 27.2. Let f : X → Y and g : Y → X be continuous and such that both g ◦ f = 1X and

f ◦ g = 1Y . Then f is a homeomorphism, and in fact, g = f−1.

Proof. We know (see Proposition (7.3): ”Let f : X → Y and g : Y → X satisfy g ◦ f = 1X . then

f is injective and g is surjective.”) that both f and g are bijective, and it is trivial to see that

g = f−1; since both f and g are continuous, the proof is complete.

For subspaces,

Theorem 27.3. Let f : X ∼= Y and A ⊂ X. Then f |A : A ∼= f(A) and f |X − A : X − A ∼=
Y − f(A).

Proof. Let g = f−1|f(A); then g is continuous, by Proposition (25.1) (2), and the pair of maps

f |A,g satisfies Theorem (27.2). The second part is proved in the same way.

Definition 27.2. If Z is any space and f : X → Z is a map establishing X ∼= f(X) ⊂ Z, then f

is called an embedding map of X into Z.
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28 Continuity from a ”local” viewpoint.

We would like to bring another definition of continuity using limits. But first we should consider

limit points in topological spaces using concept of a filter. Before we introduce abstract definitions

let us briefly discuss concepts of limit and convergence which are associated with sequences of real

numbers.

The expression ”a sequence (xn) of real numbers has a limit (or converges to) a real number x0”

means ”every open interval containing x0 contains all but a finite number of the xn”. Then we

say that xn converges, or tends to, or has a limit x0 when n tends to infinity.

For real-valued functions we also define the expression ”f(x) tends to y when x tends to x0” or

”. . . when x tends to zero on the right”, etc.

Other elementary concepts of limits are also important. For example a point x0 is a point of

accumulation of a countable set if every open set containing x0 contains a point of the set other

than x0. We have also the idea of a subsequence extracted from a given sequence, the Bolzano-

Weierstrass theorem on R: from every infinite bounded sequence we can extract a convergent

sequence; and the concept of a doubled sequence (xp,q) which converges to x0 when p and q tend

to infinity.

If we consider the case of a sequence (xn) tending to x0 when n tends to infinity we can make the

following observations about the definition:

1. The expression ”all the xn except for a finite number” means that we consider the comple-

ments (with respect to the set of the xn) of finite subsets. If we denote these complements

by A, A′, . . . none of them is empty and the intersection A ∩ A′ of any two is again the

complement of a finite subset. Thus the set of complements with respect to the set of xn, of

the finite subsets is a fundamental family which does not contain the empty set.

2. The expression ”every open interval X containing x0 contains all the xn except for a finite

number” means that every X ∈ B(x0) contains in A.

These examples give rise to the definitions which follow.

28.1 The concept of a filter

28.1.1 Definition of a filter

Definition 28.1. A non-empty family of subsets of E is called a filter on E if it is a fundamental

family which does not contain Ø.
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Filters will be denoted by F , F ′ etc.

If a fundamental family does not contain Ø the intersection of a finite number of its members is

non-empty (see observation 2 after Definition (19.1)). Thus every finite intersection of sets of a

filter is non-empty.

Example 28.1. In a topological space, the basis of open neighborhoods B(x) of each point x is a

filter. On the other hand, a basis T for the topology is not a filter since Ø ∈ T .

Example 28.2. On the real line, a set non-empty open intervals all of which have the same

left-hand end point (or the same right-hand end point) is a filter.

Example 28.3. Let N be the set of natural numbers. For each n let X be the set of integers

greater than n. The family consisting of these sets X forms a filter since none of them is empty,

and is X and X ′ are the two sets defined by n and n′, respectively, X ∩X ′ is the set of integers

greater than max(n, n′) and so belongs to the family.

28.1.2 Comparison of filters

If F and F ′ are two filters on the same set E, F is said to be finer than F ′, or F ′ is coarse

than F , if the fundamental family F is finer than F ′ (see Definition (19.2)), i.e. if every A′ ∈ F ′

contains an A ∈ F .

If F is finer than F ′ and F ′ is finer than F , F ′ and F ′ are said to be equivalent.

Example 28.4. Suppose we are given bases T and T ′ for two topologies on a set E. If T ′ is

coarse than T , then for every x ∈ E the filter BT ′(x) is coarse than BT (x). If T and T ′ are

equivalent, BT ′(x) and BT (x) are equivalent.

Let F be a filter on a set E. A filter obtained by taking a subset of each set of F is called a filter

extracted from F . A filter extracted from the filter F is finer than F .

Example 28.5. Let E = N and let F be the filter of complements of finite subsets (the natural

filter on N or Fréchet filter, see below). Consider an infinite sequence of integers nk. Let F be the

filter of complements of finite subsets of the set of nk. Every element of F contains an element

of F ′.

Let F be a filter on a set E, X a non-empty subset of E. If every A ∈ F meets X, the set A∩X,

where A ∈ F , is called the filter induced on X by F .

Example 28.6. It is clear that the filter F ′ in Example (28.5) can be considered as the filter

induced by the natural filter F on the set of integers (nk).
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28.1.3 Fréchet filter, filter of sections

On the set of integers N consider the filter F consisting of sets A of integers m ≥ n (for arbitrary

n). Thus every A ∈ F is the complement of a finite subset of N .

Let F ′ be the set of complements of finite subsets of N . F ′ is clearly a filter. If A′ ∈ F ′ there

exists a finite subset φ′ of N such that A′ = Cφ′. If n′ is the greatest integer contained in φ′ and

A the set of m ≥ n′, then A′ ⊃ A. Conversely, if A ∈ F we have A ∈ F ′, so that the filters F

and F ′ are equivalent. We have here made use of the total order on N

Using the definition of the filter F above we can define a filter on an arbitrary (not necessary

totally) ordered set E.

Let E be a set which we shall suppose ordered by relation ≥. For every x ∈ E let A be the set of

y ∈ E such that y ≥ x. A is a subset of E called the section corresponding to x. Let F be the set

of A. No A is empty, and if A and A′ are two elements of F defined by x and x′ respectively, their

intersection is the empty set of y ∈ E such that y ≥ x and y ≥ x′. However this set may be empty.

We therefore introduce a further hypothesis which will ensure that A ∩ A′ is not empty. We

suppose that A is ordered and that if x, x′ ∈ E there exists y such that y ≥ x and y ≥ x′. The

family F we have just defined then becomes a filter. When E is the set of integers N with its

usual order we have the set defined above.

In particular, let Φ be the family of finite subsets of an arbitrary set E. We order Φ by inclusion.

If φ, φ′ ∈ Φ, since φ∪ φ′ ∈ Φ, φ ⊂ φ∪ φ′, φ′ ⊂ φ∪ φ′, the set Φ has the properties required above.

It follows that the family of subsets of E containing an element φ of Φ is a filter.

Definition 28.2. The natural filter on a set E is the filter consisting of the complements of finite

subsets of E.

Definition 28.3. The filter of sections on the set Φ of finite subsets of a set E is the filter whose

generic element is the set of finite subsets of E containing a given finite subset.

This filter is also called the filter of sections associated with E. It is important to remember that

the filter is defined on Φ, the family of finite subsets of E, even thought we call it the filter of

sections of E.

However, if E = N , an element of the filter of sections can be identified with the complement of a

finite subset and so we can then regard the natural filter (Fréchet filter) and the filter of sections

as equivalent.
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28.1.4 Images of a filter

Proportions (19.1) and (19.3) show that if f is a mapping of a set E into a set E ′:

1. The image by f of a filter on E is a filter on E ′,

2. The inverse image by f of a filter F ′ on E ′ is a filter on E if every set of F ′ meets f(E).

In particular, if f is a mapping of E onto E ′ the direct and inverse images of filters are again

filters.

Example 28.7. Let (xn) be a sequence of points in a set E, i.e. a mapping of N into E. The

image in E under this mapping of the natural filter on N is a filter, but, in general, it does not

consist of the family of complements of finite subsets of the set of values of the sequence. If for

example E consist of a single element a, we have xn = a for all n, and the image of the natural

filter is a filter consisting of a single element E, whilst the complements of a finite subset is Ø

28.2 Limits in topological spaces

28.2.1 Limit point of a filter

Definition 28.4. Let (E, T be a topological space and F a filter on E. We say that a point x ∈ E

is a limit or limit point of F if F is finer than the filter B(x) (the basis of open neighborhoods),

i.e. if every X ∈ B(x) contains an A ∈ F .

We then say that F converges to x or has x as a limit, or that F converges or is convergent (if

we do not need to specify the limit).

Remarks:

• A filter does not necessary converge. For example the natural filter on N with the discrete

topology.

• A filter may have more than one limit point.

• If x is a limit point of F , x may belong to some A ∈ F or may not belong to any A ∈ F .

For example the filter B(x) consisting of the open neighborhoods of x converges to x, and

x belongs to every X ∈ B(x). On the other hand, the set of open intervals of R all having

the same left-hand end point x is a filter which converges to x, but x does not belong to any

member of the filter.
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28.2.2 Point adherent to a filter

Definition 28.5. Let (E, T be a topological space and F a filter on E. A point x ∈ E is said

to be adherent to F if it is adherent to every A ∈ F , i.e. if every X ∈ B(x) meets every A ∈ F

Example 28.8. Consider in R the set of points 1/n, 1− 1/n (where n ∈ N) and the point 2. Let

F be the filter consisting of the complements of finite subsets of this set. F has the points 0 and

1 as adherent points.

28.2.3 Relation between limit points and adherent points

Let F be a filter on a topological space E. Suppose that x is a limit of F . Then every X ∈ B(x)

contains an A ∈ F . Now if A′ is an arbitrary element of F , A∩A′ is non-empty, so that X meets

every set of F . Thus:

Proposition 28.1. Every limit point is an adherent point.

Now suppose that x is adherent point to F . Consider the family of subsets A∩X of E, where A

is an arbitrary element of F , X an arbitrary element of B(x). None of these sets is empty since

x is adherent to F .

If we consider two of them we have

(A ∩X) ∩ (A′ ∩X ′) = (A ∩ A′) ∩ (X ∩X ′).

Since A ∩ A′ contains an A′′ ∈ F and X ∩X ′ contains X ′′ ∈ B(x)

(A ∩X) ∩ (A′ ∩X ′) ⊃ A′′ ∩X ′′.

Thus the family of A ∩X is a filter F ′, and since A ∩X ⊂ A, F ′ is extracted from F .

Finally, every X ∈ B(x) contains A∩X, an element of F ′, so that F ′ converges to x. Thus when

x is adherent to a filter F , there is a filter F ′ extracted from F and converging to x.

Conversely, suppose that given a filter F there is a filter F ′ extracted from F and converging to

a point x. Then every X ∈ B(x) contains an A′ ∈ F ′ and meets every element of F ′. Now by

definition of an extracted filter we obtain F by taking a subset of every set of F , so that every

X ∈ B(x) meets every A ∈ F . Hence:

Theorem 28.1. A point x is adherent to a filter F if and only if there is a filter F ′ extracted

from F and converging to x.
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28.3 Images of limits, sequences

Let f be a mapping of a set E into a set E ′. If we are given a filter F on E we have seen that

f(F ) is a filter on E ′. If A ∈ F , the set of f(A) forms a filter on E ′, and to give meaning to

the expression: the filter f(F ) converges to a point x′0 ∈ E ′, we must give a topology on E ′. We

shall now consider the cases with E ′ is a topological space and then where E and E ′ are both

topological spaces.

28.3.1 The case of a function with values in a topological space.

Let E be a set, E ′ a topological space defined by a basis T ′, f a mapping of E into E ′, and F a

filter on E.

Definition 28.6. We say that f(x) converges to a point x′0 ∈ E ′ along F if the filter f(F )

converges to x′0 in the space E ′.

We also say: f has limit x′0 along F , that x′0 is a limit of f along F , or that x′0 is a limit value of

f .

The filter f(F ) may have no limit point, but one or more adherent points in E ′. Such points are

called adherent values.

Finally, the filter f(F ) may have neither limit points nor adherent points.

The definition of a limit point of a filter shows that it comes to the same thing to say:

Definition 28.7. f(x) converges to a point x′0 ∈ E ′ along F if every X ′ ∈ BT ′(x′0), f−1(X ′)

contains an A ∈ T .

Sequences provide the most important example of these definitions.

28.3.2 Convergence of sequences

The family of complements of finite subset of N is a filter which we have called the natural filter.

A sequence in a topological space E is a mapping f of N into E whose value f(n) (for n ∈ N)

is written xn. Instead of ”xn tends to x0 (or converges to x0) along the natural filter” we usually

say ”xn tends to x0 when n tends to infinity” and write

x0 = lim
n→∞

xn

We sometimes abbreviate further by saying ”xn tends to or converges to x0” or ”has the limit x0”.

It is understood that the convergence is along the natural filter.

Remarks:

1. When we say that xn tends to x0 we mean that every X ∈ B(x0) contains an f(A), which,

here, is the set of points xk where k belongs to the complement of a finite subset of N .
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Consequently for every X ∈ B(x0) there is an integer p(X) such that for every k ≥ p(X)

we have xk ∈ X. Conversely, if for every X there exits an integer p(X) such that xk ∈ X

for k ≥ p(X) we see that every X ∈ B(x0) contains all the xk for which k belongs to the

complement of a finite subset of N . This in fact amounts to the elementary definition of

convergence of xn to x0.

2. If A is the complement of a finite subset of N , an element, that is, of the natural filter, the

set of points xn where n ∈ A is not, in general, the complement of a finite set of points of

the sequence.

3. If the points or values xn are all distinct, and if e denotes the set of points xn, the image of

the natural filter by the sequence (xn) consists of the complements of finite subsets of e.

4. Let e denotes the set of points xn. If x0 is adherent to e, x0 is not necessarily an adherent

point of the filter. But if x0 is an adherent point of the sequence (xn), x0 is adherent to e.

For example, on R, the sequence (1/n) has the single adherent point 0, but every point 1/n

is adherent to the set of values of the sequence.

5. Every subsequence of a sequence converging to x0 also converges to x0.

28.3.3 The case of a mapping of a topological space into a topological space.

Let (E, T ) and (E ′, T ′) be two topological spaces, f a mapping of E into E ′, and F a filter on

E. The convergence of f(F ) in E ′ is unrealistic to the convergence of F in E. This is illustrated

by the example of convergent sequence, for which F is the natural filter and we may consider N

as a subset of the topological space R.

However, if F converges in E to a point a ∈ E (either if this just happens to be so or if we have

chosen F so as to converge to a) we may then say ”f(x) tends to x′0 when x tends to a along F ′

which means the same as ”F converges to a in E and f(F ) to x′0 in E ′, simultaneously”.

We can express this definition in terms of the bases of neighborhoods BT (a), BT ′(x′0) and the

elements A of F . Thus to say that f(F ) converges to x′0 means that every X ′ ∈ BT ′(x′0) contains

an f(A), or that f−1(X ′) ⊃ A. We also say : for every X ′ ∈ BT ′(x′0) there is an A ∈ F such

that f(A) ⊂ X ′.

In the same way we define a limit x′0 of f when x tends to a along F .

Particular cases:

1. If the filter F is BT (a), the basis of open neighborhoods of a in E, which converges to a

by definition, instead of : f(x) tends to x′0 when x tends to a along BT (a), we say: f(x)

tends to x′0 when (or if) x tends to a, and we write:

x′0 = lim
x→a

f(x).
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2. Let (xn) be a sequence of points of E which converges to a. Here, F is the image, by the

sequence, of the family of complements of finite subsets of N . Instead of: xn tends to a

along F , we have agreed to say: xn tends to infinity. What does it mean to say that f(xn)

tends to x′0 if xn tends to a when n tends to infinity? For every X ′ ∈ BT ′(x′0) there exists

A ∈ T such that f(A) ⊂ X ′. Now an element A is the set of xn corresponding to all but a

finite number of the n. There therefore exists an integer P such that for every n ≥ P ,

f(xn) ∈ X ′.

This latter phrase expresses: f(xn) tends to x′0 when xn tends to a. We then write

x′0 = lim
x→∞

f(xn), (xn → a),

instead of

x′0 = lim
x→a
F

f(xn).

Example 28.9. Let f be a real-valued function of the real variable x, defined on R. The topology

of R is that defined by the open intervals.

1. To say that f(x) tends to x′0 when x tends to a means that for every open interval X ′

containing x′0, there is an open interval X containing a and such that f(X) ⊂ X ′, or, that

for every ε > 0 there exists an α such that for every x satisfying |x − a| < α, we have

|f(x)− x′0| < ε.

2. For a function of the same sort we take as a filter having a as limit the image F of the

natural filter be a sequence (xn). The image of F by f is the set of f(xk), where k takes all

integral values except for a finite set. To say that f(xn) has a limit x′0 when xn tends to a

along F means that for every ε > 0 there is an integer P such that if n ≥ P , |f(x)−x′0| < ε.

3. Again for the same function, we take as filter F having limit a, the family of open intervals

]a, α[ (]β, a[) all having left-hand end-points a, (right-hand end-points a). If f(x) has a limit

x′0 when x tends to a along F we say that f(x) tends to x′0 when x tends to a on the right

(on the left) and write

x′0 = lim
x→a+

f(x), (= lim
x→a−

f(x))f(x).

28.4 Local definition of a continuous map

Definition 28.8. Let f be a mapping of the topological space E into the topological space F . f

is continuous at the point a ∈ E if

lim
x→a

f(x) = f(a)

We recall limx→a f(x) is the limit along the filter B(a) which is the basis of open neighborhoods

of a in E. The definition can also be expressed: f is continuous at the point x ∈ E if f(x) tends

to f(a) ∈ F when x tends to a along B(a).
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Definition 28.9. Let f be a mapping of the topological space E into the topological space F .

We say that f is continuous in, or on, E if it is continuous at every point of E.

Proposition 28.2. A mapping f of the topological space E into the topological space F is

continuous at the point a ∈ E if one of the following conditions is satisfied:

1. For every Y ∈ B(f(a)) in F , f−1(Y ) is a neighborhood of a in E, i.e. it contains an

X ∈ B(a).

2. For every neighborhood W of f(a) in F , f−1(Y ) is a neighborhood of a in E.

3. For every filter F in E converging to a, f(F ) converges to f(a) in F .

Proof of this proposition is left as a homework.
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