
MA651 Topology. Lecture 6. Separation Axioms.

This text is based on the following books:

• ”Fundamental concepts of topology” by Peter O’Neil

• ”Elements of Mathematics: General Topology” by Nicolas Bourbaki

• ”Counterexamples in Topology” by Lynn A. Steen and J. Arthur Seebach, Jr.

• ”Topology” by James Dugundgji

I have intentionally made several mistakes in this text. The first homework assignment is to find

them.

36 Separation Axioms.

So far, our only requirements for a topology has been that it satisfy the axioms. From now on,

we will impose increasingly more severe additional conditions on it. With each new condition, we

will determine the invariance properties of the resulting topology: by this we mean:

• Whether the topology is invariant under open or closed maps rather than only homeomor-

phisms.

• Whether the additional properties are inherited by each subspace topology.

• Whether the additional properties are transmitted to cartesian products.

In this lecture we will require of a topology that it ”separate” varying types of subsets. The

separation axioms Ti stipulate the degree to which distinct points or closed sets may be separated

by open sets. These axioms are statements about the richness of topology. They answer questions

like, ”Are there enough open sets to tell points apart?” and ”Are there enough open sets to tell

points from closed sets?”.

Definition 36.1. (Ti axioms). Let (X, T ) be a topological space.
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T0 axiom : If a, b are two distinct elements in X, there exists an open set U ∈ T such that either

a ∈ U and b 6∈ U , or b ∈ U and a 6∈ U (i.e. U containing exactly one of these points).

T1 axiom : If a, b ∈ X and a 6= b, there exist open sets Ua, Ub ∈ T containing a, b respectively, such

that b 6∈ Ua, and a 6∈ Ub.

T2 axiom : If a, b ∈ X, a 6= b, there exist disjoint open sets Ua, Ub ∈ T containing a, b respectively.

T3 axiom : If A is a closed set and b is a point in X such that b 6∈ A, there exist disjoint open sets

UA, Ub ∈ T containing A and b respectively.

T4 axiom : If A and B are disjoint closed sets in X, there exist disjoint open sets UA, UB ∈ T

containing A and B respectively.

T5 axiom : If A and B are separated sets in X, there exist disjoint open sets UA, UB ∈ T containing

A and B respectively.

If (X, T ) satisfies a Ti axiom, X is called a Ti space. A T0 space is sometimes called a Kolmogorov

space and a T1 space, a Fréchet space. A T2 is called a Hausdorff space.

Each of axioms in Definition (36.1) is independent of the axioms for a topological space; in fact

there exist examples of topological spaces which fail to satisfy any Ti. But they are not indepen-

dent of each other, for instance, axiom T2 implies axiom T1, and axiom T1 implies T0.

More importantly than the separation axioms themselves is the fact that they can be employed

to define successively stronger properties. To this end, we note that if a space is both T3 and T0

it is T2, while a space that is both T4 and T1 must be T3. The former spaces are called regular,

and the later normal.

Specifically a space X is said to be regular if and only if it is both a T0 and a T3 space; to be

normal if and only if it is both a T1 and T4 space; to be completely normal if and only if it is both

a T1 and a T5 space. Then we have the following implications:

Completely normal ⇒ Normal ⇒ Regular ⇒ Hausdorff ⇒ T1 ⇒ T0

The use of terms ”regular” and ”normal” is not uniform throughout the literature. While some

authors use these terms interchangeably with ”T3 space” and ”T4 space” respectively, others

(especially in Russian textbooks) refer to our T3 space as a ”regular” space and vice versa, and

similarly permute ”T4 space” and ”normal”. This allows the successively stronger properties to

correspond to increasing Ti axioms.

Example 36.1. An antidiscrete space X containing more than one point does not satisfy to axiom

T0.
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Example 36.2. Sierpinski space, X = {0, 1} and T = {Ø, {0}, {0, 1}}, satisfies the axiom T0, but

does not satisfy T1: there does not exist an open set U containing the point 1 and not containing

the point 0.

Example 36.3. This example is important for algebraic geometry. Let A be a commutative ring

(i.e. A has two binary operations, such that addition makes A a commutative group (i.e. a set

with a binary associative and commutative operation such that the operation admits an identity

element and each element of the set has an inverse element for the operation.) and multiplication

is associative and distributes over addition and the commutative law also holds for multiplication

(a× b = b× a.) with a unit and X the set of all prime ideals of A (i.e. such ideals which have the

following two properties: whenever a, b are two elements of A such that their product a× b lies in

the prime ideal P , then a is in P or b is in P , and at the same time P is not equal to the whole

ring A). For any a ∈ A, let Xa denote the set of all prime ideals in A which do not contain a. It

is clear that Xa ∩Xb = Xab for all a, b ∈ X, X0 = Ø and X1 = X. Consequently, the collection

B = {Xa | a ∈ A} is a base of a topology T on A. This topology is called the spectral or Zariski

topology.

The topological space (X, T ) is called the prime spectrum of the ring A and is denoted Spect(A).

The closure of a one point set {x} in Spec(A) consists of all prime ideals y ∈ X =Spec(A)

containing x. It follows that the space (X, T ) satisfies the separation axiom T0, but not T1, since

the only closed points in X are the maximal ideals of the ring A.

Example 36.4. Let X be an infinite set and let the topology T consist of the empty set and all

subsets of X whose complements are finite. Any two nonempty open sets in this set intersect. At

the same time all one point sets in (X, T ) are closed. Hence the space (X, T ) satisfies axiom T1

but nit axiom T2.

37 Hausdorff Spaces.

Theorem 37.1. Let (X, T ) be a topological space. Then the following statements are equivalent:

1. (T2 axiom). Any two distinct points of X have disjoint neighborhoods.

2. The intersection of the closed neighborhoods of any point of X consists of that point alone.

3. The diagonal of the product space X ×X is a closed set.

4. For every set I, the diagonal of the product space Y + XI is closed in Y .

5. No filter on X has more than one limit point.

6. If a filter F on X converges to x, then x is the only cluster point of F .
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Proof. We will proof the implications:

(1) ⇒ (2) ⇒ (6) ⇒ (5) ⇒ (1)

(1) ⇒ (4) ⇒ (3) ⇒ (1)

(1) ⇒ (2) : If x 6= y there is an open neighborhood U of x and an open neighborhood V of y such that

U ∩ V = Ø; hence y 6∈ Ū .

(2) ⇒ (6) : Let x 6= y; then there is a closed neighborhood V of x such that y 6∈ V , and by hypothesis

there exists M ∈ F such that M ⊂ V ; thus M ∩CV = Ø. But CV is a neighborhood of y;

hence y is not a cluster point of F .

(6) ⇒ (5) : Clear, since every limit point of a filter is also a cluster point.

(5) ⇒ (1) : Suppose x 6= y and that every neighborhood V of x meets every neighborhood W of y.

Then the sets V ∩W form a basis of a filter which has both x and y as limits points, which

is contrary to hypothesis.

(1) ⇒ (4) : Let (x) = (xi) be a point of XI which does not belong to the diagonal 4. Then there

are at least two indices λ, µ such that xλ 6= xµ. Let Vλ (respectively Vµ) be a neighborhood

of xλ (respectively xµ) in X, such that Vλ ∩ Vµ = Ø; then the set W = Vλ × Vµ ×
∏

i6=λ,µ

Xi

(where Xi = X if i 6= λ, µ) is a neighborhood of x in XI which does not meet 4. Hence 4
is closed in XI .

(4) ⇒ (3) : Obvious.

(3) ⇒ (1) : If x 6= y then (x, y) ∈ X × X is not in the diagonal 4, hence there is a neighborhood

V of x and a neighborhood W of y in X such that (V ×W ) ∩ 4 = Ø, which means that

V ∩W = Ø.

Let f : X → Y be a mapping of a set X into a Hausdorff space Y ; then it follows immediately

from Theorem (37.1) that f has at most one limit with respect to a filter F on X, and that if f

has y as a limit with respect to F , then y is the only cluster point of f with respect to F .

Proposition 37.1. let f , g be two continuous mappings of a topological space X into a Hausdorff

space Y ; then the set of all x ∈ X such that f(x) = g(x) is closed in X.

Proof is left as a homework.

Corollary 37.1. (Principle of extension of identities). Let f , g be two continuous mappings of a

topological space X into a Hausdorff space Y . If f(x) = g(x) at all points of a dense subset of X,

then f = g.
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In other words, a continuous map of X into Y (Hausdorff) is uniquely determined by its values

at all points of a dense subset of X.

Corollary 37.2. If f is a continuous mapping of a topological space X into a Hausdorff space Y ,

then the graph of f is closed in X × Y

For this graph is the set of all (x, y) ∈ X×Y such that f(x) = y, and the two mappings (x, y) → y

and (x, y) → f(x) are continuous.

The invariance properties of Hausdorff topologies are:

Theorem 37.2.

1. Hausdorff topologies are invariant under closed bijections.

2. Each subspace of a Hausdorff space is also a Hausdorff space.

3. The cartesian product
∏
{Xα | α ∈ A } is Hausdorff if and only if each Xα is Hausdorff.

Proof. 1. Since a closed bijection is also an open map, the images of disjoint neighborhoods

are disjoint neighborhoods, and the result follows.

2. Let A ⊂ X and p, q ∈ A; since there are disjoint neighborhoods U(p), U(q) in X, the

neighborhoods U(p) ∩ A and U(q) ∩ A in A are also disjoint.

3. Assume that each Xα is Hausdorff and that {pα} 6= {qα}; then pα 6= qα for some α, so

choosing the disjoint neighborhoods U(pα), U(qα) gives the required disjoint neighborhoods

〈U(pα)〉, 〈U(qα)〉 in
∏
α

Xα. Conversely, if
∏
α

Xα is Hausdorff, then each Xα is homeomorphic

to some slice in
∏
α

Xα, so by (2) (since the Hausdorff property is a topological invariant),

Xα is Hausdorff.

Proposition 37.2. If every point of a topological space X has a closed neighborhood which is a

Hausdorff subspace of X, then X is Hausdorff.

Proof is left as a homework.
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38 Regular Spaces.

The Hausdorff separation axiom (Theorem (37.1)) was introduced to insure uniqueness of limits

(and, in fact, is equivalent to it). Certain problems, however, require stronger separation axioms

if one to have any hope of success. The problem of existence of continuous extension is typical of

this.

Suppose A is a subspace of X, and f is continuous on A to Y . Can f be extended continuously

to some g : X → Y ? This is among the most difficult and interesting problems in topology.

In general, the answer is no, even when the spaces are Hausdorff ( for example, X = R with

Euclidean topology, A = {x | x < 0} and f(x) = 1/x for x ∈ A. However, with a slightly stronger

separation axiom on Y , reasonable conditions assuring a positive solution is possible. This result

is Theorem (38.1), and may be thought as the motivation for considering the regularity.

Proposition 38.1. The following properties of a topological space X are equivalent:

1 The set of closed neighborhoods of any point of X is a fundamental system of neighborhoods

of the point.

2 (T3 axiom). Given any closed subset F of X and any point x 6∈ F there is a neighborhood

of x and a neighborhood of F which do not intersect.

Proof.

1 ⇒ 2 : If F is closed and x 6∈ F , then there is a closed neighborhood V of x contained in the

neighborhood CF of x; V and CV are neighborhoods of x and F respectively, and have no

point in common.

2 ⇒ 1 : If W is an open neighborhood of x ∈ X, then there is a neighborhood U of x and a

neighborhood V of CW which are disjoint, and therefore Ū ⊂ W .

Definition 38.1. A topological space is said to be regular if it is Hausdorff and satisfies axiom

T3; its topology is then said to be regular.

Remarks:

1 We can say than that the space is T0 instead of Hausdorff in Definition (38.1).

2 A regular space is distinguished by its ability to separate closed sets from points. This is

stronger than the T2 separation axiom, and on the face seems to imply T2 axiom by choosing

A = {y}, where y 6= x. This reasoning is correct if singletons are always closed in X, but
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this not need to be the case. However, in spaces where {y} is closed for each point y, then

of course only T3 is needed in the definition of regularity. The reason of including T2 (or T0)

in definition (38.1) are to insure the uniqueness of limits.

Example 38.1. En, and, more generally, any metric space is regular.

Example 38.2. Discrete spaces are regular.

Example 38.3. A Hausdorff space need not be regular. Let R be the set of real numbers, T

the usual Euclidean topology on R, Q the set of rationals, and T ′ the topology on R generated

by Q and the sets in T . Then T ⊂ T ′, so (R,T ′) is a Hausdorff space. But (R,T ) is not regular.

Note that the T ′-open sets are Q ∩ (Q intersect T -open sets) and (T -open sets) ∪ (Q intersect

T -open sets). Choose any rational number, say 0. Then, 0 6∈ R−Q. If (R,T ′) were regular, there

would be disjoint T ′-open U and V with R−Q ⊂ U and 0 ⊂ V . Now, for some T -open A and B,

U = A∪(Q∩B). And since each T -open set intersects R−Q, then for some T -open C, V = Q∩C.

Let ε > 0 such that Q∩] − ε, ε[⊂ Q ∩ C. Choose an irrational number ξ ∈] − ε, ε[. Then,

ξ ∈ R − Q ⊂ A ∈ T . Since A is T -open, there is some δ > 0 with ]ξ − δ, ξ + δ[⊂] − ε, ε[∩A.

Choose a rational number r in ]ε − δ, ε + δ[. Then, r ∈ A ⊂ U , and also r ∈ Q∩] − ε, ε[⊂ V .

Then, U ∩ V 6= Ø, a contradiction.

Proposition 38.2. Every subspace of a regular space is regular.

Proof. Let A be a subspace of a regular space X. Since X is Hausdorff so is A; on the other

hand, every neighborhood of a point x ∈ A with respect to A is of the form V ∩ A, where V is a

neighborhood of x in X. Since X is regular there is a neighborhood W of x in X which is closed

in X and contained in V ; W ∩ A is then a neighborhood of x in A, closed in A and contained in

V ∩ A. Hence the result.

The converse statement is also true:

Proposition 38.3. If every point x of a topological space X has a closed neighborhood which is

a regular subspace of X, then X is regular.

Proof is left as a homework.

Theorem 38.1. Let X be a topological space, A a dense subset of X, f : A → Y a mapping of

A into a regular space Y . A necessary and sufficient condition for f to extend to a continuous

mapping f̄ : X → Y is that. for each x ∈ X, f(y) tends to a limit in Y when y tends to x while

remaining in A. The continuous extension f̄ of f to X is then unique.
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Proof. The uniqueness of f̄ follows from the principle of extension of identities (37.1). It is clear

that the condition is necessary, for if f̄ is continuous on X, then for each x ∈ X we have

f̄(x) = lim
y→x, y∈A

f̄(y) = lim
y→x, y∈A

f(y)

Conversely, suppose that the condition is satisfied and define

f̄ = lim
y→x, y∈A

f(y)

for each x ∈ X; f̄(x) is a well-defined element of Y , since Y is Hausdorff. We have to show that

f̄ is continuous at each point x ∈ X. let then V ′ be a closed neighborhood of f̄(x) in Y ; then

by hypothesis there is an open neighborhood V of x in X such that f(V ∩A) ⊂ V ′. Since V is a

neighborhood of each of its points, we have

f̄(z) = lim
y→x, y∈V ∩A

f(y)

for each z ∈ V , and from this it follows that f̄(z) ∈ f(V ∩ A) ⊂ V ′, since V ′ is closed. The result

now follows from the fact that the closed neighborhoods of f(x) form a fundamental system of

neighborhoods of f(x) in Y .

The mapping f̄ is said to be obtained by extending f by continuity to X.

It important to notice that the statement of Theorem (38.1) the hypothesis that Y is regular

cannot be weakened without imposing additional restrictions on X, A or f .

39 Normal Spaces.

We have seen how certain problems give rice to separation axioms of varying strength. The T3

axiom enables us to prove a reasonable theorem of continuous extensions. In similar fashion,

normal spaces were devised to treat questions concerning continuous functions which were found

to lie beyond the scope of regular spaces. This type of separation is stronger than regularity and

is given by

Definition 39.1. A Hausdorff space is normal if each pair of disjoint closed sets have disjoint

open neighborhoods; its topology is then said to be normal.

Example 39.1. Any metrizable space X is normal (for instance En). Let ρ be a metric generating

the topology on X, and let A and B be disjoint, nonempty closed subsets of X. For x ∈ A

and y ∈ B we set Vx = Oεx(x) = {z ∈ X : ρ(x, z) < εx} where εx = ρ(x, B)/3 > 0 and

Uy = Oεy(y) = {z ∈ X : ρ(y, z) < εy}, where εy = ρ(y, A)/3 > 0. The sets V =
⋃
{Vx : x ∈ A}

and U =
⋃
{Uy : y ∈ B} are disjoint neighborhoods of the sets A and B respectively. This follows

from the triangle axiom.
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Definition (39.1) has several equivalent formulations:

Proposition 39.1.

1. X is normal.

2. For each closed A and open U ⊃ A there is an open V with A ⊂ V ⊂ V̄ ⊂ U .

3. For each pair of disjoint closed sets A, B, there is an open U with A ⊂ U and Ū ∩B = Ø.

4. Each pair of disjoint closed sets have neighborhoods whose closures do not intersect.

Proof is left as a homework.

In the invariance properties, we meet a situation different from those met before. For instance, a

subspace of a normal space can fail to be normal; that is axiom T4 is not inherited be subspaces.

This is one of the main inconveniences in dealing with the class of normal spaces. The following

theorem summarize invariance properties of normal spaces:

Theorem 39.1.

1. Normality is invariant under continuous closed surjections.

2. A subspace of a normal space need not be normal. However, a closed subspace is normal.

3. The cartesian product of normal spaces need not be normal. However, if the product is

normal, each factor must be normal.

Proof.

1. Let Y be normal and p : Y → Z be closed and continuous. Given disjoint closed A, B

in Z, the normality of Y gives disjoint open sets with p−1(A) ⊂ U , p−1(B) ⊂ V . Because

p is closed, Theorem (26.1) assures that there exist open UA ⊃ A, VB ⊃ B such that

p−1(UA) ⊂ U , p−1(VB) ⊂ V and UA, VB are evidently the required disjoint neighborhoods

of A and B.

2. An example of a non-normal subspace of a normal space will be considered later (in a

lecture about compactness). The second assertion is immediate from the observation that a

set closed in a closed subspace is also closed in the entire space.

3. The example of the first assertion (i.e. the cartesian product of normal spaces need not be

normal) will be given later. The second statement follows from (2) and (1) (similarly to

Theorem (37.2) (3)).
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40 Urysohn’s characterization of normality.

We now turn to the reason for considering the T4 separation axiom.

Normal spaces came to the attention of Urysohn in the 1920’s in connection with the following

question: given the space (X, T ), are there ”enough” real-valued continuous functions on X?.

The word ”enough” is purposely vague, but at the very last we would like a guarantee of the

existence of some non-constant continuous function from X to E1. The T3 axiom does not provide

such a guarantee. Urysohn was able to show that the T4 axiom does.

More specifically, with each pair of disjoint, closed subsets of any normal space, Urysohn was able

to associate a continuous function f : X → [0, 1] which separates A and B in the sense that f

maps A to 0 and B to 1. It also turns out that, conversely, the existence of an Urysohn function

for each pair of disjoint closed sets insures normality of the space.

The proof of Urysohn’s Lemma is fairly deep, as might be expected of one fundamental results of

set topology. We precede it by Lemma (40.1) which handles some of the more technical details.

In proving Lemma (40.1) we make use of the easily established fact that, if 0 6 x < y 6 1, then

dyadic numbers (i.e., of the form m/2m) d and d′ can be found such that x 6 d < d′ 6 y.

Lemma 40.1. Let (X, T ) be a normal topological space. Let A and B be disjoint T -closed sets.

Then, there is a set {Ut | 0 6 t 6 1} of T -open sets such that:

1. A ⊂ U0.

2. U1 ∩B = Ø.

3. If 0 6 x < y 6 1, then Ūx ⊂ Uy.

Proof. Define U1 = X − B. Then, A ⊂ U1, and U1 is T -open and U1 ∩ B = Ø. By Proposition

(39.1), there is some T -open set U0 such that A ⊂ U0 ⊂ Ū0 ⊂ U1.

We now proceed to fill in Ut when 0 < t < 1. We first work with t dyadic, proceeding by induction.

Suppose n is a non-negative integer, and that the sets Uk/2n have been defined for integers k,

0 6 k 6 2n − 1 (note that U0 and U1 have already been defined). Thus, Ūj/2n ⊂ Ui/2n for

0 6 j < i 6 2n − 1. We must define the sets Ui/2n+1 , 0 6 i 6 2n+1 − 1. Note first that we need

only consider odd values of i. If i is even. say i = 2j, then 0 6 j 6 2n− 1 and i/2n+1 = j/2n, and

Uj/2n has already been defined by the inductive hypothesis.
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Suppose then that i is odd, say i = 2k + 1 6 2n+1 − 1 , for some k, 0 6 k 6 2n − 1. Then,

again, by Proposition (39.1), since Ūk/2n ⊂ U(k+a)/2n , there is some T -open set V such that

Ūk/2n ⊂ V ⊂ V̄ ⊂ U(k+1)/2n . Let U(2k+1)/2n+1 = V . This defines Ui/2n+1 for all i, 0 6 i 6 2n+1 − 1.

By induction, the sets Ud are now defined for all dyadic d.

Now let t be any number in [0, 1].

Define Ut =
⋃
d6t

Ud the union being over all dyadics d in [0, 1] with d 6 t. If t is dyadic, then this

definition agrees with that arrived at by induction.

Finally, suppose that 0 6 x < y 6 1. Then there are dyadic numbers i/2n and j/2m with

x 6 j/2m < i/2n 6 y. Now, Ui/2n ⊂ Uy by definition of Uy. Further, for all dyadic d with

0 6 d 6 x, we have d 6 j/2m, so Ud ⊂ Uj/2m , hence Ux ⊂ Uj/2m . Then

Ūx ⊃ Ūj/2m ⊃ Uj/2n ⊂ Uy,

and the Lemma is proved.

We now prove the main theorem, which traditionally is known as Urysohn’s Lemma. It is under-

stood in the proof that [0, 1] is considered as a subspace of Euclidean space E1.

Theorem 40.1. (Urysohn’s Lemma). Let (X, T ) be a Hausdorff topological space. Then the

following are equivalent:

1. (X, T ) is normal.

2. If A and B are disjoint non-empty T -closed sets, then there exists a continuous f : X → E1,

called a Urysohn function for A, B, such that:

(a) 0 6 f(x) 6 1 for all x ∈ X

(b) f(a) = 0 for all a ∈ A

(c) f(b) = 1 for all b ∈ B

Proof.

(2) ⇒ (1) : If A and B are non-empty, disjoint, T -closed subsets of X, then produce by (2) an Urysohn

function f and note that f−1([0, 1
2
[) and f−1(]1

2
, 1]) are disjoint, T -neighborhoods of A and

B respectively.
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(1) ⇒ (2) : Assume (1). Let A and B be non-empty, disjoint, T -closed sets. Let the T -open sets Ut,

0 6 t 6 1, be as given by Lemma (40.1). If x ∈ X, define:

f(x) =

{
1 if x 6∈ U1

inf{t | x ∈ Ut} if x ∈ U1

Immediately, f : X → [0, 1]. If x ∈ B, then x 6∈ U1, so f(x) = 1. If x ∈ A, then x ∈ U0 and

x ∈ U1, so f(x) = 0.

There remains to show that f is continuous.

Let x ∈ X and let ε > 0. Consider three cases:

i) f(x) = 0

We may assume without loss of generality that ε < 1.

Then, |f(y)− f(x)| = |f(y)| = f(y) 6 ε/2 < ε for y ∈ Uε/2.

ii) f(x) = 1

Again, we may assume that ε < 1. If y ∈ X − Ū1−ε/2, then y 6∈ Uj for j 6 1 − ε/2.

Then, f(y) > 1− ε/2, so

1− f(y) = |f(x)− f(y)| 6 ε/2 < ε

iii) 0 < f(x) < 1

We may assume that ε 6 f(x) and f(x) + ε 6 1.

Let y ∈ Uf(x)+ε/2 ∩ (X − Ūf(x)−ε/2).

Since y ∈ Uf(x)+ε/2, then y 6∈ B, and f(y) 6 f(x)+ε/2 < f(x)+ε, so f(y)−f(x) < ε.

But also y ∈ X − Ūf(x)−ε/2, so y 6∈ Ūj for 0 6 j 6 f(x)− ε/2.

Then, (y) > f(x)− ε/2 > f(x)− ε, so f(y)− f(x) > −ε.

Then, −ε < f(y)− f(x) < ε, so |f(y)− f(x)| < ε.

By cases i) through iii), f is continuous at x ∈ X, hence f is continuous.

Remarks :

1. The pair 0 and 1 can be obviously replaced by any (not necessary nonnegative) pair α < β,

since the continuity of f implies that of α + (β − α)f .

2. The Urysohn function f in Theorem (40.1) evidently satisfies A ⊂ f−1(0). The theorem

does not assert that A = f−1(0); in fact, this is possible only for certain types of closed sets.

This problem we will consider later.
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41 Tietze’s characterization of normality.

The very strong connection between the T4 separation axiom and real continuous functions on X,

suggested by Urysohn’s Lemma, is very clearly revealed by the next theorem, which should be

compared with Theorem (38.1). Theorem (41.1) says that normality is sufficient for the existence

of a continuous extension of any real-valued function continuous on any closed subspace.

The converse is also true, so that normality is just the right condition for treating the extension

problem on closed subspaces.

Theorem (41.1) is often known as Tietze’s Extension Theorem, although there is some confusion

about assigning credit here. Historically, Tietze seems to have been the first to define normality,

in 1923. Urysohn’s Lemma clarified its role in the theory of continuous functions. Tietze proved

his extension theorem for metric spaces, which of course are normal, but it was Urysohn who

generalized the result to arbitrary normal spaces. Thus Bourbaki refers to Theorem (41.1) as a

theorem of Urysohn, and Dugundji as Tietze’s Theorem. Alexandroff calls it Brouwer-Urysohn

Theorem, and Stone the Lebesgue-Urysohn Theorem. It would appear to be fair to credit Tietze

with the first proof for a wide class of spaces (metric spaces), and Urysohn with the proof of the

general statement.

In the course of the proof, we shall use the Cauchy criterion for the convergence of real sequences,

and also the fact that lim
k→∞

|Sn+k−Sn| = |L−Sn| for any real sequence S if lim
n→∞

Sn = L. Preliminary

Lemma (41.1) will absorb some if the technical details. In Lemma (41.1) and Theorem (41.1), all

intervals [a, b] are considered as subspaces of E1.

Lemma 41.1. Let (X, T ) be a normal space. Let F be a T -closed subset of X and let f : F →
[−1, 1] be continuous. Then, there is a continuous g : X → [−1

3
, 1

3
] such that |g(x)− f(x)| 6 2

3
for

each x ∈ F .

Proof. Let A = f−1([−1,−1
3
]) and B = f−1([1

3
, 1]). Since f is continuous, A and B are T -closed.

Since A ∩B = Ø and T is normal, there is by Urysohn’s Lemma some continuous h : X → [0, 1]

such that h(A) = {0} and h(B) = {1}.
Let t(x) = 2

3
x− 1

3
, for 0 6 x 6 1. This defines an homeomorphism t : [0, 1] → [−1

3
, 1

3
].

Let g = t ◦ h. Then, g : X → [−1
3
, 1

3
] is continuous.

If x ∈ A, then g(x) = t(h(x)) = t(0) = −1
3
. Since f(x) ∈ [−1,−1

3
], then |f(x)− g(x)| 6 2

3
.

If x ∈ B, then g(x) = t(1) = 1
3
. Since f(x) ∈ [1

3
, 1], then |f(x)− g(x)| 6 2

3
.

Finally, if x ∈ F − (A ∪B), then −1
3

< f(x) < 1
3
, so |g(x)− f(x)| 6 2

3
.

Theorem 41.1. (Tietze-Urysohn) Let (X, T ) be a Hausdorff space. Then the following are

equivalent:
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1. T is normal.

2. If A is T -closed and f : A → E1 is continuous, then, there is a continuous F : X → E1

such that F |A = f .

Proof.

(2) ⇒ (1) : Assume (2). Suppose that A and B are disjoint T -closed sets. Define f : A∪B → E1 by:

f(x) =

{
0 if x ∈ A

1 if x ∈ B

Then f is easily seen to be continuous. By (2) produce a continuous extension F of f to X.

Then, F−1(]− 1
2
, 1

3
[) and F−1(]1

2
, 2[) are disjoint T -open neighborhoods of A and B respec-

tively. Hence T is normal.

(2) ⇒ (1) : Assume (1). Let A be T -closed. Suppose f : A → E1 is continuous. We consider two

cases and proceed in steps.

Case 1. f is bounded.

Then for some M > 0, |f(x)| 6 M for each x ∈ A. We may assume without loss of generality

that f : A → [−1, 1]. For, |(1/M)f(x)| 6 1 for each x ∈ A, and it is immediate that MF is

a continuous extension of f if F is a continuous extension of (1/M)f .

Thus, suppose that f : A → [−1, 1].

i) If n is a non-negative integer, then there is a continuous Fn : X → [−1 + (2
3
)n+1, 1 −

(2
3
)n+1] such that |Fn(x)−f(x)| 6 (2

3
)n+1 for each x ∈ A and, if K is a positive integer,

|Fm(x)− Fn(x)| 6 2(2
3
)K+1 for m, n > K.

We produce the functions Fn by an inductive construction. By Lemma (41.1), there is

a continuous F0 : X → [−1
3
, 1

3
] such that |F0 − f(x)| 6 2

3
for each x ∈ A.

Now suppose n is a non-negative integer, and Fn has been defined. Let ϕ(x) =

(3
2
)n+1(f(x)− Fn(x)) for each x ∈ A. Then, ϕ is continuous: A → [−1, 1]. By Lemma

(41.1), there is a continuous β : X → [−1
3
, 1

3
] such that |β(x)−ϕ(x)| 6 2

3
for each x ∈ A.
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Let Fn+1(x) = Fn(x) + (2
3
)n+1β(x) for each x ∈ X. Fn+1 is continuous: X →

[−1 + (2
3
)n+2, 1− (2

3
)n+2].

Further, if x ∈ A, then

|Fn+1(x)− f(x)| = |Fn(x) +

(
2

3

)n+1

β(x)− f(x)|

=

(
2

3

)n+1

|β(x)−
(

3

2

)n+1

(f(x)− Fn(x)) |

=

(
2

3

)n+1

|β(x)− ϕ(x)|

6

(
2

3

)n+1 (
2

3

)
=

(
2

3

)n+2

Finally, let x ∈ X and let n be a positive integer. By the definition of Fn+1, |Fn+1(x)−
Fn(x)| =

(
2
3

)n+1 |β(x)| 6
(

2
3

)n+1 1
3

= 2n+1/3n+2. By inducting we have, for r > 1,

|Fn+r(x)− Fn(x)| 6
r−1∑
j=0

|Fn+j+1(x)− Fn+j(x)|

6
r−1∑
j=0

(
2n+j+1

3n+j+2

)
=

2n+1

3n+2

r−1∑
j=0

(
2

3

)j

<
2n+1

3n+2

∞∑
j=0

(
2

3

)j

=

(
2

3

)n+1

Then, for m, n > K,

|Fm(x)− Fn(x)| 6 |Fm(x)− FK(x)|+ |Fn(x)− FK(x)|

6

(
2

3

)K+1

+

(
2

3

)K+1

= 2

(
2

3

)K+1

ii) If x ∈ X then lim
n→∞

Fn(x) exists, and −1 6 lim
n→∞

Fn(x) 6 1.

Existence follows from i). Since
(

2
3

)K+1 → 0 as K →∞, then {Fn(x)}∞n=0 is a Cauchy

sequence to E1, hence converges. Since −1 6 Fn(x) 6 1 for each n, then −1 6
lim

n→∞
Fn(x) 6 1 also.

iii) Let F (x) = lim
n→∞

Fn(x) for each x ∈ X.

Then, F is continuous on X to [−1, 1].
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All that requires proof is the continuity. Let x ∈ X and ε > 0. Note that |F (z)−Fn| =

lim
K→∞

|F (n + K)− Fn| 6 2

(
2

3

)n+1

for each n ∈ Z+ and z ∈ X.

Now, if y ∈ X, then for any n ∈ Z+ we have

|F (x)− F (y)| 6 |F (x)− Fn(x)|+ |Fn(x)− Fn(y)|+ |Fn(y)− F (y)|

Choose n sufficiently large that 2

(
2

3

)n+1

> ε/3. Since Fn is continuous, there is a

T -neighborhood. V of x such that |Fn(x) − Fn(y)| < ε/3 if y ∈ V . Then, for each

y ∈ V , |F (x)−F (y)| < ε/3 + ε/3 + ε/3 = ε, implying that F is continuous at x, hence

continuous.

iv) F |A = f .

Let x ∈ A and ε > 0. Then, for each n ∈ Z+,

|F (x)− f(x)| 6 |Fn(x)− F (x)|+ |Fn(x)− f(x)| 6 |Fn(x)− F (x)|+
(

2

3

)n+1

.

Choose n sufficiently large that
(

2
3

)n+1
< ε/2 and |Fn(x)− F (x)| < ε/2.

Then, |F (x)− f(x)| < ε, implying F (x) = f(x).

This completes the proof of the theorem in case 1.

Case 2. f is not bounded.

Define g(x) = f(x)
1+|f(x)| for each x ∈ A

Please try to complete the proof by filling the details of the remaining steps.

v) g is continuous: A → [−1, 1].

vi) There exists a continuous G : X → [−1, 1] such that G|A = g (apply case 1 to g).

vii) There is a continuous h : X → [0, 1] such that h(a) = 1 whenever a ∈ A and

h(b) = 0 whenever G(b) = 1 or G(b) = −1. (apply Urysohn’s Lemma to A and

G−1 ({−1} ∪ {1}).)

viii) Let F (x) = G(x)h(x)
1−|G(x)h(x)| Then F is continuous: X → E1 and F |A = f . This completes

the proof of the theorem.
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