Ma 635. Real Analysis I. Hw3

HW 3 (due 09/21):

1. [1] p. 45 # 27

Show that diam $(B_r(x)) \leq 2r$ and give an example where strict inequality occurs. **Solution.** By definition, $B_r(x) = \{y : d(x, y) < r\}$. Then

diam
$$(B_r(x)) = \sup_{a,b \in B_r(x)} d(a,b) \le \sup_{a,b \in B_r(x)} d(a,x) + d(b,x) \le 2r.$$

The strict inequality holds, say, for the metric space of three points $\{x, y, z\}$ with d(x, y) = 2, d(x, z) = 3, d(y, z) = 4. Then diam $(B_{2,1}(x)) = 2 < 2.1 = r < 2r$.

2. [1] p. 45 # 29

Prove that A is bounded iff $\operatorname{diam}(A) < \infty$.

Solution. By definition, a set is bounded if it is contained in a ball. From the previous problem, the diameter is less than double radius. Conversely, if diam $(A) < \infty$ then $sup_{a,b\in A}d(a,b) < \infty$. Let us fix $a \in A$. Then $A \in B_{\text{diam}(A)}(a)$, and, hence, A is bounded.

3. [1] p. 45 # 31

Give an example where $\operatorname{diam}(A \cup B) > \operatorname{diam}(A) + \operatorname{diam}(B)$. Solution. Let A = (0, 1), B = (2, 3).

4. [1] p. 55 # 3

Two metrics are equivalent if they generate the same convergent sequences; that is, $d_1(x_n, x) \to 0$ if and only if $d_2(x_n, x) \to 0$. Prove that equivalent metrics generate the same open sets.

Solution. Equivalent metrics generate the same closed sets. Really, closed sets contain all limit points. Therefore if a set is closed in one metric, then it is also closed in another metric.

5. [1] p. 55 # 11

Let $e^{(k)} = (0, \ldots, 0, 1, 0, \ldots)$, where the kth entry is 1 and the rest are 0s. Show that $\{e^{(k)} : k \ge 1\}$ is closed in l_1 .

Solution. If a set contains all limit points then it is closed. The only type of Cauchy sequences in the given set are stationary sequences like $\{e^{(k)}, e^{(k)}, \dots, e^{(k)}, \dots\}$. Their limit is just $e^{(k)}$ that belongs to the given set.

6. [1] p. 55 # 14

Show that the set $A = \{x \in l_2 : |x_n| \le 1/n, n = 1, 2, ...\}$ is a closed set in l_2 but that $B = \{x \in l_2 : |x_n| < 1/n, n = 1, 2, ...\}$ is not an open set.

Solution. There is no open ball $B_{\varepsilon}(y)$ inside *B*. Really, $x = y + (0, 0, \dots, 0, \varepsilon/2, 0, \dots) \in B_{\varepsilon}(y)$ but $x \notin B$ if the entry for ε is sufficiently far from the "beginning".

7. [1] p. 57 # 17

Show that A is open if and only if (iff) $A^o = A$ and that A is closed iff $\overline{A} = A$.

Solution. By definition, the internal part A, A^o , is the biggest open subset of A. If it coincides with A then A is open. If A is open then A is the biggest subset of itself, and then $A^o = A$.

By definition, the closure \overline{A} is the set of all contact points of A (or, the same, the union of A and all its limit points). Consequently, \overline{A} contains all its limit points, which implies that \overline{A} is closed. Vice versa, if A is closed then it contains all limit points and is closed.

8. [1] p. 57 # 22 True or false? $(A \cup B)^o = A^o \cup B^o$? Solution. False. Let A = [0, 1], B = [1, 2]. But $(0, 2) \neq (0, 1) \cup (1, 2)$.

9. [1] p. 57 # 26

Prove that $d(x, A) = 0 \Leftrightarrow x \in \overline{A}$.

Solution. (\Rightarrow) By definition, $d(x, A) = \inf_{a \in A} d(x, a)$. Therefore $\forall \varepsilon > 0 \ \exists a \in A$ such that $d(x, a) < d(x, A) + \varepsilon = \varepsilon$. For every $\varepsilon = 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$ we pick up a sequence $\{a_1, a_2, a_3, \ldots\} \subset A$, which converges to x. Then x is a limit point of A and $x \in \overline{A}$. (\Leftarrow) If $x \in \overline{A}$ then $\exists \{a_1, a_2, \ldots\} \subset A, a_n \to x$. That is, $d(a_n, x) \to 0$ and, hence, $\inf_{a_n} d(x, a) = 0$.

10. [1] p. 58 # 33

Obvious. Consider a sequence $\varepsilon_n \to 0$.

11. [1] p. 59 # 43

Show that the boundary $\partial A = \overline{A} \setminus A^o$ is closed.

Solution. If ∂A isn't closed then \exists a Cauchy sequence $\{x_n\} \subset \partial A$ with no limit x in A. Since \overline{A} is closed, then $x \in \overline{A}$. However, since $x \notin \partial A$ then $x \in A^o$. Every ball centered at x contains a point from $\{x_n\} \notin A^o$. Consequently, A^o is not open. This contradiction proves that the assumption was wrong and ∂A is actually closed.

12. [1] p. 59 # 46 solved in Kolmogorov book.

13. [1] p. 59 # 48 solved in Kolmogorov book.

14. [1] p. 59 # 50

 l_{∞} is not separable.

Solution. The sequences of zeros and ones form an uncountable subset in l_{∞} . The distance between any two points from this subset is equal to 2. Let us consider non-intersecting balls centered at the elements of this subset with radius 1/2. If there were a dense countable subset in l_{∞} then each of the balls had to contain a point from that dense subset. Since the number of balls is uncountable then that dense subset cannot be countable. Consequently, l_{∞} is not separable.

15. [1] p. 59 # 54

16. [1] p. 59 # 58

Solution. The sum of lengths of intervals I_n is equal to 1. Therefore U cannot cover $(-\infty, +\infty)$ and, hence, is a proper subset. U is open as a union of open sets. U is dense since contains all rational points, which are dense. U^c is nowhere dense, otherwise $\exists B_{\varepsilon}(x) \subset \overline{U^c}$. But any interval B_{ε} contains a rational point and, thus, cannot be a subset of $\overline{U^c}$. Consequently, U^c is nowhere dense.

17. [1] p. 60 # 60 solved in Kolmogorov book

18. [1] p. 64 # 1(iii-vi)
19. [1] p. 65 # 5
Solution. χ_A is also continuous in any point from intA^c.
χ_A is discontinuous at ∂A. The only continuous characteristic function is χ_R.

20. [1] p. 65 # 13

References

- Carothers N.L., *Real Analysis.* Cambridge University Press, 2000. ISBN 0521497493 or ISBN 0521497566.
- [2] Kolmogorov, A.N., and Fomin, S.V., Introductory Real Analysis. Dover, 1970. ISBN 0486612260.
- [3] Haaser, N.B., and Sullivan, J.A., *Real Analysis*. Dover, 1991. ISBN 0486665097.
- [4] Rudin, W., Real and Complex Analysis, 3d ed. McGraw-Hills, 1987.
- [5] Folland, G.B., Real Analysis. Wiley, 1984.
- [6] Reed, M. and Simon, B., Methods of Modern Mathematical Physics. 1. Functional Analysis. Academic Press 1972.
- [7] Oxtoby, J.C., Measure and Category. A survey of the Analogies between Topological and Measure Spaces. Springer-Verlag, 1971.