
Ma 635. Real Analysis I. Hw3

HW 3 (due 09/21):
1. [1] p. 45 # 27
Show that diam(Br(x)) ≤ 2r and give an example where strict inequality occurs.
Solution. By definition, Br(x) = {y : d(x, y) < r}. Then

diam(Br(x)) = sup
a,b∈Br(x)

d(a, b) ≤ sup
a,b∈Br(x)

d(a, x) + d(b, x) ≤ 2r.

The strict inequality holds, say, for the metric space of three points {x, y, z} with d(x, y) = 2, d(x, z) = 3,

d(y, z) = 4. Then diam(B2.1(x)) = 2 < 2.1 = r < 2r.

2. [1] p. 45 # 29
Prove that A is bounded iff diam(A) < ∞.
Solution. By definition, a set is bounded if it is contained in a ball. From the previous problem, the diameter

is less than double radius. Conversely, if diam(A) < ∞ then supa,b∈Ad(a, b) < ∞. Let us fix a ∈ A. Then

A ∈ Bdiam(A)(a), and, hence, A is bounded.

3. [1] p. 45 # 31
Give an example where diam(A ∪B) >diam(A)+diam(B).
Solution. Let A = (0, 1), B = (2, 3).

4. [1] p. 55 # 3
Two metrics are equivalent if they generate the same convergent sequences; that is, d1(xn, x) → 0
if and only if d2(xn, x) → 0. Prove that equivalent metrics generate the same open sets.
Solution. Equivalent metrics generate the same closed sets. Really, closed sets contain all limit points. Therefore

if a set is closed in one metric, then it is also closed in another metric.

5. [1] p. 55 # 11
Let e(k) = (0, . . . , 0, 1, 0, . . .), where the kth entry is 1 and the rest are 0s. Show that {e(k) : k ≥
1} is closed in l1.
Solution. If a set contains all limit points then it is closed. The only type of Cauchy sequences in the given

set are stationary sequences like {e(k), e(k), e(k), . . . , e(k), . . .}. Their limit is just e(k) that belongs to the given set.

6. [1] p. 55 # 14
Show that the set A = {x ∈ l2 : |xn| ≤ 1/n, n = 1, 2, . . .} is a closed set in l2 but that
B = {x ∈ l2 : |xn| < 1/n, n = 1, 2, . . .} is not an open set.
Solution. There is no open ball Bε(y) inside B. Really, x = y + (0, 0, . . . , 0, ε/2, 0, . . .) ∈ Bε(y) but x 6∈ B if the

entry for ε is sufficiently far from the ”beginning”.

7. [1] p. 57 # 17
Show that A is open if and only if (iff) Ao = A and that A is closed iff A = A.
Solution. By definition, the internal part A, Ao, is the biggest open subset of A. If it coincides with A then A

is open. If A is open then A is the biggest subset of itself, and then Ao = A.

By definition, the closure A is the set of all contact points of A (or, the same, the union of A and all its limit

points). Consequently, A contains all its limit points, which implies that A is closed. Vice versa, if A is closed

then it contains all limit points and is closed.

8. [1] p. 57 # 22
True or false? (A ∪B)o = Ao ∪Bo?
Solution. False. Let A = [0, 1], B = [1, 2]. But (0, 2) 6= (0, 1) ∪ (1, 2).

9. [1] p. 57 # 26
Prove that d(x,A) = 0 ⇔ x ∈ A.
Solution. (⇒) By definition, d(x, A) = inf

a∈A
d(x, a). Therefore ∀ε > 0 ∃a ∈ A such that d(x, a) < d(x, A)+ ε = ε.

For every ε = 1, 1
2
, 1
4
, 1
8
, . . . we pick up a sequence {a1, a2, a3, . . .} ⊂ A, which converges to x. Then x is a limit
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point of A and x ∈ A.
(⇐) If x ∈ A then ∃{a1, a2, . . .} ⊂ A, an → x. That is, d(an, x) → 0 and, hence, inf

a∈A
d(x, a) = 0.

10. [1] p. 58 # 33
Obvious. Consider a sequence εn → 0.

11. [1] p. 59 # 43
Show that the boundary ∂A = A \Ao is closed.
Solution. If ∂A isn’t closed then ∃ a Cauchy sequence {xn} ⊂ ∂A with no limit x in A. Since A is closed,
then x ∈ A. However, since x 6∈ ∂A then x ∈ Ao. Every ball centered at x contains a point from {xn} 6⊂ Ao.
Consequently, Ao is not open. This contradiction proves that the assumption was wrong and ∂A is actually closed.

12. [1] p. 59 # 46
solved in Kolmogorov book.

13. [1] p. 59 # 48
solved in Kolmogorov book.

14. [1] p. 59 # 50
l∞ is not separable.
Solution. The sequences of zeros and ones form an uncountable subset in l∞. The distance between any two
points from this subset is equal to 2. Let us consider non-intersecting balls centered at the elements of this subset
with radius 1/2. If there were a dense countable subset in l∞ then each of the balls had to contain a point
from that dense subset. Since the number of balls is uncountable then that dense subset cannot be countable.
Consequently, l∞ is not separable.
15. [1] p. 59 # 54
16. [1] p. 59 # 58
Solution. The sum of lengths of intervals In is equal to 1. Therefore U cannot cover (−∞, +∞) and, hence, is
a proper subset. U is open as a union of open sets. U is dense since contains all rational points, which are dense.
Uc is nowhere dense, otherwise ∃Bε(x) ⊂ Uc. But any interval Bε contains a rational point and, thus, cannot be
a subset of Uc. Consequently, Uc is nowhere dense.

17. [1] p. 60 # 60
solved in Kolmogorov book

18. [1] p. 64 # 1(iii-vi)
19. [1] p. 65 # 5
Solution. χA is also continuous in any point from intAc.
χA is discontinuous at ∂A. The only continuous characteristic function is χR.

20. [1] p. 65 # 13
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