Microchemical Systems for Current Problems in Process Engineering

R.S. Besser

Chemical Engineering
Stevens Institute of Technology, Hoboken, NJ

Outline

• SIT and NJCMCS
• MCS: A Definition
• Projects and Tools of NJCMCS
• Example: Portable H₂ Generation
• Example: Pharmaceutical Hydrogenation
• Conclusions
• Acknowledgements
Stevens Institute of Technology

Founded 1871
Stevens family: Commercialized urban ferry transport in NYC
4500 students: 1700 trad. undergrad; 2800 grad (most p-t)
Freshmen: 3.8 GPA; SAT: 1200-1400 (25%-75%)
Chem/Biomed/Matls Engineering → NJ Center for Microchemical Systems

New Jersey Center for MicroChemical Systems (NJCMCS)

- Official start in September 2002
 - $10.0M commitments to date
- Vision
 - Leadership for microchemical device/fundamental understanding, design methodology and tools development
- Mission
 - Original research, education of new PhDs
- Systems-level concept demo with partners
 - Army-Picatinny, Bristol-Myers Squibb, FMC, Lucent-Bell Labs/NJNC
 - Portable power, pharmaceutical, and chemical applications
Microchemical Systems

Miniature reaction and other unit operations, possessing **specific advantages** over conventional chemical systems

Not Lab-on-Chip: chemical production vs. analysis

Key Benefit: Surface to Volume

- Heat Management
- Mixing
- Surface Reaction
- Explosion-Safety

V Constant

SA Increasing →

![Graph showing Surface to Volume Ratio](image)
Surface to Volume: Superb Transport

Example: Overall Heat Transfer Coefficient

<table>
<thead>
<tr>
<th>Hx Type</th>
<th>U (W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubular</td>
<td>150-1200</td>
</tr>
<tr>
<td>Spiral</td>
<td>700-2500</td>
</tr>
<tr>
<td>Plate</td>
<td>1000-4000</td>
</tr>
</tbody>
</table>

Microchannel: **3800-6800 W/(m²K)**

(Stevens undergrad design project)

Outline

- SIT and NJCMCS
- MCS: a Definition
- Projects and Tools of NJCMCS
 - Example: Portable H₂ Generation
 - Example: Pharmaceutical Hydrogenation
- Conclusions
- Acknowledgements
Application Areas

Critical Chemicals

H₂ Generation for Portable Power

Pharmaceutical Manufacturing

Biomedical Systems

New!

H₂O₂ by direct combination

Micro Fuel Processing

Pharmaceutical Manufacturing

Catalyst Integration Under Development

Selective-Area Infiltration

Net-Shape Cellular

Hydrophobic Surface

Hydrophilic Microchannel

Loading Reproducibility without Surface Contamination

Window Radius

Cell Radius

Skeleton Density

Tunable Multifunctional and Multiscale Structures

- Lawal et al., “Reactor Integration Issues,” Wednesday, 4:35 pm.
Tools: Modeling & Simulation

- **CFD**
- **PROX** 155 °C, Q = 2.4 W
- **PEMFC**
- **HEX** Q = -0.28 W
- **MIXER**
- **SEPARATOR**
- **SR PROX PEMFC COMBUSTOR**
- **MIXER**
- **SEP2**
- **RGIBBS**

Heat Transfer

Process (ASPIN)

Tools: Micro-Kinetic Test Bed

- **Individual microreactor**
- **Low dead volume**
- **No cross-contamination**
- **Low catalyst mass requirement**
- **Fast sample loading and unloading**
- **Process relevant reaction info**

Ouyang, et al., 2000

- **CFD + Reaction**
- **Heat Transfer**
- **Elementary Kinetics**

Tools:
- Modeling & Simulation
- CFD
- CFD + Reaction
- Heat Transfer
- Elementary Kinetics

Micro-Kinetic Test Bed Features:
- Independent reaction control
- Fast sample loading and unloading
- Low dead volume
- Low catalyst mass requirement
- No cross-contamination
- Process relevant reaction info
Outline

- SIT and NJCMCS
- Projects and Tools of NJCMCS
- Example: Portable H₂ Generation
- Example: Pharmaceutical Hydrogenation
- Conclusions
- Acknowledgements

Fuel Cells:
Applications & Power Ranges

Power (Watts)

10⁰ 10¹ 10² 10³ 10⁴ 10⁵ 10⁶ 10⁷

Ship Service Fuel Cell

Taken from Robert Nowak DARPA
Fuel Cells: Next Generation Portable Power Sources

- As alternatives to batteries in advanced portable power applications
- Offers high energy density. Allows portable devices to operate for longer times with less recharging
 Methanol: 4780 Wh/l, Li-ion secondary battery: 300 Wh/l

- Chemical Process Miniaturization: size and portability drives the use of microreactor technology in the field of fuel processing
- Advantageous heat and mass transport, lightweight, improvement in efficiency and productivity, fast response time

Fuel cell & fuel Processing

- Electrochemical devices that convert chemical energy of fuel directly to electricity
- Development of an efficient way of delivering fuel to the cell
- Generating hydrogen by processing of easily stored liquid hydrocarbons

Methanol to hydrogen: Components of fuel processor
Understanding Fundamentals of Preferential Oxidation in a Microchannel as Foundational to Rational Microreactor Design

Temperature Dependence of X_{CO}

- Falloff was caused by the reactor temperature gradients and r-WGS reaction (Oh et al., Choi et al., Venderbosch et al., Roberts et al.)
- No detailed study on the effect of reactor size for r-WGS reaction in PrOx

3D Reactor Model

- Ouyang, “PrOx Models” Tues. Poster
- Reconversion of CO$_2$ to CO overtakes PrOx at highest temperature

Temperature Dependence of X_{CO}

CO Conversion

Temperature [°C]

- Greater diameter, catalyst "thickness"
- More severe hot spot formation
- Greater r-WGS activity

Microscale Fuel Processing: Issues and Challenges

- Miniaturization of system components
- Heat management
- System complexity and packaging
- Kinetics evaluation for each unit operation
- Compatible Balance of Plant (BOP) components
- Water management
- Internal energy demand
- Dynamic control
- Fate of exhaust gases
Approach

Challenges

- **Miniaturization of system components**
 - Chemical process miniaturization using silicon microreactor technology

- **Heat management**
 - Development of a silicon microreactor based methanol reformer as a key fuel processing component. Design, fabrication, and packaging of steam reformer in the context of complete thermal integration to directly address the heat management issue

Micro Steam Reformer

Reforming reaction

\[CH_3OH + H_2O \rightarrow CO_2 + 3H_2 \]
\(\Delta H_\text{r} = 50 \text{ kJ/mol} \)

On metal oxide catalyst (CuO/ZnO-based)

- SR microreactor design: Chip size: 4 cm × 2 cm × 500 micron
 - Reaction zone: 1 cm × 1 cm × 400 micron (0.04 cc)

- Pressure drop for reaction zone packed with catalyst estimated from Ergun equation. For catalyst of size 60 micron, the reactor with bed length of 1 cm resulted in a pressure drop of 1.865 Pa

- The reactor includes a flow manifold, a reaction zone, and filter structures at outlet to trap catalyst particles
Flow Modeling
Internal Heat Management: Microfabricated Vacuum Insulation

- Critical to thermal integration
- Best commercial insulators = 0.02 W/mK
- For sub-atmospheric pressures, K decreases with pressure
- Engineering of K with pressure and depth of cavity
- Gap filled with low-pressure gas: = 0.001 W/mK
- Microfabrication enables straightforward approach to this structure

Vacuum cavity, P = 0.001-0.1 torr

Vacuum Insulation Design: 3D Thermal Simulation

\[(m.Cp.T)_{in} : 0.0738 W\]
\[(m.Cp.T)_{out} : 0.174 W\]

T = 155º C

Combustor zone

Insulation

PrOx zone

0.22 W Heater
Vacuum Insulation Design: 3D Structural Modeling

Pressure differential force results in deformation and high stress generation in silicon and glass during bonding.

Glass

Si

P ∼ 0

Deformation: 1.02 micron

For Vacuum bonding, 800 micron thick wafer should be used.

Integrated Unit

200-µm depth
P = 0.005 torr
k = 0.0006 W/mK

Insulation

T Sensors

500 micron

Reaction zone
(1 cm × 1 cm), catalyst packed bed or cartridge

SR reactor
(4 cm × 2 cm)

Heater

50-µm depth
Atm. pressure
k = 0.04 W/mK
Incorporation of catalyst in the form of packed bed by vacuum loading. Catalyst loading achieved: 51 mg
Thermal/Reaction Characterization
Experiments in Progress

Research Impact
- Understanding of critical thermal parameters. Improvement in thermal model
- Weight, volume, and performance comparison with battery technology
- Help conceive applications and limitation of silicon microchemical technology for micro fuel processing and provide impetus for subsequent development

Outline
- SIT and NJCMCS
- Projects and Tools of NJCMCS
- Example: Portable H₂ Generation
- Example: Pharmaceutical Hydrogenation
- Conclusions
- Acknowledgements
Evolution in Pharmaceutical Industry

- Procedure Based
- Disincentive to Innovate
- Cost Burden to Industry
- Stretch Resources of Reg. Agency

Protect the Public → Little/No Standard Procedures → Regulation → c. 1960

- Sulfanilamide; FDC 1938
- Thalidomide; KHA 1962

Pharmaceutical Manufacturing

- Driving Forces For Change
 - Rising R&D Costs-Less Molecules (NMEs)
 - Healthcare Industry Pressure to Lower Costs
 - Competition-patent expir., generics, globalization

- Focus on Manufacturing
 - High Cost of Mfg.>R&D
 - 5-10% Waste
 - Labor Intensive
 - Quality by testing
 - High Capital Cost
 - large facilities
 - <50% utilization

(Hussain, FDA, 2004)
Breaking Old Paradigms

Procedural Basis
- Good vs. bad
- Rigidity
- Slow/no change

Science Basis
- Notion of variation
- Innovation based on data
- Timely implementation

Batch
- Large
- Flexible
- Batch-to-batch non-uniform.

Continuous
- Compact
- Fixed
- Steady state uniformity

Post-Sampling
- After the fact
- Human intervention
- Reactive

In-Line Monitoring
- Continuous monitor
- Remote
- Proactive

Paradigm Breaker: Microreaction

Mass-Transport Limited ↔ **Fast Mixing**

Highly Exothermic ↔ **Fast Heat Transport**

Sensitive to Extreme T,P ↔ **Short Residence Time**

Safety, Liability ↔ **Small Volumes, Quenching**
Barriers to Microreaction

Philosophical
- “Not invented here”
- Industrialization demos lacking

Technical
- Support infrastructure
 - availability
 - standardization
 - design engineering

Financial/Strategic
- Huge existing investment

Concrete demos needed

Careful implementation strategy needed
Difference Micro Makes

>500 organic synthetic reactions studied in microsystems

(Hessel 4/05)

Transport and Residence Time
Advantages

\[A + B \rightarrow C \]

Mass transport limited
mixing
heterogeneous rxn

Heat transport limited
Temp uniformity, control

Residence time tuning to limit exposure
selectivity
decomposition
access to extreme T and P

Yield

\[\begin{array}{c|c|c|c|c|c|c|c|c|c}
\text{Yield} & 0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 \\
\text{Yield Gain} & -20\% & -10\% & 0\% & 10\% & 20\% & 30\% & 40\% & 50\% \\
\end{array} \]
Precise Control of Reactant Energy Distribution

Temperature Distribution

Side Reactions

Consecutive Reactions

Outline

• SIT and NJCMCS
• Projects and Tools of NJCMCS
• Example: Portable H₂ Generation
• Pharmaceutical Manufacturing: Background
• Microreaction for Pharmaceutical Hydrogenation
• Conclusions
• Acknowledgements
Project Goals

Lab Scale Microreactor/Heat Exchanger Demo
(3 yrs.)

Pilot Plant Scale Demonstration
(2 yrs.)

Design, fabricate, evaluate, optimize

Prelude to commercialization

Demonstrate model reactions at moderate conditions (<130°C, 50 psi)

1 kg/hr

Generic catalyst deposition methods

70-90% reduction in energy reqt.

Generic reaction/catalyst screening tools

Screening Tool Reactor Modeling

Final Design:

L=20 mm
W=18 mm
D=350 μm
n=14,082
ε=0.846
w=0.532 mg

dp=50 μm
dp=25 μm

Gas

Liquid

3H₂ + OCH₃NO₂ → OCH₃NH₂ + 2H₂O

o-nitroanisole → o-anisidine
Catalyst Trap Reactor

Initial Reaction Results

<table>
<thead>
<tr>
<th>Gas Flow rate (sccm)</th>
<th>5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid flow rate (mL/min)</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Temperature, °C</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>Pressure, psia</td>
<td>200</td>
<td>25</td>
</tr>
<tr>
<td>Catalyst loading (mg)</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Conversion%</td>
<td>100</td>
<td>45</td>
</tr>
<tr>
<td>Selectivity%</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>Yield%</td>
<td>100</td>
<td>40</td>
</tr>
<tr>
<td>Relative Productivity</td>
<td>0.10</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Residence-time dependent yield
Compares well to capillary test
To come: elevated pressure
Mapping of flow regimes
Gas-Liquid Interface

1 sccm 12 sccm

Conclusions

- NJCMCS: a unique center devoted to MCS
- Multidisciplinary model: understanding, designing, implementing MCS
- Hydrogen production: good application for MCS
- Pharmaceutical industry: another great opportunity
- Hydrogenation: a strong example for implementation
- Progress in initial expts and tool development, stay tuned
- Visit us in Hoboken!
Acknowledgements

People
- Prof. W. Lee, SIT
- Prof. A. Lawal, SIT
- Dr. Pauline Ho, Reaction Design
- Dr. Stanley Pau, NJNC
- Prof. Suphan Koven, SIT
- D. Ivanov, NJIT
- Dr. K.R. Farmer, NJIT
- B. Mansfield, NJNC
- Dr. H. Pfeffer, FMC
- Dr. E. Dada, FMC
- Mr. Steve Nicolich, TACOM
- Mt. Anthony Distasio, TACOM
- Dr. Art Kaufman
- Dr. James Manganaro, SIT
- Prof. Richard Berkof, SIT

Agencies, Institutions
- U.S. Department of Energy
- Defense Advance Research Projects Agency
- New Jersey Commission on Science and Technology
- Stevens Institute of Technology
- TACOM-ARDEC
- Cornell Nanofabrication Facility (NSF)