Microchemical Systems: New Solutions to Chemical Engineering Problems Through Miniaturization

R.S. Besser, W. Y. Lee, and A. Lawal
New Jersey Center for MicroChemical Systems
Dept. of Chemical, Biomedical and Materials Engineering
Stevens Institute of Technology

June 24, 2004
Outline

• Introduction to NJCMCS
• Definition of MCS
• Advantages of MCS
• Major application areas
 – Miniaturization and Intensification
• Examples
 – Extended: Fuel processing for portable power (CPM)
 – Brief: Catalytic hydrogenation for pharaceuticals (CPI)
Stevens Institute of Technology

- Private University founded in 1871
- The Stevens family: First Urban Ferry Business in New York Harbor
- 1700 undergraduates, 2800 graduates
- Engineering, Science, Technology Management
- Incoming Freshman GPA: 3.8 and SAT 25%-75%: 1200-1400
New Jersey Center for MicroChemical Systems (NJCMCS)

- Official start in September 2002
 - $7.5M commitments to date
 - $10.0M pending for state-wide infrastructure
 - $34M financial goal from 2005 to 2009

- Vision
 - Leadership for rational microchemical device/system design methodology and tools development

- Systems-level concept demo with our key partners
 - Army-Picatinny, Bristol-Myers Squibb, FMC, and Lucent-Bell Labs
 - Portable power, pharmaceutical, and chemical applications
NJCMCS People

• Besser Group

• Lawal Group
 – Dr. R. Halder, Dr. D. Qian, J. Adeosun, S. Tadepalli, Y. Voloshin

• Lee Group

• Affiliated Faculty

• Consultants
 – Dr. A. Kaufman, Dr. J. Manganaro, F. Shinneman, M. Urken

• Center Administration
 – Prof. Lee (Director) and Prof. Besser and Prof. Lawal (Co-directors)
 – Aqsa Quresh and Pat Downes

Main contributors to the contents of this seminar.
Microchemical Systems

Miniature reaction and other unit operations, possessing *specific advantages* over conventional chemical systems
Microreactors—What Are They?

- “Microreactor” traditionally means lab bench reactor
- Dimensions 1/10 bench reactors

(Forschungszentrum Karlsruhe GmbH)

(Ehrfeld, et.al., IMM)

(Besser, et.al., IfM)

(Jensen, et.al., MIT)
Benefits of Miniaturization—Why?

• Surface to Volume Ratio
• Low Inventory ("Hold Up")
• Low Transport Resistances
• Robust Materials
• Cost
Benefits: Surface to Volume

- Surface Area (SA) Increasing → Volume (V) Constant

Heat Management
Surface Reaction
Explosion-Safe
Benefits: Low-Inventory (Hold-Up)

Schematic of As$^+$ Ion Implanter

Phosgene Reactor, Geismar, LA

- Safety
- Environment
Benefits: Low Transport Resistances

Overall Heat Transfer Coefficient

<table>
<thead>
<tr>
<th>Hx Type</th>
<th>U (W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubular</td>
<td>150-1200</td>
</tr>
<tr>
<td>Spiral</td>
<td>700-2500</td>
</tr>
<tr>
<td>Plate</td>
<td>1000-4000</td>
</tr>
</tbody>
</table>

Microchannel: 3800-6800 W/(m²K)
Benefits: Robust Materials

• High strength, high melting point materials:
 – Metals
 – Ceramics
 – Silicon

• Array of fabrication processes (MEMS technology)

• Non-traditional reactor materials
 – Polymers
Benefits: Cost

- Reactor Fabrication
 - High volume batch
 - Si integrated circuit fabrication model
 - Metal/ceramic micromachining techniques
 - Interface of reactor to plant (?)

- Scale-Up Process
 - Linear process
 - Characterize unit module; scale up throughput by addition of modules
Major Application Directions

Chemical Process Miniaturization
- Same functionality per volume as macro
- Miniature size is distinguishing factor
- Portability may be important

Chemical Process Intensification
- Higher functionality density than macro
- Size reduction is not paramount
- May involve access to new chemistry routes
- Generally leverages transport advantage
Fuel Cells: Applications & Power Ranges

Power (Watts)

Ship Service Fuel Cell

Taken from Robert Nowak, DARPA
Can We Use Microchemical Systems for Portable Power?

• MCS: Superior heat and mass transfer
 – Thermal management, excellent mixing

• MCS: Compactness
 – Energy density:
 • Advanced Li-MnO₂ battery: 169 W-h/kg
 • MeOH: 6000 W-h/kg
Model Study: Preferential Oxidation ("PrOx")

CO poisons PEM fuel cell catalysts
CO must be reduced below 10 ppm for viability
CO Poisons FC Catalyst

Goals of the Project

• Construct strong support infrastructure for MCS understanding and design

• Apply this infrastructure to understanding PrOx for portable fuel cells

• Demonstrate a PrOx reactor for a 1-W_e fuel processing system
PrOx Design Challenges

Design Criteria
- 150-200° C and ~1 atm
- Minimum volume, \(\Delta P \)
- Conversion, selectivity, stability.

Air @ 2 \(\mu \text{mole/s} \)

Reformate @ 20 \(\mu \text{mole/s} \)
- CO: 1.7%
- \(\text{H}_2 \): 68.5%
- \(\text{H}_2\text{O} \): 8.1%
- CO\(_2\): 21.7%
- CH\(_3\)OH: 27 ppm

Treatment Reformate
- CO: 9 ppm
- Low \(\text{H}_2 \) conversion

\[CO + \frac{1}{2} O_2 \rightarrow CO_2 \]
Approach

Experiment

- Thin-Film Catalyst Synthesis w/ Nanoscale Control (Chen)
- Microreactor Design/Fab. for Microkinetic Studies (Shin)
- Microarray Instrumentation for Parallel Evaluation (Ouyang)

Synthesis

- Kinetic Model w/ CHEMKIN (Ho)
- Mechanism Development (Bednarova)
- Transport Model w/ Fluent (Qian)

Comprehensive Reactor Design

Simulation

STEVENS Institute of Technology
Microreactor Fabrication

- Photo-patterning process
- High-rate silicon dry etching (DRIE)
- Anodic bonded Pyrex cover
- Batch processing
- 8-in. Si wafers, Bell Labs
Thin-Film Wall Catalyst: Why?

- Low pressure drop compared to packed bed
- Less clogging
- Better mass transport than packed bed or washcoat
Catalyst Infiltration

Open Channel

Closed Channel

Pyrex®

Closed Channel Infiltrated
Microreactors Fabricated for PrOx Research Project

8-in. Si wafer, Bell Labs

Long-channel reactor

Short-channel reactor

Short-channel reactor under test
Relevant Reaction Characterization: How?

Silicon Microkinetic Array Approaches

- No independent reaction control
- Individual channels
- Highly integrated array
- No detailed reaction info
- Micropipette array
- Complex fabrication
- Single substrate
- Cross contamination

Jensen, et al., MIT, 2001
Symyx®, 1999
Ryu, et al., UIUC, 2001

Ouyang, et al., 2000

Individual microreactors
Independent reaction control
Fast sample loading and unloading
No cross-contamination
Process relevant reaction info

Inert Carrier Gas
8-Port 2-Position Valve
10 GCMS
To Exhaust
14-Port Manifold
16-Port 16-Position Multiposition Valve
Mass Flow Controllers for Reactants
Cooling Water Channels
Pressure Controllers
Pressure Gauges
Micoreactor on Interface Block
Reactants
Micro-Kinetic Test Bed

Microkinetic array
Four reactors in parallel
Independent reaction parameters
Shared analytical

Test reactor found to mitigate CO in 0.25 W_e flow with ≈ 1mg catalyst
CHEMKIN Simulation: Surface Reactions

1. $\text{H}_2 + \text{Pt}(s) + \text{Pt}(s) \rightarrow \text{H}(s) + \text{H}(s)$
2. $\text{O}_2 + \text{Pt}(s) + \text{Pt}(s) \rightarrow \text{O}(s) + \text{O}(s)$
3. $\text{H}_2\text{O} + \text{Pt}(s) \rightarrow \text{H}_2\text{O}(s)$
4. $\text{CO}_2 + \text{Pt}(s) \rightarrow \text{CO}_2(s)$
5. $\text{CO} + \text{Pt}(s) \rightarrow \text{CO}(s)$
6. $\text{CO}(s) \rightarrow \text{CO} + \text{Pt}(s)$
7. $\text{CO}_2(s) \rightarrow \text{CO}_2 + \text{Pt}(s)$
8. $\text{C}(s) + \text{O}(s) \rightarrow \text{CO}(s) + \text{Pt}(s)$
9. $\text{CO}(s) + \text{Pt}(s) \rightarrow \text{C}(s) + \text{O}(s)$
10. $\text{CO}(s) + \text{O}(s) \rightarrow \text{CO}_2(s) + \text{Pt}(s)$
11. $\text{CO}_2(s) + \text{Pt}(s) \rightarrow \text{CO}(s) + \text{O}(s)$
12. $\text{CO}(s) + \text{OH}(s) \rightarrow \text{CO}_2(s) + \text{H}(s)$
13. $\text{CO}_2(s) + \text{H}(s) \rightarrow \text{CO}(s) + \text{OH}(s)$
14. $\text{H}(s) + \text{O}(s) \rightarrow \text{OH}(s) + \text{Pt}(s)$
15. $\text{OH}(s) + \text{Pt}(s) \rightarrow \text{H}(s) + \text{O}(s)$
16. $\text{H}_2\text{O}(s) + \text{Pt}(s) \rightarrow \text{H}(s) + \text{OH}(s)$
17. $\text{OH}(s) + \text{OH}(s) \rightarrow \text{H}_2\text{O}(s) + \text{O}(s)$
18. $\text{H}_2\text{O}(s) + \text{O}(s) \rightarrow \text{OH}(s) + \text{OH}(s)$
19. $\text{H} + \text{Pt}(s) \rightarrow \text{H}(s)$
20. $\text{H}(s) \rightarrow \text{H} + \text{Pt}(s)$
21. $\text{O} + \text{Pt}(s) \rightarrow \text{O}(s)$
22. $\text{O}(s) \rightarrow \text{O} + \text{Pt}(s)$
23. $\text{OH} + \text{Pt}(s) \rightarrow \text{OH}(s)$
24. $\text{OH}(s) \rightarrow \text{OH} + \text{Pt}(s)$
25. $\text{H}(s) + \text{H}(s) \rightarrow \text{Pt}(s) + \text{Pt}(s) + \text{H}_2$
26. $\text{O}(s) + \text{O}(s) \rightarrow \text{Pt}(s) + \text{Pt}(s) + \text{O}_2$
27. $\text{H}_2\text{O}(s) \rightarrow \text{H}_2\text{O} + \text{Pt}(s)$
28. $\text{H}(s) + \text{OH}(s) \rightarrow \text{H}_2\text{O}(s) + \text{Pt}(s)$
Chemkin Simulation Output

- Concentration of 8 gas and surface species along channel
- Virtual experiments
- Robust design possible
- New experiment directions generated
How Does the Reactor Perform?

- What is the conversion behavior?
- What is the selectivity?
- How productive is the reactor?
- What are the transport limitations?
- What is the activation/deactivation behavior?
- What is the catalyst stability?
Conversion Behavior

Reformate: 5 sccm
Air: 0.5 sccm
Comparison: Experiment vs. Simulation

Conversion of
- CO
- O2
- H2

Reformate: 5 sccm
Air: 0.5 sccm
Catalyst Activity Comparison

<table>
<thead>
<tr>
<th>References</th>
<th>Catalyst System</th>
<th>Temperature (°C)</th>
<th>Pressure (atm)</th>
<th>P CO (Torr)</th>
<th>P O₂ (Torr)</th>
<th>λ</th>
<th>TOF (s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work</td>
<td>Fe₃O₄-Al₂O₃ (T=19%)</td>
<td>100°C</td>
<td>1</td>
<td>13.68</td>
<td>13.68</td>
<td>2</td>
<td>0.086</td>
</tr>
<tr>
<td>Siriyanaplan, et al</td>
<td>Fe₃O₄-Al₂O₃ (T=19%)</td>
<td>98°C</td>
<td>1.8</td>
<td>13.68</td>
<td>13.68</td>
<td>2</td>
<td>0.040</td>
</tr>
<tr>
<td>This work</td>
<td>Fe₃O₄-Al₂O₃ (T=19%)</td>
<td>150°C</td>
<td>1</td>
<td>7.60</td>
<td>7.60</td>
<td>2</td>
<td>0.073</td>
</tr>
<tr>
<td>This work</td>
<td>Fe₃O₄-Al₂O₃ (T=19%)</td>
<td>150°C</td>
<td>1</td>
<td>15.20</td>
<td>15.20</td>
<td>0.0</td>
<td>0.020</td>
</tr>
<tr>
<td>This work</td>
<td>Fe₃O₄-Al₂O₃ (T=19%)</td>
<td>150°C</td>
<td>1</td>
<td>7.60</td>
<td>3.30</td>
<td>0.0</td>
<td>0.077</td>
</tr>
<tr>
<td>Kablic, et al</td>
<td>Fe₃O₄-Al₂O₃ (T=31%)</td>
<td>150°C</td>
<td>1</td>
<td>7.60</td>
<td>7.60</td>
<td>570.0</td>
<td>2</td>
</tr>
<tr>
<td>Mefler, et al</td>
<td>Fe₃O₄-Al₂O₃ (T=31%)</td>
<td>150°C</td>
<td>1</td>
<td>15.20</td>
<td>15.20</td>
<td>0.0</td>
<td>0.094</td>
</tr>
<tr>
<td>Muzak, et al</td>
<td>Fe₃O₄-Al₂O₃ (T=25%)</td>
<td>150°C</td>
<td>1</td>
<td>7.60</td>
<td>3.30</td>
<td>0.0</td>
<td>0.077</td>
</tr>
<tr>
<td>This work</td>
<td>Fe₃O₄-Al₂O₃ (T=19%)</td>
<td>200°C</td>
<td>1</td>
<td>7.60</td>
<td>7.60</td>
<td>469.68</td>
<td>2</td>
</tr>
<tr>
<td>This work</td>
<td>Fe₃O₄-Al₂O₃ (T=19%)</td>
<td>200°C</td>
<td>1</td>
<td>7.60</td>
<td>7.60</td>
<td>0.00</td>
<td>0.452</td>
</tr>
<tr>
<td>Kablic, et al</td>
<td>Fe₃O₄-Al₂O₃ (T=31%)</td>
<td>200°C</td>
<td>1</td>
<td>7.60</td>
<td>7.60</td>
<td>570.0</td>
<td>2</td>
</tr>
<tr>
<td>Eis, et al</td>
<td>Fe₃O₄-Al₂O₃ (T=10%)</td>
<td>200°C</td>
<td>1</td>
<td>7.60</td>
<td>7.60</td>
<td>380.0</td>
<td>2</td>
</tr>
<tr>
<td>Nibbelke, et al</td>
<td>Fe₃O₄-Al₂O₃ (T=21%)</td>
<td>210°C</td>
<td>1</td>
<td>7.60</td>
<td>7.60</td>
<td>0.00</td>
<td>0.625</td>
</tr>
<tr>
<td>This work</td>
<td>Fe₃O₄-Al₂O₃ (T=19%)</td>
<td>220°C</td>
<td>1</td>
<td>10.00</td>
<td>10.00</td>
<td>0.00</td>
<td>0.594</td>
</tr>
<tr>
<td>Amnera, et al</td>
<td>Fe₃O₄-Al₂O₃ (T=19%)</td>
<td>230°C</td>
<td>1.5</td>
<td>11.40</td>
<td>11.40</td>
<td>0.00</td>
<td>0.780</td>
</tr>
<tr>
<td>This work</td>
<td>Fe₃O₄-Al₂O₃ (T=19%)</td>
<td>250°C</td>
<td>1</td>
<td>7.60</td>
<td>7.60</td>
<td>469.68</td>
<td>2</td>
</tr>
<tr>
<td>This work</td>
<td>Fe₃O₄-Al₂O₃ (T=19%)</td>
<td>250°C</td>
<td>1</td>
<td>10.00</td>
<td>10.00</td>
<td>0.00</td>
<td>1.932</td>
</tr>
<tr>
<td>Kablic, et al</td>
<td>Fe₃O₄-Al₂O₃ (T=31%)</td>
<td>250°C</td>
<td>1</td>
<td>7.60</td>
<td>7.60</td>
<td>570.0</td>
<td>2</td>
</tr>
<tr>
<td>Zafiri, et al</td>
<td>Fe₃O₄-Al₂O₃(0011))</td>
<td>250°C</td>
<td>1</td>
<td>10.00</td>
<td>10.00</td>
<td>0.00</td>
<td>0.590</td>
</tr>
</tbody>
</table>

TOF’s of thin-film catalyst:

≈same activity as others at lower temperature (<150°C)

better activity at higher temperature (>200°C)
Mass Transport Limitation

\[C_{WP} = \eta \phi_1^2 = \frac{-r''_{O_2}(obs) \rho_c L_c^2}{D_e C_{O_2(s)}} \]

\[C_{WP} << 1 \]

\[C_{CO(s)} / C_{CO(b)} > 0.95 \]

\[C_{O_2(s)} / C_{O_2(b)} > 0.95 \]
Conversion Comparison

CO Conversion

- **Oh, et al.**
 - Packed-Bed Tube Reactor
 - WHSV = 11.9 hr⁻¹

- **Kahlich, et al.**
 - Packed-bed Tube Reactor
 - WHSV = 1254.1 hr⁻¹

- **Choi, et al.**
 - Packed-bed Tube Reactor
 - WHSV = 109 hr⁻¹

- **Our work**
 - Thin-Film Catalyst
 - WHSV = 1480.5 hr⁻¹
2-D Finite Difference Model

\[CO + \frac{1}{2} O_2 \xrightarrow{\Delta H = -67 \text{ kcal/mol}} CO_2 \]

\[H_2 + \frac{1}{2} O_2 \xrightarrow{\Delta H = -58 \text{ kcal/mol}} H_2O \]

\[CO_2 + H_2 \xrightarrow{\Delta H = 9.8 \text{ kcal/mol}} CO + H_2O \]

\(T_{\text{wall}} = \text{Constant} \)
Temperature Non-Uniformity: Hot Spots

2-mm radius
WHSV: 1500 hr\(^{-1}\)
Predicted Conversion Characteristics

![Graph showing CO conversion vs temperature for different reactors. The graph indicates that the microreactor and m-PBR with 0.2 cm radius have higher conversion percentages compared to the m-PBR with 0.4 cm radius at lower temperatures. The curves peak at different temperatures, with the microreactor reaching full conversion at a higher temperature than the other two.](image-url)
Flow Distribution Optimization

2-D Design for equal flow distribution in channels
Design: $1W_e$ PrOx Reactor

Assumes 38% FC efficiency

29 Parallel Channels

1. Standalone design
2. Can be thermally integrated to other components (e.g., vaporizer) for heat recovery; poor shape for heat retention.
3. Design based on isothermal condition

Interfaces to MKA for characterization

Mixer

Manifolds engineered for equal flow distribution

3.1 cm x 2.5 cm
Fabricated 1W PrOx Reactor

Actual Chip; 29 x (450 x 400 μm2) Channels

4 Reactors on 4-in. Wafer
Next Step: Component Integration from a System Perspective

Example: Energy management with ASPEN simulations
An Integration Example for SR, PrOx, and Heat Exchangers

Vaporizer (260°C) SR (260°C) PrOx (160°C)

Q = 10.1 W Q = 6.0 W

Air

Exhaust

Methanol

Water

To fuel cell

Fuel for combustor
Bringing New Drugs Faster and More Safely to the Marketplace

Adapted from S. Kiang, Bristol-Myers Squibb, 2003
Intensification for Pharma: Catalytic Hydrogenation

20% of all pharma manufacturing processes

- Currently: batch reactors, 100s of liters in size
- \(\text{H}_2 \) at high pressure (safety)
- Highly exothermic-low duty cycle, high heat removal (cost, energy efficiency)
- Residence time several hours

Continuous flow microreactors

- Low \(\text{H}_2 \) hold-up
- Superb heat extraction, high-duty cycle, low peak cooling
- Residence time minutes

\[\begin{align*}
\text{o-nitroanisole} & \quad \text{OCH}_3 \quad \text{NO}_2 & \quad + & \quad 3\text{H}_2 & \quad \xrightarrow{\text{CATALYST}} & \quad \text{o-nitroanisidine} \\
& \quad \text{OCH}_3 \quad \text{NH}_2 & \quad + & \quad 2\text{H}_2\text{O} &
\end{align*} \]
Intensification for Pharma: Catalytic Hydrogenation

Challenges:
- Transport Effects in Multiphase flow
- Effective Reactants Mixing
- Minimization of Pressure Drop
- Minimization of Heat and Mass Transfer Resistances
- Catalyst Selection/Preparation/Deposition for High Yield and Selectivity
- Intrinsic Kinetics Analysis for Microreactor Design
- Microreactor Design & Optimization
Core Competence
Being Built at NJCMCS (2002-2004)

• Thin-film Synthesis and Characterization Labs
 – Multifunctional surface design and control for micro-kinetic and micro-fluidic functions
 – Processing/microstructure/property/performance relationships
 – Integration with microfabrication practices

• Microkinetic Lab
 – Rate mechanisms: the key to rational micro-reactor design
 – Rapid parallel kinetics studies and performance evaluation
 – New microkinetic measurement tools development and integration

• Modeling and Simulations Lab
 – Quantification of complex surface effects
 – Flow distribution designs that will enable “numbering up” concepts
 – Novel mass transfer enhancement approaches via surface patterning
 – Integration with kinetic modeling, CFD simulations, ASPEN process analysis
Collaborators and Sponsors

- Dr. E. Dada, FMC
- Dr. P. Ho, Reaction Design
- Dr. D. Ivanov, NJ Institute of Technology
- Mr. D. Kientzler, Bristol-Myers Squibb
- Dr. S. Pau, Lucent-Bell Labs
- Mr. W. Mansfield, Lucent-Bell Labs