How Useful is the
Word Problem?

Robert Gilman
Stevens Institute of
Technology

Jahrestagung der Deutschen
Mathematiker Vereinigung

Hamburg 21-25.9.2015




Introduction

\ Coding i i Coding
) Algorithm Com(r:nunlcatlons Algorithm
LELT T (DECODER)

(ENCODER)

XUFAKrxLKna5cZ2 ,‘ P
REBfFkg== T

XUFAKrxLKna5cZ2
REBfFkg==




RSA depends on the difficulty of factoring certain products of two
primes.

22601385262034057849416540486101975135080389157197767183
21197768109445641817966676608593121306582577250631562886

67697044807000181114971186300211248792819948748206607013
1066586646083327982803560379205391980139946496955261

1. Factoring is in NP; is it in P?
2. If no, how do we sample the difficult instances?
3. If yes, might there be sufficiently difficult instances anyhow?



Public key systems rely on underlying algebraic problems.

A public key — private key pair is equivalent to an instance of this
problem.

Problem instances must be feasible to generate, and with
overwhelming probability hard to solve without the private key.
Standard complexity does not help much here.



Thus we need a theory of complexity that will enable us
to state and prove that a certain computation is
intractable in virtually every case. For example, a
block-encoding system is safe if any algorithm for key
determination will terminate in practical time only on
O(27") of the cases. We are very far from creation of
such a theory, especially at the present stage when

P = NP is not yet settled.

Michael Rabin
Turing Award Lecture
1976



Complexity cores are collections of hard instances. Can we sample
them to get hard instances?

The question of whether or not complexity cores of practical
computational problems can be efficiently sampled seems to have
been open for forty years.

Decision problems involving enumeration of all Turing machines
are not practical.

Word problems for finitely presented groups are practical.

Word problems for recursively presented groups which are not
finitely presented are impractical.



There is a computational problem with a computable complexity
core which can be efficiently sampled. Namely a finitely presented
group whose word problem has a complexity core C such that

» Any algorithm succeeds only on an exponentially negligible
subset of C;

» C is computable and can be sampled efficiently.



Hard Instances

How rare are hard instances of practical problems? How do we
sample them?

The simplex algorithm is exponential time but the hard instances
do not show up in real life.

The word search problem of any finitely presented group is
polynomial time except on a negligible set of words.

It might be that P £ NP, but hard instances are rare.



Challenger—Solver Games

Challenger repeatedly picks instances of a given problem @
problem, and Solver tries to solve them.

Even if Q has very hard instances, Solver may have easy life: It
may take a very long time to find a hard instance.

If Solver almost always succeeds in time polynomial in the time it
takes challenger to generate an instance, then Solver wins.
Otherwise Challenger wins.



Complexity Cores

Theorem (Lynch 1975)

If Q is a computable problem not in P, then there is an infinite
computable set X such that any P-time algorithm for Q fails on all
but finitely many instances of Q.

Let A1, Az, ... be the (partial) algorithms for Q and
| =i, i, i3,... the inputs to Q.

Initialize X to be empty.

Let / be the first input for which A; fails to converge in time
n=|i], and add i to X.

Let // be the first subsequent input for which A; and A, both fail
to converge in time 2n°, and add i’ to X.

Etc.



If @ is computable, then X can be computable too.

Every recursive @ not in P has a core recognizable in
subexponential time. Every Q € NP — P has a core with super
polynomial growth.

P can be replaced by other complexity classes.

The construction of X is impractical; Lynch raises the question of
practical construction.



Genericity

Consider formal languages, i.e., sets of words over a finite alphabet
Y, i.e., subsets of X*.

B, is the set of all words in ¥* of length at most n.

A language L C X* is

1. Generic if limp— oo % =1
2. Exponentially generic if the convergence is exponentially fast.

In other words ‘ﬁgi”' >1—cr " for some ¢ >0 and r > 1.

3. Negligible if its complement is generic.

4. Exponentially negligible if its complement is exponentially
generic.



Generic Properties of Groups

If G has an infinite cyclic quotient, then the word problem is
solvable in linear time on a generic set of inputs.

If G has a free quotient of rank at least 2, then the word problem
is solvable in linear time on an exponentially generic subset.

If G is finitely presented, then a generic van Kampen diagram has
diameter proportional to the log of the length of the word it
defines. A generic word defining the identity can be checked in
polynomial time. (Here genericity is defined using van Kampen
diagrams.)



If G is hyperbolic, then for each k, the set of k-tuples in ¥* which
generate undistorted free subgroups is exponentially generic, and
the corresponding membership problem is solvable in cubic time.

If G is any amenable group with unsolvable word problem then the
word problem is not solvable on any exponentially generic subset of
words.



A modified complexity core for a computational problem @ is an
infinite set of inputs such that any algorithm for @ fails on all but
an exponentially negligible set of inputs.




Algorithmically finite groups

Let G be a finitely generated group, ¥ a finite alphabet, and
> — G a choice of generators. ¥* is the free monoid of all group
words.

G is algorithmically finite if no infinite recursively enumerable
subset of ¥* projects injectively to G.

G is a torsion group.
If the word problem is decidable on L C X*, then the projection of
L is finite.

If G is non-amenable, then any algorithm for the word problem
succeeds only on an exponentially negligible subset of ¥*.



Theorem (Myasnikov, Osin)

There exists an infinite finitely generated recursively presented
non-amenable algorithmically finite group.

Enumerate recursively enumerable languages S C ¥*.

From each infinite S pick two words v, w and impose the relation
vV =Ww.

Do this in such a way that the Golod-Shafarevich Theorem applies.

Are there any finitely presented infinite algorithmically finite
groups?



Conclusion

Let G be an infinite recursively presented algorithmically finite
group. G is a subgroup of a finitely presented group K.

Let X be a set of generators for K with generators A C ¥ for G.

A* is a modified complexity core for the word problem of K.

Proof: Let A be an algorithm for the word problem. The
restriction of A to A* succeeds only on an exponentially negligible
subset.



Corollary

Challenger wins.

For a given n Challenger picks words from A* uniformly at random
in linear time. Solver succeeds with probability at most cr—" for
constants ¢ > 0 and r > 1.

Question: Are there analogous results at lower complexity levels?



