
Robust Mean-Variance Formulations Uncertain in Expected Return Estimates Uncertainty in Return Covariance Matrix Estimates Using Robust Mean-Variance Portfolio Optimization in Practice

FE670 Algorithmic Trading Strategies
Lecture 8. Robust Portfolio Optimization

Steve Yang

Stevens Institute of Technology

10/17/2013



Robust Mean-Variance Formulations Uncertain in Expected Return Estimates Uncertainty in Return Covariance Matrix Estimates Using Robust Mean-Variance Portfolio Optimization in Practice

Outline

1 Robust Mean-Variance Formulations

2 Uncertain in Expected Return Estimates

3 Uncertainty in Return Covariance Matrix Estimates

4 Using Robust Mean-Variance Portfolio Optimization in Practice



Robust Mean-Variance Formulations Uncertain in Expected Return Estimates Uncertainty in Return Covariance Matrix Estimates Using Robust Mean-Variance Portfolio Optimization in Practice

Robust Mean-Variance Formulations

- Uncertainty in the inputs to a portfolio optimization
problem (for example, the expected returns and their
variances and covariances) can be modeled directly in the
optimization process.

- We recall that the classical mean-variance problem
introduced earlier

max
w

µ′w − λw′Σw

s.t.w′l = 1

where l = [1, 1, .., 1]′. In this optimization problem
µ,Σ, λ, and w denote the expected return, asset return
covariance matrix, risk aversion coefficient, and portfolio
weights, respectively.
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Uncertain in Expected Return Estimates

- An easy way to incorporate uncertainty caused by
estimation errors is to require that the investor be
protected if the estimated expected return µ̂i for each
asset is around the true expected return µi . The error
from the estimation can be assumed to be not larger than
some small number δi > 0. A simple choice for the
uncertainty set for µ is

Uδ(µ̂i ) = {µ||µi − µ̂i | ≤ δi , i = 1, ...,N}

where l = [1, 1, .., 1]′. In this optimization problem
µ,Σ, λ, and w denote the expected return, asset return
covariance matrix, risk aversion coefficient, and portfolio
weights, respectively.

The δi ’s could be specified by assuming some confidence
interval around the estimated expected return.
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- The robust formulation of the mean-variance problem under
the preceding assumption on µ̂i is

max
w

µ′w − δ′|w| − λw′Σw

s.t.w′l = 1

- If the weight of asset i in the portfolio is negative, the
worst-case expected return for asset i is µi + δi (we lose
the largest amount possible). If the weight of asset i in
the portfolio is positive, then the worst-case expected
return for asset i is µi − δi (we gain smallest amount
possible).

- The objective agrees with our intuition: it tries to
minimize the worst-case expected portfolio return. Assets
whose mean return estimates are less accurate (have a
larger estimation error δi) are penalized in the objective
function, and will tend to have smaller weights in the
optimal portfolio allocation.
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To gain some additional insight, let us rewrite the robust
formulation as

max
w

(µ̂− µδ,w)w − λw′Σw

s.t.w′l = 1

where

µδ,w(w) =


sign(w1)δ1

sign(w2)δ2

...
sign(wN)δN


Here sign(·) is the sign function (that is, sign(x) = 1
when x ≥ 0 and sign(x) = −1 when x < 0). In this
reformulation of the problem we see that robust
optimization is related to statistical shrinkage, and the
original expected return vector is shrunk to µ̂− µδ,w.
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By using the equality wi sign(wi )δi = wi
wi
|wi |δi = wi√

|wi |
δi

wi√
|wi |

,

we can rewrite the problem as

max
w

µ′w − λw′Σw − ŵ′∆w

s.t.w′l = 1

where

ŵ =


w1√
|w1|
...
wN√
|wN |

∆ =

 δ1

. . .

δN


Observe that this problem is yet another modification of
the classical mean-variance problem. In particular, a
risk-like term ŵ′∆w has been added to the classical
formulation. This term can be interpreted as a risk
adjustment performed by an investor who is averse to
estimation error.
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- One can define many other uncertainty sets for the expected
returns vector µ. While more general uncertainty sets lead to
more complicated optimization problems, the basic intuition
and interpretation remain the same. For instance, consider the
uncertainty set:

Uδ(µ̂i ) =
{

(µ− µ̂)′Σ−1
µ (µ− µ̂) ≤ δ2

}
It captures the idea that the investor would like to be
protected in instances in which the total scaled deviation
of the realized average returns from the estimated returns
is within δ.

- We may ask ourselves what the worst estimates of the
expected returns would be, and how we would allocate the
portfolio in this case. Mathematically, this can be
expressed as:

max
w

min
µ∈{(µ−µ̂)′Σ−1

µ (µ−µ̂)≤δ2}
µ′w − λw′Σw

s.t.w′l = 1
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Least Squares Regression Models

- If expected returns are estimated based on linear regression,
then one can calculate an estimate of the error covariance
matrix from the regression errors. Let us assume we have the
factor model for the returns:

r = µ + V′f + ε

This can be written as

yi = Axi + εi or Y = AX + ε

- If a portfolio manager decomposes the expected return
forecast into factor-specific and asset specific returns,
then he is concerned about the standard error covariance
matrix for the intercept term µ. The matrix of estimation
errors for the response corresponding to the factor
realizations fτ = (1, fτ1, ..., fτM)′ ∈ RM is given by:

f ′τXX′
−1

fτ

{
1

T
(Y − AX)′(Y − AX)

}
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The James-Stein Estimator

- The James-Stein estimator of expected returns is computed as
a weighted average of the sample average returns (computed
from a sample of size T ) and a shrinkage target of µ0.

µ̂JS = (1− w)µ̂ + wµ0

The special form of the James-Stein shrinkage estimator
proposed by Jorion (named the Bayes-Stein estimator) is
based on Bayesian methodology. The shrinkage target µ0
is computed as

µ0 =
l′Σ−1

l′Σ−1l
µ̂

where Σ is the real covariance matrix of the N returns.
This matrix is unknown in practice, but one can replace Σ
in the previous equation by (where, S is the usual sample
covariance matrix.):

Σ̂ =
T − 1

T − N − 3
S
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The Black-Litterman Model

- The Black-Litterman model for estimating expected returns
combines the market equilibrium with an investor’s views. The
formula for the estimate is

µ̂BL = (X
′
V−1X)−1X′V−1y

= [(τΣ)−1 + P′Ω−1P]−1[(τΣ)−1Π + P′Ω−1q]

where Σ is the covariance matrix of returns; Π is the vector of

expected excess returns, computed from an equilibrium model such

as CAPM; τ is a scalar that represents the confidence in the

estimation of the market prior; q is vector of investor’s views; P is a

matrix of investor’s views; Ω is matrix expressing the confidence in

the investor’s views.

- The covariance of the expected return is
[(τΣ)−1 + P′Ω−1P]−1]. It can be used an approximation
fro the estimation error covariance matrix Σµ.
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Uncertainty in Return Covariance Matrix Estimates

Mean-Variance portfolio optimization is less sensitive to
inaccuracies in the estimate of the covariance matrix Σ than
it is to estimation errors in expected returns.

max
w

{
min
µ∈Uµ

{µ′w} − λ max
Σ∈UΣ

{w′Σw}
}

s.t.w′l = 1

where Uµ and UΣ denote the uncertainty sets of expected
returns and covariances, respectively.

- A few different methods for modeling uncertainty in the
covariance matrix are used in practice. Some are
superimposed on top of factor models for returns, while
others consider confidence intervals for the individual
covariance matrix entries.



Robust Mean-Variance Formulations Uncertain in Expected Return Estimates Uncertainty in Return Covariance Matrix Estimates Using Robust Mean-Variance Portfolio Optimization in Practice

Factor Models

- If we assume a standard factor model for returns

r = µ + V′f + ε

Then the covariance matrix of returns Σ can be expressed
as

Σ = V′FV + D

It is assumed that the vector of residual returns ε is
independent of the vector of factor returns f and that the
variance of µ is zero.

- The statistical properties of the estimate of V naturally
lead to an uncertainty set of the kind.

Sv = {V : V = V0 + W, ||Wi || ≤ ρi , i = 1, ...,N}

where Wi denotes the i -th column of W and
||Wi || =

√
w′Gw.
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Confidence Intervals for the Entries of the Covariance
Matrix

- Instead of using uncertainty sets based on estimates from a
factor model, one can specify intervals from the individual
elements of the covariance matrix of the kind

Σ ≤ Σ ≤ Σ

If we assume that the estimates of expected returns vary
in intervals

Uδ(µ̂i ) = {µ||µi − µ̂i | ≤ δi , i = 1, ...,N}

short sales are not allowed (i.e., w ≥ 0, and the matrix Σ
is positive semidefinite, the resulting optimization problem
is very simple to formulate.

max
w

{
min
µ∈Uµ

{µ′w} − λ max
Σ∈UΣ

{w′Σw}
}

s.t.w′l = 1
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Using Robust Mean-Variance Portfolio Optimization in
Practice

- Robust optimization does, however, come at the cost of
additional modeling effort. The important question is whether
this effort is worthwhile.

- Critics have argued that robust optimization does not provide
more benefit than shrinkage estimators that combine the
minimum variance portfolio with a speculative investment
portfolio. However, robust optimization is not necessarily
equivalent to shrinkage estimation. They are particularly
different in the presence of additional portfolio constraints.

- An advantage of the robust optimization approach is that the
parameter values in the robust formulation can be matched to
probabilistic guarantees.
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- The discussion in the previous sections leads to the question:
so which approach is best for modeling financial portfolios?

The short answer is: it depends. It depends on the size of the
portfolio, the type of assets and their distributional
characteristics, the portfolio strategies and trading styles
involved, and exiting technical and intellectual infrastructure,
among others.

Sometimes it makes sense to combine several techniques, such
as a blend of Bayesian estimation and robust portfolio
optimization. This is an empirical question; indeed, the only
way to find out is through extensive research and testing.
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- A simple check-list for robust quantitative portfolio
management:

1 Risk forecasting: develop an accurate risk model.
2 Return forecasting: construct robust expected return estimates.
3 Classical protfolio optimization: start with a simple framework.
4 Mitigate model risk:

a Minimize estimation risk through the use of robust estimators.
b Improve the stability of the optimization framework through

robust optimization.

5 Extensions.

In general, the most difficult item in this list is to calculate
robust expected return estimates. Developing profitable
trading strategies is hard, but not impossible. It is important
to remember that modern portfolio optimization techniques
and fancy mathematics are not going to help much if the
underlying trading strategies are subpar.
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