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Algorithmic Trading Strategies

Algorithmic trading: is commonly defined as the use of
computer algorithms to automatically make trading
decisions, submit orders, and mange those orders after
submission.

Goal: The main objective of algo trading is not necessarily
to maximize profits but rather to control execution costs
and market risk.

- Different strategies may target at different frequencies,
and the profitability of a trading strategy is often
measured by certain return metric.
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The Market in Numbers

US Equities volumes: 5 and 10 billion shares per day

1.2 ∼ 2.5 Trillion shares per year

Annual volume: USD 30 ∼ 70 trillion

At least 30% of the volume is algorithmic: 360 ∼ 750 billion
shares/year

Typical large “sell side broker trades between 1 and 5 USD Tri
per year using algos

Each day, between 15,000 and 30,000 orders are processed

An algorithmic execution strategy can be divided into 500 ∼
1,000 small daughter orders
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The Market in Numbers

Algorithms started as tools for institutional investors in
the beginning of the 1990s. Decimalization, direct market
access (DMA), 100% electronic exchanges, reduction of
commissions and exchange fees, rebates, the creation of
new markets aside from NYSE and NASDAQ and Reg
NMS led to an explosion of algorithmic trading and the
beginning of the decade.

Today, brokers compete actively for the commission pool
associated with algorithmic trading around the globe a
business estimated at USD 400 to 600 million per year.

Orders come from institutional investors, hedge funds and
Wall Street trading desks
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Why Algorithms?

Institutional clients need to trade large amounts of stocks.
These amounts are often larger than what the market can
absorb without impacting the price.

The demand for a large amount of liquidity will typically
affect the cost of the trade in a negative fashion
(“slippage”)

Large orders need to be split into smaller orders which will
be executed electronically over the course of minutes,
hours, day.

The procedure for executing this order will affect the
average cost per share, according to which algorithm is
used.

In order to evaluate an algorithm, we should compare the
average price obtained by trading with a market
benchmark.
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High Frequency Trading

Being faster the traders can react to changes in the
market before everyone else, thereby gaining an
advantage.

Their competitive advantage arise from being able to
process and disseminate information sooner and faster
than other market participants.

These sophisticated high-frequency trading firms,
representing about 2% of the approximately 20,000
trading firms in the United States, are believed to be
responsible for almost three-quarters of all U.S. equity
trading volume.

These businesses include hundreds of the most secretive
proprietary trading desks at the major investment banks,
and maybe about 100 or so of the most sophisticated
hedge funds.
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Optimal Execution

Implementation shortfall(IS) is a measure of the total
transaction costs. IS represents the difference between the
actual portfolio return and the paper estimate of this return at
the beginning of trading.

If trading of an order with size X started at price p0 (arrival
price) and ended at price pN , and the order was split into N
child orders of size xk that were filled at price pk , then

IS =
∑

xkpk − p0

∑
xk + (pN − p0)(X −

∑
xk) + C (1)

where C is the fixed cost. The first two terms represent
execution cost, and the third tells opportunity cost.
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Execution Strategies

Note that not all child orders may be executed during the
trading day. For example, submission of child orders may be
conditioned on specific price behavior. The unfilled amount,
X −

∑
xk , determines an opportunity cost.

Algorithmic trading is a new field that focuses on making
decisions where and how to trade. The professional trading
community attributes algorithmic trading primarily to the
execution strategies (Johnson 2010).

The question of whether to trade is beyond the scope of our
lecture today. It is assumed that the decision to trade a given
amount within a given time horizon has been made and we
are concerned only with its implementation.

The decision where to trade is important for institutional
trading, and modern trading systems often have liquidity
aggregators that facilitate connections to various sources.
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Execution Strategies

Two major families of execution algorithms:

Benchmark algorithms are based on some simple measures
of market dynamics rather than on explicit optimization
protocols.

Cost-driven algorithms minimize IS and are often named
implementation shortfall algorithms.

Obviously, any execution algorithm addresses the problem of
minimizing execution costs. Market impact due to order
execution in conditions of limited liquidity is the main culprit
of trading loss. Large orders can move price in the adverse
direction, and a general way of reducing trading loss is
splitting large orders into smaller child orders and spanning
them over a given time interval.
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Benchmark-Driven Schedules

Time-weighted average price (TWAP). In this schedule,
child orders are spread uniformly over a given time interval.
Such a simple protocol has a risk of exposure of the trader’s
intentions to other market participants.
For example, some scalpers may realize that a large order is
being traded and start trading the same instrument in
expectation that the large trading volume will inevitably move
the price.

- To prevent information leak, TWAP schedule may be
randomized in terms of size and submission time of child
orders.
For example, if the trading interval is four hours, 25% of the
trading volume must be executed each hour, and the child
order size may be adjusted deterministically for each hour.

- More sophisticated TWAP schedules may use adaptive
algorithms based on short-term price forecast.
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Volume-weighted average price (VWAP). Markets often
have pronounced intraday trading volume patterns. Therefore,
the VWAP schedule may be more appropriate than the TWAP
schedule.

If an asset during some time interval has N trades with price
pk and volume vk , its VWAP is

VWAP =
N∑

k=1

vkpk/
N∑

k=1

vk (2)

Practical implementation of the VWAP algorithm involves
calculation of the percentage of daily trading volume uk for
each trading period k using historical market data:

uk = vk/
N∑
i=1

vi , the size of k-th child order xk = Xuk (3)
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- Historical estimates of uk may have significant variation.
Therefore, sophisticated VWAP algorithms have adaptive
mechanisms accounting for short-term price trend and
dynamics of uk .

- It should be noted that while the VWAP algorithm helps in
minimizing the market impact cost, it does not necessarily
yield possible price appreciation, which is, in fact, a form of
opportunity cost.

Indeed, if price grows (falls) on a high volume during a day, the
trader might get more price appreciation if the entire buy (sell)
order is placed in the morning rather than spread over the day.
On average, however, such an opportunity cost is compensated
for buy (sell) orders on days when the price falls (grows).

- The VWAP benchmark has become very popular in post-trade
analysis. How well an algorithm performs can be checked by
comparing the realized trading cost with the true VWAP
calculated using available market data.
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TWAP vs. VWAP During a slow trading day, the TWAP may be very

similar to the VWAP, even to the penny at times. However, in a volatile session,

or when volume is higher than usual, the two indicators may start to diverge.
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Percent of volume (POV). In this schedule, the trader
submits child orders with sizes equal to a certain percentage
of the total trading volume, γ.

This implies that child orders have acceptable market impact
(if any), and execution time is not strictly defined.

In estimating the size of child order xk , one should take into
account that the child order must be included in the total
trading volume Xk at time period k:

γ = xk/(Xk + xk)

As a result, xk = γXk/(1− γ)

Participation weighted price (PWP). This benchmark is a
combination of VWAP and POV. Namely, if the desirable
participation rate is γ and the order volume is N, PWP for
this order is VWAP calculated over N/γ shares traded after
the order was submitted.
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Cost-Driven Schedules / Risk-Neutral Framework

Cost-Driven Schedules While executing a large order, a
risk-averse trader faces a dilemma: Fast execution implies
larger child orders and hence higher market impact and higher
IS. On the other hand, submitting smaller child orders
consumes more time and exposes traders to the price volatility
risk (market risk).

- Cost-driven schedules can be partitioned into risk-neutral
algorithms and risk-averse algorithms. In the former case,
the schedule is derived by minimizing market impact. In the
later case, the schedule is derived by minimizing utility
function that has two components: market impact and
volatility risk.

Risk-Neutral Framework Bertsimas & Lo (1998) introduced
the following model for optimal execution. The objective is to
minimize the execution cost:
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Cost-Driven Schedules / Risk-Neutral Framework

min
xk

E{
N∑

k=1

xkpk}

s.t.
N∑

k=1

xk = X

It is assumed that price follows the arithmetic random walk in
the absence of market impact, and market impact is
permanent and linear upon volume:

pk = pk−1 + θxk + εk

where θ > 0 and εk is an IID process that is uncorrelated with
trading and has zero mean. Then, the volume remaining to be
bought, wk can be determined as a dynamic programming
problem.
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Cost-Driven Schedules / Risk-Neutral Framework

wk = wk−1 − xk ,w1 = X ,wN+1 = 0

The dynamic programming optimization is based on the
solution optimal for the entire sequence {x∗1 , ..., x∗N} must be
optimal for the subset {x∗k , ..., x∗N}, k > 1. This property is
expressed in the Bellman equation in recursive format:

Vk(pk−1,wk) = minE{pkxk + Vk+1(pk ,wk+1)}, and {xk}

It follows from the boundary condition wN+1 = 0 that
x∗T = wT . Then, the Bellman equation can be solved
recursively: first by going backward and retrieving the
relationship between x∗k and wk , and then by going forward,
beginning with the initial condition w1 = X .

It turns out a simple and rather trivial solution: x∗1 = ... = x∗N .
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Cost-Driven Schedules / Risk-Neutral Framework

- This result is determined by the model assumption that the
permanent impact does not depend on either price or the size
of the unexecuted order.

- More complicated models generally do not have an analytical
solution. Yet, they can be analyzed using numerical
implementation of the dynamic programming technique.

- Obizhaeva & Wang (2005) expanded this approach to
account for exponential decay of market impact.

- Gatheral (2009) described the relationship between the shape
of the market impact function and the decay of market
impact. In particular, Gatheral has shown that the exponential
decay of market impact is compatible only with linear market
impact.
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Cost-Driven Schedules / Risk-Averse Framework

The risk-averse framework for optimal execution was
introduced by Grinold & Kahn (2000). Almgren & Chriss
(2000) expanded this approach by constructing the efficient
trading frontier in the space of possible execution strategies.

- Let’s apply the Almgren-Chriss model to the selling process
(the buying process is assumed to be symmetrical). Our goal
is to sell X units within the time interval T .
Let’s divide T into N periods with length τ = T/N and
define discrete times tk = k∗τ where k = 0, 1, ...,N.

Another list will also be used: x = {x0, ..., xN}, where xk is
the remaining number of units at time tk to be sold; x0 = X ;
xN = n0 = 0

xk = X −
i=k∑
i=1

ni =
i=N∑

i=k+1

ni



Algorithmic Trading Strategies Optimal Execution Benchmark-Driven Schedules Cost-Driven Schedules What is Next? The High-Frequency Arms Race

Cost-Driven Schedules / Risk-Averse Framework

- It is assumed that price S follows the arithmetic random walk
with no drift. Another assumption is that market impact can
be partitioned into the permanent part that lasts the entire
trading period T , and the temporary part that affects price
only during one time interval τ . Then,

Sk = Sk−1 + στ1/2dξ1 − τg(nk/τ)

where the function g(nk/τ) describes the permanent market
impact. The temporary market impact contributes only to the
sale price of the order k

Ŝk = Sk−1 + στ1/2dξ1 − τh(nk/τ)

but does not affect Sk . And the total trading cost equals:

IS = XS0 −
N∑

k=1

nk Ŝk
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Cost-Driven Schedules / Risk-Averse Framework

Again the total trading cost equals:

IS = XS0 −
N∑

k=1

nk Ŝk

= −
N∑

k=1

xk(στ1/2dξk − τg(nk/τ)) +
N∑

k=1

nkh(nk/τ)

Within these assumptions, the expected IS, E (x) and its
variance, V (x), equal

E (x) =
N∑

k=1

τxkg(nk/τ) +
N∑

k=1

nkh(nk/τ)

V (x) = σ2τ

N∑
k=1

x2
k

The Almgren-Chriss framework minimizes: U = E (x) + λV (x)
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Cost-Driven Schedules / Risk-Averse Framework

Both permanent and temporary market impacts are assumed
to be linear on order size:

g(nk/τ) = γnk/τ

h(nk/τ) = εsign(nk) + ηnk/τ

Here, γ and η are constant coefficients, ε is fixed cost (fees,
etc.), and sign is the sign function. Then,

E (x) =
1

2
γX 2 + εX +

η̃

τ

N∑
k=1

n2
k , η̃ = η − γτ/2

Minimization of the utility function is then reduced to
equating zero to δU/δxk , which yields

xk−1 − 2xk + xk+1 = κ̃2τ2xk

with κ̃2 = λσ2/η̃
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Cost-Driven Schedules / Risk-Averse Framework

The solution to the above formulation is

xk = X
sinh(κ(T − tk))

sinh(κT )
, k = 0, 1, ...,N

Then, it follows from the definition nk = xk − xk−1 that

nk = 2X
sinh(κτ/2)

cosh(κT )
cosh(κ(T − tk−1/2)) , k = 1, ...,N

where tk−1/2 = (k − 1/2)/τ and κ satisfies the following
relation

2(cosh(κτ)− 1) = κ̃2τ2

When τ approaches zero, η̃ → η and κ̃2 → κ2. Note that κ is
independent of T and characterizes exponential decay of the
size of sequential child orders. Obviously, the higher is risk
aversion λ, the shorter is the order’s half-life.
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Cost-Driven Schedules / Risk-Averse Framework

- Almgren & Chriss (2000) define the efficient trading frontier
as the family of strategies that have minimal trading cost for
a given cost variance, that is , a curve in the space E-V.

- Recent extension of the Almgren-Chriss framework by
Huberman & Stahl (2005), Almgren & Lorenz (2007),
Jondeau et al.(2008), and Shied & Schöneborn (2009) have
led to models that account for time-dependent volatility and
liquidity, sometimes within the continuum-time framework.

- All these extended models generally share the assumption that
market impact can be represented as a combination of the
permanent and short-lived transitory components.

- Bouchaud et al. (2004) and Schmidt (2010) exhibit the
power-law decay of market impact.
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What is Next?

- The average trade size for IBM, as reported in the Trade and
Quote (TAQ) database, declined from 650 shares in 2004 to
240 shares in 2007. Falling trade sizes are evidence of the
impact of algorithmic trading. Large, infrequent portfolio
rebalancing and trading are being replaced by small delta
continuous trading.

- The antithesis of the small delta continuous trading approach
is embodied in the idea of lazy portfolios, in which portfolios
are rebalanced infrequently to reduce market impact costs.
Argument against lazy portfolios:

1). As time passes, the weights drift further and further away
from optimal target holdings, in both alpha and risk
dimensions. 2). Use of an optimzer after long holding periods
tends to produce large deviations from current holdings.
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The dynamic portifolio or small delta continuous trading problem
represents the next step in the evolution of institutional money
management. The dynamic portolio problem differs in several
different ways from the classical multiperiod
consumption-investment problem:

1 The return probability distributions change throughout time.

2 The objective functions for active portfolio management do
not depend on predicted alpha/risk, but rather on realized
return/risk.

3 The dynamics of the model may be far more complex.

Other efforts of ongoing research in algorithmic trading are
extending market microstructure and optimal execution models to
futures, options, and fixed-income products.
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The High-Frequency Arms Race

- Exhibit 11.3 Order Size and Round Trip Time
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High Frequency Trading

Algorithmic traders are liquidity providers that profit from
the spread and the rebate (also referred to as the maker
taker fee.

Liquidity providers that post orders to buy or sell at fixed
prices are offered a rebate from the exchange if their
quotes result in trades. For example, in July 2009 Direct
Edge paid a rebate of 0.25 cents per share to subscribing
firms that provide liquidity and charged liquidity takers a
fee of 0.28 cents.

One part of being faster means reducing latency. A
definition is to consider the so-called end-to-end latency,
also referred to as total latency, which consists of two
components: 1. exchange latency, and 2. member latency.
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Latency

In the end-to-end latency, we can break it down into the
following steps:

1 Price dissemination and distribution at the exchange.
2 Transmission of price information from the exchange to

the firm.
3 Preparation of the order at the firm.
4 Distribution of the order to the exchange.
5 Place the order in order book.
6 Order acknowledgment from the exchange.
7 Final report on the order execution from the exchange.

An important part of latency is the remote location data
transfer. With the current technology these transfers can be
done in about 35 milliseconds between the West and East
coasts.
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Liquidity

The most critical component of an exchange is to be able to
provide market participants with liquidity. We can loosely
define liquidity as (1) the ability to trade quickly without
significant price changes, and (2) the ability to trade large
volumes without significant price changes. However, there are
some known HFT strategies:

1 Market-making: market makers simultaneously post limit orders on both sides of
the electronic limit order book to make the spread. In this way they provide
liquidity, and they take the risks to lose to the informed traders.

2 Relative value and arbitrage trading: arbitrageurs take advantage of short-term
mis-prices of indices’s or assets traded on different venues to make profit. On
example, would be S&P 5000 futures vs. SPY on other venues.

3 Directional trading: some HFT firms electronically parse news release, apply
textual analysis, and trade on the inferred news from social media etc.

Obviously, there are physical limitations as to how much
latency can be decreased. Standard arguments of economic
theory suggest that over time through competition the profit
margins of high-frequency trading will decrease.
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