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Data-centric storage provides energy-efficient data dissemination and organization for the increasing amount of wireless data.
One of the approaches in data-centric storage is that the nodes that collected data will transfer their data to other neighboring
nodes that store the similar type of data. However, when the nodes are mobile, type-based data distribution alone cannot provide
robust data storage and retrieval, since the nodes that store similar types may move far away and cannot be easily reachable in
the future. In order to minimize the communication overhead and achieve efficient data retrieval in mobile environments, we
propose a reinforcement learning-based framework called PARIS, which utilizes past node trajectory information to predict the
near likely nodes in the future as the best content distributee. Our framework can adaptively improve the prediction accuracy by
using the reinforcement learning technique. Our experiments demonstrate that our approach can effectively and efficiently predict
the future neighborhood.

1. Introduction

The development of data-centric storage has enabled efficient
data dissemination of wireless networks. In data-centric
storage, data is stored by attributes or types (e.g., geographic
location and event type) at nodes within the network [1–
3]. Queries for data with a particular attribute will be sent
directly to the relevant node(s) instead of performing flood-
ing throughout the network, thereby data-centric storage
enables efficient data dissemination/access.

In data-centric storage of wireless networks, wireless
devices that collect the data are called collector nodes.
Whereas the data can be stored on other nodes, called
storage nodes [3–5], based on their attributes or types.
Most existing data-centric storage models can only deal
with static wireless networks. However, with the increasing
deployment of wireless devices, there are emerging pervasive
applications that rely on the mobility of wireless device. Two
representative examples are: (1) sensors are used for animal
migration tracking, and (2) wireless devices are equipped
with police officers to monitor their daily patrol routes,
collect crime information by areas, and record corresponding

law enforcement actions. In these two scenarios, efficient
data retrieval can be achieved if the data-centric storage is
enabled, that is, the data is stored by the types of animals,
by the activities performed by the animals, or by the tasks
that are carried out by the police officers. The challenge is to
design schemes that can support data-centric storage when
all the nodes are moving around. In this paper, we consider a
fully distributed network, in which there is no node playing
the sole role as storage; each node can act as both the collector
and storage node. For instance, a wireless node, playing the
role of a collector node, can collect data of more than one
type, but usually it only stores one type of data and transfers
the rest of data of other data types to other nodes, which
are the storage nodes corresponding to this collector node.
Further, to reduce the communication overhead, the storage
nodes are picked from the neighborhood, that is, the nodes in
the transmission range, of the collector node.

However, in mobile wireless networks, it is possible that
both storage and collector nodes move in a broad area,
which brings the possibility that the storage nodes that
are currently in the neighborhood of the collector nodes
may move far away and cannot be easily reached in the
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future. Thus, when a user sends queries to the collector
nodes, the queries need to be redirected to those storage
nodes with much communication overhead. Therefore, it
is desirable that the collector nodes migrate their data to
the storage nodes that not only possess similar data types
but also highly likely to travel with them in the future.
We define this kind of storage nodes as near likely nodes,
which are the nodes that are in the neighborhood (i.e.,
near) and carry the same type of data that needs to be
stored (i.e., likely). In this paper, we propose mechanisms
to predict near likely nodes for data-centric mobile wireless
networks to achieve efficient data storage and retrieval. More
specifically, we propose PARIS, a fully distributed neighbor-
hood prediction framework based on reinforcement learning
techniques that utilize past node trajectory information to
determine the best content distributee for the future. We first
define a probability-based neighborhood prediction model.
We then propose two approaches, namely point-based and
traced-based, that predict the future neighborhood based
on the correlations of the past trajectories. Moreover, we
develop WINTER (WINdow adjusTment with Expanding
and shRinking) algorithm, which can perform adaptive
adjustment during runtime and improve the prediction
accuracy by using the reinforcement learning technique.
In addition, a probability-based metric is developed to
measure the accuracy of prediction. Our approach of data
transfer based on neighbor prediction helps to reduce com-
munication overhead and consequently the overall energy
consumption during data retrieval because the storage nodes
most likely move together.

To evaluate the effectiveness and efficiency of our scheme,
we conducted experiments using mobile wireless networks
simulated based on a city environment and its vicinity in
Germany [6, 7]. By examining two representative scenar-
ios, walking scenario, and vehicular driving scenario, our
experimental results show high-prediction accuracy and low-
computational time when using PARIS, thereby providing
strong evidence of the effectiveness of using data-centric
approach through the prediction of near likely nodes in
mobile wireless applications.

The rest of the paper is organized as follows. We place
our work in the context of the related research in Section 2.
In Section 3, we provide an overview of our problem and
formulate our probability-based neighborhood prediction
model. We next discuss the likelihood of neighborhood
by presenting our two prediction approaches and the new
metric for measuring accuracy prediction in Section 4.
Further, we present the protocols of data transfer and
data retrieval and our adaptive accuracy adjustment using
reinforcement learning under the PARIS framework in
Section 5. We present the experimental evaluation of our
approach in Section 6. Finally, we conclude our work in
Section 7.

2. Related Work

There has been active work on data-centric storage in sensor
networks. In addition to the approaches of global data
storage in which the wireless device data is aggregated to be

stored at external central servers, algorithms of local infor-
mation processing [8], and wide-area data dissemination
[9, 10] are proposed.Reference [8] used signal processing
techniques to collaborate among local nodes for information
processing. References [9, 10] proposed directed diffusion
algorithms that implement in-network aggregation and
allow nodes to access data by name across wireless networks.
Further, recent work is more focused on data-centric storage
[1–3, 5], where the data is stored decentralized by attributes
and types.Reference [1] achieved data-centric storage based
on the GPSR routing algorithm and an efficient peer-to-peer
lookup system.Reference [2] developed schemes for resilient
data-centric storage from the viewpoint of energy savings
and scalability in wireless networks. Whereas the security
and privacy concerns in data-centric storage are addressed
in [3]. Most of these current works only deal with static
sensor networks. In this paper, we study data-centric storage
in mobile wireless networks.

To detect mobility of wireless nodes, [11] used received
signal strength in wireless LAN to detect wireless device
mobility.Reference [12] determined mobility from GSM
traces using different metrics. In [13] signal variance is used
with Hidden Markov Model (HMM) to eliminate oscillations
between the static and mobile states for mobility detection.
Further, [14] proposed to use correlation coefficients on RSSI
traces to detect wireless devices that are moving together.

The works that are most closely related to ours are
[15–17]. A user-centric approach was proposed in [15] for
colocation prediction that is used for media sharing based
on repeating similar journeys in the urban transportation
environment. Unlike [15], our approach does not require
repeated trajectory patterns, and thus is more generic and
can be applied to a broad array of pervasive applications
involving mobile devices. References [16, 17] addressed the
detection of nodes of similar mobility patterns in group
caching in MANET. However, these works do not support
fully distributed models. Further, their work focused on
current neighbors, not the prediction of future ones. Our
work is novel in that we utilize the past node trajectories
to predict the future co-movement of nodes for data-centric
storage in mobile environments.

3. Problem Overview

In this section, we first present our assumptions. We then
provide an overview of PARIS and define our probability
model for neighborhood prediction.

3.1. Assumptions. When considering data-centric mobile
wireless networks, we have the following assumptions.

(i) Mobility. Wireless device are moving, randomly or
in some pattern, in a well-defined area, though the
nodes are not aware of their moving patterns, if
there is any. There are no predefined trajectories for
each node. However, we assume that there exists a
comovement pattern within nodes, that is, group of
nodes may travel together to common destinations.
For example, a group of tourists in New York City



EURASIP Journal on Wireless Communications and Networking 3

may travel to visit the Metropolitan Museum together
and they use their mobile phones to take pictures,
shoot videos, and write multimedia blogs on the way.

(ii) Location-Aware. We assume that the nodes know
their physical locations at all time points during
moving. It is a reasonable assumption because in
many cases the data is useful only if the location of its
source is known. For example, knowing that a crime
occurred, which requires a law enforcement action,
but without knowing where it occurred is useless.
Localization of the mobile nodes can be achieved
through the use of GPS or some other approximates
but less burdensome localization algorithms [18, 19].

(iii) Neighborhood. Each node has a short communication
range and can communicate only with nodes within
its transmission range. We call the nodes in the
transmission range the neighbors. Mobility of wireless
devices may result in the change of the neighbor-
hood. However, we assume that for every node, it has
a stable neighborhood within a period of time. For
example, police officers who carry out the same tasks
are kept in neighborhood while they are on duty.

(iv) Data-centric storage. We assume that the storage is
data-centric, that is, the particular node that stores
a given data object is determined by the object’s
type such as event type [1, 2]. Hence, all data with
the same type will be stored at the same node (not
necessarily the collector node), so that the subsequent
data retrieval requests could be efficiently directed. In
particular, we propose to transfer data of the same
type to a node’s near likely nodes. The subsequent
data queries will reach a collector node first through
routing protocols for mobile wireless networks [20]
and will then be redirected to the corresponding
storage nodes.

3.2. Overview of PARIS. Data-centric approaches provide
low-communication overhead and efficient search, however
applying data-centric mechanisms to mobile environments
brings new challenges. Since mobility of nodes can change
the reachability of nodes and consequently affect the rout-
ing decision and long-term storage capability, data-centric
storage in mobile wireless networks must take mobility into
consideration. In mobile wireless networks, when a node
stores its data on other nodes [1, 2], it is desirable that the
chosen nodes are in the neighborhood in the future, so that
when there come the requests for the data, the collector node
can efficiently redirect the requests to its near likely nodes
that store the data in its neighborhood.

In PARIS, we study how to store and retrieve data
efficiently by making use of neighborhood predication for
data-centric storage in mobile wireless networks. In addition,
PARIS can be easily extended to help in load balancing when
a node exceeds its storage. The main logical components
in PARIS are on-demand data transfer, runtime update of
near likely node (for efficient data retrieval), and adaptive

adjustment through reinforcement learning. By on-demand
data transfer, each collector node calculates its near likely
node only when it needs to transfer its data to another node.
During data retrieval, the collector node is responsible to
redirect the corresponding queries to its near likely node. If
at a later time, the near likely node that carries the data from
a collector node is moving out of the neighborhood of the
collector node, the collector node will run the neighborhood
prediction process again and perform a runtime update
to transfer the data from the storage node to its current
near likely node. As it is only performed at certain time
points, the on-demand data transfer mechanism reduces
both the communication overhead and energy consumption
in the neighborhood prediction procedure. Additionally, the
WINTER algorithm based on the reinforcement learning
technique is developed to adaptively improve the accuracy
of neighborhood prediction in each prediction round. The
details of PARIS will be presented in Section 5.

3.3. Probability Model. Generally, with mobile devices, the
neighborhood may change over time. Some nodes may move
into or move out of the transmission range periodically. To
predict the future neighborhood, we utilize the trajectory of
the mobile devices. We assume the position of the nodes
at each time point is in a 2-dimensional space. We note
that our results can be easily extended to more than two
dimensions. We denote the location of mobile node s at
time t as st(x, y), where x and y denote the x- and y-
coordinates of s at time point t. Then given a time window
W(t1, . . . , tm) that consists of m time points, the trajectory
of node s of W is denoted as T(st1 (x, y), . . . , stm(x, y)). Given
a set of trajectories T {T1, . . . ,Tn} of n nodes, our goal is
to use T to predict the neighborhood of s at a future time
point ti > tm. To achieve this goal, we define a probability
model of prediction that quantifies the likelihood of the
future neighborhood. Since we assume that for every node,
it has a stable neighborhood within a period of time, our
prediction is based on the principle that the nodes that are
not only the neighbors in the past but also moving in the same
direction are highly likely to be neighbors in the near future.
Based on this, we define two probability parameters.

(1) Neighbor probability Prn: it is used to reflect the belief
from the trajectories T that a node s′ is in the same
neighborhood of the node s.

(2) Direction probability Prd: it is used to measure the
likelihood from the trajectories T that two nodes s′

and s are moving in the same direction.

We further define the belief probability that node s′ is in
the neighborhood of s in the future as Prdt expressed by

Prdt = Prn ∗ Prd. (1)

Given the time window W , a collector node s and its
neighbor nodes, if s needs to store its data on its near
likely node, then from its neighbor nodes that have available
storage and store the same type of data that needs to be
transferred from s, s picks the node that is of the maximum
Prdt. Our model can be easily extended to choose k nodes
that are of top-k Prdt.
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(a) X dimension, PCC = 0.96
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Figure 1: Illustration of the x and y coordinates versus time series
for nodes 0 and 442 when they are moving together.

4. Neighborhood Likelihood

In this section, we first explain how to compute the neighbor
probability Prn. We then propose two approaches, namely,
trace-based and point-based, to calculate the direction prob-
ability Prd. We next develop a new metric that measures the
prediction accuracy.

4.1. Neighbor Probability. Given a node s within a time
window W(t1, . . . , tm), for any node s′, let N(s′) = {ti | 1 ≤

i ≤ m, s and s′ are neighbors at time point ti}. Then the
neighbor probability

Prn(s, s′) = |N(s′)|
m

. (2)

Intuitively at more time points that s′ is in the neighborhood
of s in the past, it will be more likely that s′ remains as the
neighbor of s in the future.

4.2. Direction Probability. If two nodes are moving in the
same direction, they should have similar trajectories and
their x- and y-coordinates must follow the similar traces, and
consequently may result in a strong correlation between their
x- and y-coordinates, respectively, and vice versa. Figure 1
shows an example of the coordinates versus time series when
two nodes move together. We observed that the two nodes
have highly-correlated traces in both X and Y dimensions.

Thus, to measure whether two nodes are moving in the
same direction, we use the Pearson correlation coefficient [21].
In general, the Pearson correlation coefficient is a statistical
method that measures the strength and direction of a linear
relationship between two given random variables. More
specifically, given two random variables P = {p1, . . . , pn} and
Q = {q1, . . . , qn}, the Pearson correlation coefficient PCC is
defined as

PCC = 1
n

n∑

i=1

(
pi − P
σP

)(
qi −Q
σQ

)
, (3)

where P (Q, resp.) and σP (σQ, resp.) are the mean and
standard deviation of P and Q. The PCC value ranges from
−1 to +1. Correlation +1/−1 means that there is a perfect
positive/negative linear relationship between P and Q. In
Figure 1, the high PCC value 0.96 for both the X dimension
and the Y dimension shows high correlation between the
coordinates of two nodes that are moving together.

Further, to measure the direction probability, we develop
two schemes, point-based and trace-based, based on the
Pearson correlation coefficient. These two schemes consider
both spatial and temporal changes of nodes in mobile
environments.

4.2.1. Point-Based Scheme. This approach utilizes the mov-
ing direction of the node s and s′ at each time point ti within a
time windowW to determine whether two nodes are moving
together. The key idea is that the collector node computes the
moving directions of the neighbor nodes at all time points in
the time window W and measures the Pearson correlation
coefficients of the moving directions.

Given the node s and its trajectory T(st1 (x, y), . . . ,
stm(x, y)), where sti · x and sti · y are the x and y coordinates
of the node at each time point ti (1 < i ≤ m) respectively, we
define the gradient θi to measure the moving direction at the
time point ti

θi =
sti · y − sti−1 · y
sti · x − sti−1 · x

. (4)

As defined, the gradient quantifies the direction that the node
moves from the time point ti−1 to ti. Figure 2 illustrates an
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Figure 2: An example of direction measurement.

example. Although the gradient θ may not be accurate when
the trajectory between the time points ti−1 and ti is not linear,
we argue that we can always reduce the error by adding
more time points on the nonlinear trajectories, so that the
subtrajectories are close to linear format. For example, as
shown in Figure 2 we can split the non-linear trajectories
between t2 and t3 into smaller units by adding a time point t′2
between t2 and t3, as a result the trajectories between t2 and
t′2 as well as between t′2 and t3 are close to linear.

Given two nodes s and s′, let T and T′ be the trajectories
of s and s′ of the time window W . For both T and T′, the
collector node s computes θi at each time point ti (1 < i ≤
|W|) and put them into two vectors Θ1 and Θ2, with θ from
trajectory T in Θ1 and from T′ in Θ2. It is straightforward
that withm time points inW , there arem−1θs inΘ1 andΘ2.
Finally, we measure the Pearson correlation coefficient of Θ1

andΘ2. If the coefficient is positive, we take it as the direction
probability Prd of node s and s′. Otherwise, we value Prd as
0.

Prd =
⎧
⎨
⎩

PCC(Θ1,Θ2), if PCC(Θ1,Θ2) > 0,

0, otherwise.
(5)

4.2.2. Trace-Based Scheme. In this approach, opposite to the
point-based approach, the collector node does not calculate
the moving direction at each time point. Instead, it measures
the Pearson correlation coefficients of two trajectories. To
be more specific, given two trajectories T and T′ of two
nodes s and s′, first, the collector node s computes the
Pearson correlation coefficient between the x-coordinates of
T and that of T′ and collects the positive coefficients cx.
Similarly, it calculates the Pearson correlation coefficient of
the y-coordinates of T and that of T′. Let the set of positive
coefficients be cy

cx =
⎧
⎨
⎩

PCC
(
TX ,T′X

)
, if PCC

(
TX ,T′X

)
> 0,

0, otherwise,

cy =
⎧
⎨
⎩

PCC
(
TY ,T′Y

)
, if PCC

(
TY ,T′Y

)
> 0,

0, otherwise.

(6)

As illustrated in Figure 1, when two nodes are moving
together, the values of correlation coefficients are high in

both X and Y dimensions. Since the correlation coefficients
on X and Y dimensions are independent, we multiply cx and
cy as the direction probability

Prd = cx ∗ cy. (7)

Moreover, Prd is normalized as needed.

4.3. Measurement of Accuracy of Neighborhood Prediction.
One challenge of data-centric mobile wireless networks is
the efficiency of data retrieval, which highly depends on
the accuracy of neighborhood prediction results. Wrong
prediction results may cause data to be stored on unreachable
nodes and thus incur expensive communication overhead
and consume more energy. Therefore, it is necessary to
measure the accuracy of neighborhood prediction and
evaluate the effectiveness of our prediction schemes. In this
section, we present our new metric Prediction Accuracy in
measuring neighborhood prediction accuracy.

In Prediction Accuracy metric, the time points are split
into two time windows, pastWp and futureWf . The window
of past Wp is used as the “training set” to predict the near
likely nodes, whereas the window of future Wf , is used as the
“test set” to verify the accuracy of the prediction. We choose n
nodes, denoted as S, as the “test participants”. Our accuracy
measurement consists of two steps.

Step 1 (Training). For each node si (1 ≤ i ≤ n) in S, we
find its near likely node s′i that is of the maximum Prdt in the
time window Wp. For n nodes, we collect n such neighbor
nodes and put their Prdt into a vector P. Thus P consists of n
probability values.

Step 2 (Testing). For each near likely neighbor s′i (1 ≤ i ≤ n)
from Step 1, we calculate its Prdt of the windowWf and store
Prdt in a vector Q, which is also a set of n probability values.
Our measurement of accuracy is based on the distance of P
and Q. The smaller the distance is, the more accurate the
prediction result will be.

To measure the distance of two probability distribution
P and Q, our metric of Prediction Accuracy is based on
KL-divergence. KL-divergence is a noncommutative measure
of the difference between two probability distributions in
probability theory and information theory [22]. Specifically,
for probability distributions P and Q, the KL-divergence of
Q from P is defined as

DKL(Q,P) =
∑

i

Qi log
Qi

Pi
. (8)

The smaller the value of DKL is, the more Q is similar to P,
which consequently indicates that our prediction of future
near likely node is more accurate.

Intuitively, for the nodes that are predicted as near likely
neighbors, if in the future window, their belief probability
increases, it indicates that the neighborhood of these nodes
is not changing in the future window and our prediction
correctly captures their neighborhood. On the other hand,
if their probability decreases in the future window, it
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shows that the neighborhood of these nodes is changing
in the future window. Since KL-divergence only shows the
aggregate result of the difference of two probabilities, to
study the prediction error at a more detailed level, we use
Cumulative Distribution Function (CDF). Specifically, given
the probability distributions P from the past window and
Q from the future window, we compute the positive and
negative probability difference vectors PD+ and PD−:

PD+ = {Q[i]− P[i] | Q[i]− P[i] ≥ 0},

PD− = {Q[i]− P[i] | Q[i]− P[i] < 0}.
(9)

The nodes in PD+ (PD−, resp.) are the ones whose probabil-
ities are increasing (decreasing, resp.). We measure CDF of
both PD+ and PD−. Intuitively, the closer the distributions
of PD+ and PD− to the value 0 are, the more accurate the
prediction is.

5. Framework of PARIS for Data Transfer and
Data Retrieval

In this section, we describe the three main logical compo-
nents in PARIS framework, on-demand data transfer, run-
time update of near likely nodes, and adaptive adjustment
through reinforcement learning.

5.1. On-Demand Data Transfer. In PARIS, data transfer
happens on-demand, that is, when a collector node s needs
to transfer its data to other nodes, and the communication
between nodes is only performed at the specific time point.
Thus, the on-demand scheme reduces the communication
overhead and energy consumption incurred from frequent
information exchange. There are two requirements when
choosing the nodes that the data will be transferred to

(i) Following the data-centric requirement, the collector
node picks the neighbor nodes that have not only
sufficient storage but also the matching type of data
that will be transferred.

(ii) If there are multiple nodes that satisfy the first
requirement, the collector node will pick the node
with the largest Prdt.

The on-demand data transfer procedure consists of three
steps.

(1) A collector node s sends a request to all the nodes in
its neighborhood. The request consists of the inquiry
of the allowed data type, the size of the available
storage, and the trajectory of the next m time points
in the time window W . The neighbor nodes reply the
request of s with proper information.

(2) The collector node s collects the answers and picks
the node that satisfies the above two requirements as
the near likely node s′.

(3) The collector node s sends its data to its near
likely node s′, and updates its data track table. The
data track table consists of entries in the format of

(IDXd, IDs′), with each entry used for tracking which
node the data is stored on, so that when there is a
user query for the data, node s can efficiently redirect
the query. The IDs′ is the node identity of the near
likely node that stores data with index IDXd in the
data track table.

5.2. Runtime Update of Near Likely Node. Given the fact
that the estimated near likely node has a belief probability
to be in the neighborhood in the future, it is possible that
when a data query arrives at a future time point, the near
likely node has already moved out of the neighborhood of
the collector node. This will increase the communication
overhead in order to locate the “previous” near likely node
for data retrieval. In order to minimize the communication
overhead, it is desirable to always keep the transferred data in
the neighborhood of the collector node in a mobile wireless
network environment.

We propose runtime update of the near likely node in
PARIS. Usually in wireless networks each node keeps a list
of its neighbors and update the list periodically based on the
communication of beacon packets [23]. Upon each neighbor
update, the node checks its data track table. If a node identity,
which appears in the data track table, has disappeared from
its neighbor list, the node needs to perform a runtime
update to find its current near likely node. To avoid frequent
runtime updates and consequently much update overhead,
it is desirable to look for the current near likely node of the
same data type as the replacement. The following steps will
take place:

(1) The collector node s runs step 1 and 2 from the on-
demand data transfer procedure for the correspond-
ing type of data with IDXd and identifies a new near
likely node s′′.

(2) The collector node s then sends a request to the
previous near likely node s′ and asks s′ to transfer the
data with IDXd to node s′′.

(3) Once the collector node s receives the confirmation
from s′′ that the data transfer is successful, it updates
its data track table by replacing (IDXd, IDs′) with
(IDXd, IDs′′).

A node may be identified as a near likely node for more
than one collector nodes. In PARIS, the near likely node is
stateless, whereas the collector nodes keep a data track table
to maintain the data transfer information. The advantage of
the runtime update of near likely node is that the data is
stored on either the collector node itself or its near likely
nodes. Thereby no flooding messages are needed during
data retrieval, and thus reduce the overall communication
overhead.

5.3. Adaptive Adjustment by Reinforcement Learning. Al-
though runtime update always keeps data close, it may incur
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(1) Let s and s′ be the collector node and its predicted near likely neighbor;
(2) i← 0;
(3) repeat
(4) Let KL1 and KL2 be the KL-divergence measured from time window Wi and Wi+1;
(5) Let opt be the operation (expansion or shrinkage) on time window Wi+2;
(6) if (KL2 < KL1) then
(7) //KL-divergence improves;
(8) if opt == “expansion” then
(9) The size of the next time window |Wi+2| = |Wi+1| + 1; {Expansion; }
(10) else
(11) The size of the next time window |Wi+2| = |Wi+1| − 1; −1; {Shrinkage; }
(12) end if
(13) else
(14) //KL-divergence falls;
(15) if opt == “expansion” then
(16) The size of the next time window |Wi+2| = |Wi+1| − 1;
(17) opt ← “shrinkage”; {Shrinkage; }
(18) else
(19) The size of the next time window |Wi+2| = |Wi+1| + 1;
(20) opt ← “expansion”; {Expansion; }
(21) end if
(22) end if
(23) i← i + 1;
(24) until The time points are exhausted;

Algorithm 1: The WINTER algorithm.

expensive energy consumption and increased communica-
tion overhead if the update is frequent. The reason for such
frequent update is the prediction of near likely neighbors
that is not accurate enough. As shown in Section 4.3, the
prediction accuracy is affected by the configuration of time
windows that are used to collect the past trajectories of
a node. Time windows that are too small cannot capture
the correct neighborhood and cause inaccurate neighbor
prediction, while time windows that are too large will
consume more energy on each neighboring nodes for
collecting trajectory traces and increase the communication
overhead when sending the trajectory traces to the collector
node. Therefore, the appropriate time window will allow
PARIS to be effective for neighborhood prediction.

To improve the neighbor prediction accuracy, we adap-
tively adjust the time windows by applying the reinforcement
learning mechanism from the beginning of the whole
procedure. Reinforcement learning is a machine learning
technique that deals with sequential control problems [24].

Our goal is that according to the current state, that
is, the current neighborhood prediction, determines how
to revise the size of the time window to reach a better
neighborhood prediction in the next round. The revision
of the time windows consists of two operations: expanding,
that is, increasing the window size by one time point, and
shrinking, that is, decreasing the window size by one time
point. The collector node s keeps an observation of the
change of KL-divergence incurred by expansion/shrinkage of
the time window. We say the prediction accuracy falls if the
KL-divergence increases. Otherwise, we say the prediction
accuracy improves. Based on this, we developed an algorithm

based on reinforcement learning, called WINTER (WINdow
adjusTment with Expanding and shRinking), which adap-
tively adjusts the time window size by the following:

(i) If the prediction accuracy falls from time window Wi

to Wi+1, then for time window Wi+2, we “reverse”
the operation, that is, if the operation on Wi+1 is
expansion/shrinkage, we shrink/expand for Wi+2.

(ii) Otherwise, the prediction accuracy improves from
time window Wi to Wi+1. Then we repeat the same
operation on Wi+1 for Wi+2.

After a sequence of expansions and shrinkages, it is
possible that different collector nodes have time windows of
different sizes.

The pseudocode that implements WINTER is shown in
Algorithm 1.

6. Experimental Evaluation

In this section, we describe our experimental methodology
and present the results that evaluate the effectiveness of our
approaches.

6.1. Methodology. We would like to evaluate the feasibility of
our approach in an environment close to real applications
(e.g., status monitoring of patrol officers). Using mobile
wireless networks, we conducted experiments based on
mobile devices generated from a city environment and its
vicinity in Germany [6, 7] as shown in Figure 3. The size of
the area is 25000 m × 25000 m. We created two simulation
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Figure 3: The experimental data sets are generated based on the city and its vicinity in Germany.

scenarios, one is in walking speed of 4 ft/s, and the other
is in vehicular driving speed of 50 ft/s. For the walking
scenario, two data sets, we call small and large, are obtained
using this simulation environment with 1000 and 5000 nodes
generated, respectively, and placed randomly inside the
city.

For the vehicular driving scenario, one data set is created
through the simulation environment with 1000 nodes gener-
ated and placed randomly inside the city. For the duration
of our study, some new nodes may move into the city
environment and some existing nodes may move out the
city environment. There are no pre-defined trajectories for
each node. However, group of nodes may travel together to
common destinations (e.g., the city center). Figure 4 presents
the average number of neighbors when using the small data
set in walking scenario for the duration of our study time,
shown as percentage from 0 to 1, for 600 nodes and 100
nodes, respectively.

The 100 nodes are randomly chosen from 600 nodes.
We observed that the average number of neighbors increases
from a few nodes to around 14 nodes as the study time
moves along, indicating that groups of nodes are gradually
formed and traveling together to the similar destinations.
The vehicular driving scenario has the similar trend as the
walking scenario. This is in line with our co-movement
assumption. Thus, these datasets are suitable for our neigh-
borhood prediction study.

6.2. Metrics. We will utilize the following performance
metrics to evaluate the effectiveness of PARIS in terms of
prediction of near likely nodes.

Prediction Accuracy. As described in Section 4.3, the Predic-
tion Accuracy metric measures the statistical characteristics
of neighborhood prediction based on the Cumulative Dis-
tribution Function (CDF) of the difference of the future
probability Prdt to the past probability Prdt of the near likely
node on top of the KL-divergence. We split our study time to
a past time window for prediction and a future time window
to evaluate our prediction. In the following discussion, we
use the percentage of study time as the measurement of
window size.

We investigate the impact of different window sizes of the
past as well as the future on the prediction accuracy using
both point-based and trace-based schemes.

Time Performance. By measuring the time that each scheme
needs to provide the prediction results, we evaluate
the feasibility of applying these schemes to nodes that
usually have limited computational power and memory.
The Time Performance metric helps to benchmark our
approaches in the simulation environment and further
indicates the possibility to implement them in real wireless
device.



EURASIP Journal on Wireless Communications and Networking 9

7

8

9

10

11

12

13

14

15

0 0.25 0.5 0.75 1

Study time (×100%)

A
ve

ra
ge

n
u

m
be

r
of

n
ei

gh
bo

rs

(a) 600 nodes

7

8

9

10

11

12

13

14

15

0 0.25 0.5 0.75 1

Study time (×100%)

A
ve

ra
ge

n
u

m
be

r
of

n
ei

gh
bo

rs

(b) 100 nodes

Figure 4: Average number of neighbors versus study time when
using the small data set.

6.3. Results

KL-Divergence. We first study the neighborhood prediction
accuracy in our proposed mechanism for both walking and
vehicular speed scenarios. Figure 5 presents values of KL-
divergence versus different past window sizes when fixing the
future window size, whereas Figure 6 presents values of KL-
divergence versus different future window sizes when fixing
the past window size for both point-based as well as trace-
based schemes under the case when the average number of
neighbors is 5.

For the walking speed scenario, we observed small KL-
divergence values that are always less than 0.5. This is
encouraging as the smaller KL-divergence values indicate
that the distribution of the belief probability in the future
is close to the distribution of that in the past. Further,
as shown in Figures 5(a) and 5(b), when fixing the time
window of the future, 0.2 and 0.4 of the total study time,
respectively, as the size of the past time window increases,
the KL-divergence value presents an overall decreasing trend

for the point-based scheme. This means that by using the
point-based scheme, the larger the past window size, the
more accurate the prediction of near likely node can become.
However, for the trace-based scheme, we observed that the
KL-divergence value fluctuates. This is interesting since it
shows that for the trace-based scheme, simply increasing
the past window size does not increase the accuracy, which
indicates that we need both expansion and shrinkage for
adaptive adjustment of window sizes.

On the other hand, when fixing the time window of
the past, 0.2 and 0.4 of the total study time, respectively, as
presented in Figures 6(a) and 6(b), we observed an increasing
trend of the KL-divergence value for both schemes as the
window size of future is increasing when the average number
of neighbors is 5, indicating that the near likely node may
gradually move away from the collector node when the future
is long enough.

We also investigate the neighbor prediction accuracy in
our proposed mechanism for the vehicular driving scenario.
Figures 5(c) and 6(c) present the neighborhood prediction
accuracy in the vehicular-driving scenario. First, similar to
the walking scenario, the values of KL-divergence are less
than 0.5, which indicates that our scheme obtains accurate
prediction accuracy in the vehicular driving scenario as in the
walking scenario. We also observed similar changing trend as
the result of walking scenario.

In particular, as shown in Figure 5(c), when fixing the
future window size to 0.4 of the total study time, as the size
of the past window size increases, the KL-divergence value
presents an overall decreasing trend, which is similar to the
trend in Figure 5(b). While fixing the past window size to 0.4
as shown in Figure 6(c), we also observed similar increasing
trend and KL-divergence value as in Figure 6(b). Further,
the increased amount of the KL-divergence values is always
small (around 0.05). These results indicate that our proposed
schemes are appropriate for different mobility scenarios.

In general, we found that the KL-divergence values of
trace-based scheme is smaller than those using point-based
scheme for both walking and vehicular driving scenarios.
Moreover, for the walking scenario, we observed similar
results when the average number of neighbors increases to
15 and 45. Due to space limitation, the results are omitted.
Therefore, the trace-based scheme has better prediction
accuracy than the point-based scheme.

Further, we compared the values of KL-divergence
between the small and the large data sets in Figure 7. In order
to compare these two different data sets directly, we used the
same transmission range of the nodes in each data set, which
is under 300 m and 600 m, respectively.

We observed similar behavior for both large data set
and small data set as the KL-divergence value presents an
obvious decreasing trend when increasing the past window
size and decreasing the future window size simultaneously.
Furthermore, the KL-divergence values are smaller for the
large data set. This is because there are more nodes in the
large dataset, which form larger neighborhood and thereby
provides better prediction result. In the sequel, due to the
space limit, we will only present the results obtained from
the small data set.
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Figure 5: KL-divergence: fixed future window size; (a) and (b) the future window size is set to 0.2 and 0.4 of the total study time, respectively,
when the average number of neighbors is 5; (c) the future window size is set to 0.4 of the total study time when the average number of
neighbors is 15.

Cumulative Distribution Function (CDF). Turning to study-
ing the CDF of the difference of the future probability Prdt
to the past probability Prdt of the near likely node. Figure 8
presents the CDF of the probability difference for both point-
based and trace-based schemes when the window size of the
future is fixed as 0.2 of the total study time, whereas the
window size of the past changes from 0.2 to 0.4 of the total
study time. We found that for both the positive difference
PD+ and the negative difference PD−, the CDF curve of the
trace-based scheme lies to the left side of the point-based
scheme.

This shows that in terms of neighborhood prediction
accuracy, the trace-based scheme outperforms the point-
based scheme, which is inline with the results obtained from
the KL-divergence.

Moreover, we investigated the prediction accuracy under
the cases of different average number of neighbors, that is,
5, 15, and 45, respectively, in the neighborhood. Figure 9
presents the CDF of PD+ for both of our schemes. We
observed that for each scheme, the curves of different
average number of neighbors are close to each other,
suggesting that the prediction accuracy is not sensitive to
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(b) Walking Scenario: Past window 0.4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.2 0.24 0.32 0.36 0.4 0.44 0.48 0.52 0.56

(Future) study time (×100%)

K
L

di
ve

rg
en

ce

Trace-based
Point-based

(c) Vehicular Scenario: Past window 0.4

Figure 6: KL-divergence: fixed past window size; (a) and (b) the past window size is set to 0.2 and 0.4 of the total study time, respectively,
when the average number of neighbors is 5; (c) the past window size is set to 0.4 of the total study time when the average number of neighbors
is 15.

different average number of neighbors. These results are
very encouraging as it indicates that given a prediction
scheme the prediction accuracy only relies on the window
size.

Reinforcement Learning. We next examine the effects of rein-
forcement learning on prediction accuracy using WINTER
algorithm. Figure 10 presents the expansion/shrinkage of the
prediction window (i.e., the past window) according to the
obtained KL-divergence value. In Figure 10(a), we observed
that when fixing the future testing window to 0.12, the pre-
diction window size is adjusted adaptively based on the KL-
divergence values; when the KL-divergence value decreases
from 0.043 to 0.02, the size of the prediction window expands

from 0.12 to 0.2, while the prediction window shrinks from
0.2 to 0.08 when the KL-divergence value increases from
0.02 to 0.039. We observed the similar window adjustment
behavior in Figure 10(b). Further, we found that by adaptive
adjustment, the KL-divergence values are always less than
0.05 (even less than 0.016 in Figure 10(b)). These results are
encouraging as it indicates that our approach of adaptive
adjustment through reinforcement learning is effective in
improving prediction accuracy during runtime.

We further investigate the behavior of adaptive adjust-
ment through reinforcement learning by doubling the study
time. Figure 11 presents how the KL-divergence values
change during the expansion/shrinkage of the prediction
window. First, we observed that the KL-divergence values



12 EURASIP Journal on Wireless Communications and Networking

0

0.1

0.2

0.3

0.4

0.5

(0.2, 0.8) (0.5, 0.5) (0.8, 0.2)

(Past, future) study time (×100%)

K
L

di
ve

rg
en

ce

Trace-based, small dataset 300
Trace-based, large dataset 300
Point-based, small dataset 300
Point-based, large dataset 300

(a) Transmission range 300 m

0

0.1

0.2

0.3

0.4

0.5

(0.2, 0.8) (0.5, 0.5) (0.8, 0.2)

(Past, future) study time (×100%)

K
L

di
ve

rg
en

ce

Trace-based, small dataset 600
Trace-based, large dataset 600
Point-based, small dataset 600
Point-based, large dataset 600

(b) Transmission range 600 m

Figure 7: Comparison of KL-divergence between the small and the
large data sets in walking scenario.

are always less than 0.05. This proves the effectiveness of
our adaptive adjustment approach. Second, we observed that
although the study time in both Figures 11(a) and 11(b)
is scaled from 0 to 1, the similar window size adjustment
behavior presents as with shorter study time (Figure 10).
For example, in Figure 11(a), when fixing the size of the
future testing window as 0.12, when the KL-divergence value
increases from 0.02 to 0.038, the size of the prediction
window shrinks from 0.12 to 0.08, while the prediction
window expands from 0.08 to 0.16 when the KL-divergence

value decreases from 0.038 to 0.022. This demonstrates that
our adaptive adjustment approach through reinforcement
learning works in larger time windows as well.

Time Performance. Figure 12 presents the comparison of
time measurements under various setups including different
average number of neighbors and various window sizes for
both small and large data sets. We found that the time
to perform neighborhood prediction is in the order of
milliseconds for both schemes.

We observed that the point-based scheme runs at about
two times faster than the trace-based scheme constantly
under different average number of neighbors and various
window sizes. This is because the trace-based scheme needs
to calculate correlation coefficients for both X and Y
dimensions, whereas the point-based scheme only calculates
the correlation coefficient for gradient. Further, the time
measurements of the large data set are also in the order
of milliseconds as shown in Figure 12(b). This indicates
that even when a node has large number of neighbors, our
schemes can efficiently predict the near likely nodes.

Communication Overhead. Next, we measure the commu-
nication overhead incurred by collecting the trajectory
information from a collector’s neighbors. Let us consider the
transmission packets of 512 bytes [25]. We assume that each
trajectory record consists of a pair of (x, y) coordinates and a
timestamp, each of float type. In other words, each trajectory
record consists of 12 bytes. Therefore, one transmission
packet can contain at most 42 trajectories. If one node
records its trajectory every Y seconds, then the trajectory
information of X seconds can be stored in �X/42Y� packets.

Moreover, we assume that for every F seconds, to
apply the neighborhood prediction mechanism, the collector
node needs to collect the trajectory of X seconds from
its N neighbors. Therefore, there are �X/42Y�FN packets
transmitted to the collector node from its neighbors. Assume
the collector node needs to transfer its data of size Z to
the storage node within these F seconds. Then the size of
the transmission packets needed for collecting trajectory
information is �X/42Y�(N/Z) of the data sent to the
identified near likely node by the collector node. We assume
that �X/42Y�(N/Z) is less than 1.

Based on our analysis, we can see that both the packet
size �X/42Y�FN and the percentage of transmission packets
�X/42Y�(N/Z) are not affected by the moving speed of the
mobile nodes. Thus, the communication overhead incurred
from the trajectory information exchange in our approach is
not sensitive to the mobility model.

We further study how the overhead for collecting
trajectory information varies with the changing amount
of data size under different network sizes. The results
are shown in Figure 13. It presents that the overhead is
negligible compared with the size of the transferred data. In
particular, Figure 13(a) presents the results with the number
of neighbors N = 5, the trajectories of X = 60, 120, 180
of seconds to be collected, the data size Z varying from
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Figure 8: Cumulative Distribution Function (CDF) of the difference of the future probability Prdt to the past probability Prdt of the near
likely node under the case of the average number of neighbors is 15 in walking scenario.

1 MB to 5 MB, and each node recording its trajectories
every Y = 2 seconds. We observed that small overhead
fraction values in percentage that are always less than 0.7%.
Specifically, it is as small as 0.05% for the data size of 5 MB
and trajectory of 60 seconds. Furthermore, we noticed that
the larger the data size is, the smaller the fraction will be. The
same trend is also observed in Figure 13(b), which presents
a larger network with 15 neighbors. These results showed
that the communication overhead incurred by collecting the
trajectory information is negligible compared with the total
size of the transferred data.

Furthermore, we realized that there exists a tradeoff
between the communication overhead and the frequency of

data update. The higher frequency the data is updated, the
higher prediction accuracy may be achieved, however, higher
communication overhead can occur. We note that in our
scheme the data update is performed on-demand, and thus
the frequency of data update can be configured.

Finally, we study the communication overhead incurred
in terms of hop counts during data retrieval. Figure 14
presents the number of hops traveled with and without using
the scheme we proposed over the study time. We found that
under our proposed scheme the number of hops traveled
for data retrieval is less than half of that without using it,
indicating that using our scheme can significantly reduce the
communication overhead and thus reduce the overall energy
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Figure 9: Impact of the number of neighbors: Cumulative Dis-
tribution Function (CDF) of the positive difference of the future
probability Prdt to the past probability Prdt of the near likely node
under different average number of neighbors in walking scenario: 5,
15, and 45.

consumption of wireless devices. We will quantify the savings
of energy consumption in our future work.

In summary, our experimental evaluation in prediction
accuracy, time performance, and communication overhead
is highly encouraging as they clearly indicate that our pre-
diction schemes of near likely nodes can not only effectively
but also efficiently perform future neighborhood prediction.
Our results also point out that there is a tradeoff between the
prediction accuracy and the time efficiency when choosing
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Figure 10: Reinforcement learning using WINTER algorithm in
walking scenario: (a) initial prediction window size is set to 0.08 and
the future testing window size is set to 0.12; (b) initial prediction
window size is set to 0.12 and the future testing window size is set
to 0.08.

prediction schemes—the scheme that provides better predic-
tion accuracy runs slower.

7. Conclusion

The development of data-centric networks has enabled
efficient data dissemination and access when the increasing
large volume of data is spread across the networks. New
challenges arise when there is a demand of implementing
data-centric approaches in mobile wireless applications.
In this paper, we proposed PARIS, a fully distributed
framework based on reinforcement learning technique for
data-centric storage in mobile wireless networks. PARIS is
based on neighborhood prediction and utilizes the past node
trajectory information to predict the near likely node that
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Figure 11: Reinforcement learning using WINTER algorithm with
double study time in walking scenario: (a) initial prediction window
size is set to 0.04 and the future testing window size is set to 0.06;
(b) initial prediction window size is set to 0.06 and the future testing
window size is set to 0.04.

stores the same type of data and will most likely to remain
in the neighborhood in the near future. These near likely
nodes are chosen as the content distributee so that the later
data retrieval is only needed in the neighborhood and is
thus more efficient in terms of communication overhead
and energy consumption. We proposed two schemes to
predict the future neighborhood, point-based and trace-
based. We derived a probability-based metric to measure
the accuracy of prediction. Further, we developed WINTER
(WINdow adjusTment with Expanding and shRinking)
algorithm to adaptively improve the prediction accuracy
using the reinforcement learning technique. Additionally, we
derived a probability-based metric to measure the accuracy
of prediction. Our results using simulation data generated
from mobile wireless networks in a city environment show
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Figure 12: Comparison of time measurements between point-
based and trace-based schemes in walking scenario under different
conditions: (a) different average number of neighbors using the
small data set; (b) comparison between small and large data sets.

that our prediction schemes of near likely nodes can both
effectively as well as efficiently perform future neighborhood
prediction.

There are several avenues for future work. Since it is
possible that multiple collector nodes choose the same nodes
as the near likely nodes, it is interesting to study how to
balance the load of the “popular” near likely nodes with
others based on data types. Further, as energy-efficiency
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Figure 13: The percentage of the trajectory information exchange
over the data need to be transferred to the collector node’s near
likely user under various data size in the walking scenario for two
network sizes: (a) neighbors are 5; (b) neighbors are 15.

being an important feature of wireless networks, we want to
quantify the energy consumption model in PARIS.
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