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Recently, it has been noted that localization algorithms that use signal strength are susceptible

to noncryptographic attacks, which consequently threatens their viability for sensor applications.

In this work, we examine several localization algorithms and evaluate their robustness to attacks

where an adversary attenuates or amplifies the signal strength at one or more landmarks. We study

both point-based and area-based methods that employ received signal strength for localization,

and propose several performance metrics that quantify the estimator’s precision, bias, and error,

including Hölder metrics, which quantify the variability in position space for a given variability

in signal strength space. We then conduct a trace-driven evaluation of a set of representative

algorithms, where we measured their performance as we applied attacks on real data from two

different buildings. We found the median error degraded gracefully, with a linear response as a

function of the attack strength. We also found that area-based algorithms experienced a decrease

and a spatial-shift in the returned area under attack, implying that precision increases though bias

is introduced for these schemes. Additionally, we observed similar values for the average Hölder

metric across most of the algorithms, thereby providing strong experimental evidence that nearly

all the algorithms have similar average responses to signal strength attacks with the exception of

the Bayesian Networks algorithm.
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1. INTRODUCTION

Accurately localizing sensor nodes is a critical function for many higher level
applications such as health care monitoring, wildlife animal habitat tracking,
emergency rescue and recovery, location-based access control, and location-
aware content delivery. Over the past few years, many localization algorithms
have been proposed to localize wireless devices and sensors and provide location
information to new classes of location-oriented applications. Out of the myriad
of localization methods, algorithms that use received signal strength (RSS) as
the basis of localization are very attractive options as using RSS allows the local-
ization system to reuse the existing communication infrastructure, rather than
requiring the additional cost needed to deploy specialized localization infras-
tructure, such as ceiling-based ultrasound, GPS, or infrared methods [Hazas
and Ward 2003; Priyantha et al. 2000; Savvides et al. 2001]. In particular, all
commodity radio technologies, such as 802.11, 802.15.4, and Bluetooth provide
RSS values associated with packet reception, and thus localization services can
easily be built for such systems. Further, RSS-based localization is attractive
as the techniques are technology-independent: an algorithm can be developed
and applied across different platforms, whether 802.11 or Bluetooth. In ad-
dition, it provides reasonable accuracy with median errors of one to five me-
ters [Elnahrawy et al. 2004]. However, as more location-dependent services are
deployed, they will increasingly become tempting targets for malicious attacks.
Adversaries may alter signal strength measurements for the purpose of access-
ing services that are based on location information (e.g. WLAN access may only
be granted to devices inside of a building.).

Unlike traditional systems, the localization infrastructure is sensitive to a
variety of attacks, ranging from conventional to noncryptographic, that can
subvert the utility of location information. Conventional attacks, where an ad-
versary injects false messages, can be isolated and protected against using
traditional cryptographic methods, such as authentication. However, there is
a completely orthogonal set of attacks that are noncryptographic, where the
measurement process itself can be corrupted by adversaries. Unfortunately,
these noncryptographic attacks cannot be addressed by traditional security
services. Thus, it is desirable to study the impact of these attacks on localiza-
tion algorithms and explore methods to detect and further to eliminate these
attacks from the network. Although there has been recent research on securing
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localization [Brands and Chaum 1994; Capkun and Hubaux 2005; Capkun and
Hubaux 2006; Li et al. 2005; Liu et al. 2005; Sastry et al. 2003], to date there
has been no study on the robustness of the existing generation of RSS-based
localization algorithms to physical attacks.

Rather than jumping to the immediate conclusion that all RSS-based local-
ization systems are vulnerable, we believe that a thorough performance eval-
uation of existing RSS-based localization schemes is warranted. Such an eval-
uation would represent a valuable contribution to a wireless sensor network
designer as it would help drive protocol decisions, and allow the engineer to
decide whether more complicated secure localization algorithms are truly nec-
essary. In this article, we expand on our study [Chen et al. 2006b] and detail an
investigation into the susceptibility of a wide range of signal strength localiza-
tion algorithms to attacks on the Received Signal Strength (RSS). Specifically,
we examine the response of several localization algorithms to unanticipated
power losses and gains—attenuation and amplification attacks. In these at-
tacks, the attacker modifies the RSS of a sensor node or landmark, for exam-
ple, by placing an absorbing or reflecting material around the node or land-
mark. Notably, we expand the set of attack scenarios to include amplification
or attenuation attacks on combinations of landmarks, as well as analyze the
results of simultaneous amplification and attenuation on multiple landmarks.
We investigate both point-based and area-based algorithms that utilize RSS to
perform localization. In order to evaluate the robustness of these algorithms,
we provide a generalized characterization of the localization problem, and then
present several performance metrics suitable for quantifying performance, in-
cluding estimator angle bias, estimator distance error, and estimator precision.
Additionally, an essential contribution of our work is the introduction of a new
family of localization performance metrics, which we call Hölder metrics. These
metrics quantify the susceptibility of localization algorithms to perturbations
in signal strength readings. We use worst-case and average-case versions of
the Hölder metric, which describe the maximum and average variability as
a function of changes in the RSS. We then experimentally evaluate the per-
formance of a wide variety of localization algorithms after applying attenua-
tion and amplification attacks to real data measured from two different office
buildings.

Using experimentally observed localization performance, we found that the
errors for a wide variety of algorithms scaled with surprising similarity un-
der attack. The single exception was the Bayesian Networks algorithm, which
degraded slower than the others in response to attacks against a single land-
mark and was attack resistant when simultaneously localizing multiple devices
without using training data under all-landmark attacks. In addition to our ex-
perimental observations, we found a similar average-case response of the al-
gorithms using our Hölder metrics. However, we observed that methods which
returned an average of likely positions had less variability and are thus less
susceptible than other methods.

We also observed that all algorithms, except Bayesian Networks without
using training data, degraded gracefully, experiencing linear scaling in local-
ization error as a function of the amount of loss or gain (in dB) introduced by
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an attack. This observation applied to various statistical descriptions of the
error, led us to conclude that no algorithm collapses in response to an attack.
This is important because it means that, for all the algorithms we examined,
there is no tipping point at which an attacker can cause gross errors. In par-
ticular, we found the mean error of most of the algorithms for both buildings
scaled between 1.3–1.8 ft/dB when all the landmarks were attacked simulta-
neously, and 0.5–0.8 ft/dB when a single landmark was attacked. Additionally,
the performance of the mean response of algorithms with multiple landmarks
under attack is between the all-landmark attack and the single landmark at-
tack, which scaled at 0.4–1.4 ft/dB. Further we observed that mixed attacks
with simultaneous attenuation and amplification cause the mean response of
algorithms to move faster, ranging from 0.2–2.3 ft/dB. More powerful effects
were witnessed when the mixed attack was applied to landmarks that were
further apart from each other. We also showed experimentally that RSS can be
easily attenuated by 15 dB, and that, as a general rule of thumb, very simple
signal strength attacks can lead to localization errors of 20–30 ft.

Finally, we conducted a detailed evaluation of area-based algorithms as this
family of algorithms returns a set of potential locations for the transmitter.
Thus, it is possible that these algorithms might return a set with a larger area
in response to an attack and could have less precision (more uncertainty) under
attack. However, we found all three of our area-based algorithms shifted the
returned areas rather than increasing the returned area. Further, one of the
algorithms, the Area Based Probability (ABP) scheme, significantly shrank the
size of the returned area in response to very large changes in signal strength.

The rest of this article is organized as follows. We begin, in Section 2, by giving
an overview of the algorithms used in our performance study and discuss how
signal strength attacks can be performed in Section 3. In Section 4, we provide
a formal model of the localization problem as well as introduce the metrics
that we use in this article. We then examine the performance of the algorithms
through an experimental study in Section 5, and discuss the Hölder metrics for
these algorithms in Section 6. We wrap up our article by providing a discussion
of related work in Section 7. Finally, we conclude in Section 8.

2. LOCALIZATION ALGORITHMS

Signal strength is a common physical property used by a widely diverse set of
algorithms. For example, most fingerprinting approaches utilize the RSS, for
example, Bahl and Padmanabhan [2000] and Battiti et al. [2002], and many
multilateration approaches [Madigan et al. 2005] use it as well. Although these
algorithms provide several-meter level accuracy, using the RSS is an attractive
approach, because the existing wireless infrastructure can be reused—this fea-
ture presents a tremendous cost savings over deploying localization-specific
hardware. In this article we thus focus on localization algorithms that employ
signal strength measurements. In this section, we provide an overview of a
representative set of algorithms selected for conducting performance analysis
under attack. These algorithms use either deterministic or probabilistic meth-
ods for location estimation.
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There are several ways to classify localization schemes that use signal
strength: range-based schemes, which explicitly involve the calculation of dis-
tances to landmarks; and RF fingerprinting schemes whereby a radio map is
constructed using prior measurements, and a device is localized by referenc-
ing this radio map. In this work, we focus on indoor signal-strength-based lo-
calization algorithms utilizing these approaches. We can further break down
the algorithms into two main categories: point-based methods, and area-based
methods.

2.1 Point-Based Algorithms

Point-based methods return an estimated point as a localization result. Here
we describe a few representative point-based schemes for our study.

RADAR (R1). A primary example of a point-based method is the RADAR
scheme [Bahl and Padmanabhan 2000]. In R1, multiple base stations are de-
ployed to provide overlapping coverage of an area, such as an office building.
During set up, a mobile host with known position broadcasts beacons periodi-
cally, and the signal strength readings are measured at a set of fixed landmarks.
Collecting together the averaged signal strength readings from each of the land-
marks for different transmitter locations provides a radio map. After training,
localization is performed by measuring a wireless device’s RSS at each land-
mark, and the vector of RSS values is compared to the radio map. The record in
the radio map whose signal strength vector is closest in the Euclidean sense to
the observed signal strength vector is declared to correspond to the location of
the transmitter. Variations of RADAR, such as Averaged RADAR (R2), which
returns the average of the closest two fingerprints and Gridded RADAR (GR),
which uses the Interpolated Map Grid (IMG) as a set of additional fingerprints
over the basic RADAR have been proposed in Elnahrawy et al. [2004].

Highest Probability (P1). The P1 method uses a probabilistic approach by
applying the statistical Bayes’ rule to return the point with the highest proba-
bility in the preconstructed radio map as the location estimation result [Roos
et al. 2002]. There are variations of Highest Probability. Averaged Highest Prob-
ability (P2) returns the midpoint of the top two training fingerprints. Like GR,
Gridded Probability (GP) uses fingerprints based on an IMG [Elnahrawy et al.
2004].

2.2 Area-Based Algorithms

On the other hand, area-based algorithms return a most likely area in which
the true location resides. One of the major advantages of area-based methods
compared to point-based methods is that they return a region, which has an
increased chance of capturing the transmitter’s true location. We study three
area-based algorithms [Elnahrawy et al. 2004; Madigan et al. 2005], two of
them, Simple Point Matching (SPM) and Area Based Probability (ABP), use an
Interpolated Map Grid (IMG) and perform scene matching (fingerprint match-
ing) for localization; and the other, Bayesian Networks (BN), is a multilateration
algorithm.

ACM Transactions on Sensor Networks, Vol. 5, No. 1, Article 2, Publication date: February 2009.



2:6 • Y. Chen et al.

Simple Point Matching (SPM). In SPM, the floor is divided into small tiles.
The strategy behind SPM is to find a set of tiles that fall within a threshold of
the RSS for each landmark independently, then return the tiles that form the
intersection of each landmark’s set. We define the threshold as:

si ± q, (1)

where si is the expected value of the RSS reading from Landmark i, and q is an
expected noise level. One way to choose q is to use the maximum of the standard
deviation σ with:

σ = max{σi j ; i ∈ {1..number of landmarks}, j ∈ {1..number of points}}. (2)

SPM [Elnahrawy et al. 2004] is an approximation of the Maximum Likelihood
Estimation (MLE) method.

Area Based Probability (ABP). ABP returns a set of tiles bounded by a prob-
ability that the transmitter is within the returned tile set. The probability is
called the confidence, α, and is adjustable by the user. ABP assumes the dis-
tribution of RSS for each landmark follows a Gaussian distribution with mean
as the expected value of RSS reading vector, s. The Gaussian random variable
from each landmark is independent. ABP then computes the probability of the
transmitter being at each tile Li, with i = 0 . . . L, on the floor using Bayes’ rule:

P (Li | s) = P (s | Li) × P (Li)

P (s)
. (3)

Given that the transmitter must be at exactly one tile, satisfying
∑L

i=1 P (Li |
s) = 1, ABP normalizes the probability and returns the most likely tiles up to
its confidence α [Elnahrawy et al. 2004].

Bayesian Networks (BN). BN localization is a multilateration algorithm
that encodes the signal-to-distance propagation model into the Bayesian Graph-
ical Model for localization [Madigan et al. 2005]. In BN, the overall joint density
of x ∈ X , where x is a random variable, only depends on the parents of x, de-
noted pa(x):

p(X ) =
∏

x∈X

p(x | pa(x)). (4)

Once p(X ) is computed, the marginal distribtution of any subset of the vari-
ables of the network can be obtained as it is proportional to the overall joint
distribution.

Figure 1 presents two Bayesian Network algorithms, M1 and M2, that we
used for our analysis. Each rectangle is a plate, and shows a part of the network
that is replicated; in our case, the nodes on each plate are repeated for each of
the n landmarks whose locations are known. The vertices X and Y represent
location; the vertex Si is the RSS reading from the ith landmark; and the
vertex Di represents the Euclidean distance between the location specified by
X and Y , and the ith landmark. The value of Si follows a signal propagation
model Si = bi0 + bi1 log Di, where bi0, bi1 are the parameters specific to the
ith landmark. The distance Di =

√
(X − xi)2 + (Y − yi)2 in turn depends on
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Fig. 1. Bayesian Networks localization algorithm: Bayesian Graphical Models using plate

notation.

the location (X , Y ) of the measured signal and the coordinates (xi, yi) of the
ith landmark. The networks model noise and outliers by modeling the Si as
a Gaussian distribution around the aforementioned propagation model, with
variance τi:

Si ∼ N (bi0 + bi1 log Di, τi). (5)

The initial parameters (bi0, bi1, τi) of the model are unknown; usually the train-
ing data is used to adjust the specific parameters of the model according to
the relationships encoded in the network. Through Markov Chain Monte Carlo
(MCMC) simulation, BN returns the sampling distribution of the possible lo-
cations of X and Y as the localization result.

M1 utilizes a simple Bayesian Network model, as depicted in Figure 1(a),
and requires location information in the training set in order to give good lo-
calization results. The M2 model is hierarchical as shown in Figure 1(b), by
making the coefficients of the signal propagation model have common parents.
The BN M2 algorithm can localize multiple devices simultaneously with no
training set, leading to a zero-profiling technique for location estimation.

The algorithms we have described in this section are summarized in Table I.
Although there are a variety of other signal-strength-based localization algo-
rithms that may be studied, we believe that our results are general and can be
applied to other point-based and area-based methods.

3. CONDUCTING SIGNAL STRENGTH ATTACKS

In this section, we study the feasibility of conducting signal strength attacks.
We first discuss the possible attacks on signal strength. We then provide exper-
imental results for signal strength going through various materials. Finally,
we derive an attack model for our performance analysis of the robustness of
localization algorithms.
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Table I. Algorithms Under Study

Algorithm Abbreviation Description

Area-Based

Simple Point Matching SPM Maximum likelihood matching of

the RSS to an area using thresholds.

Area Based Probability ABP-α Bayes rule matching of the RSS

to an area probabilistically bounded by

the confidence level α%.

Bayesian Network (M1, M2) BN Returns the most likely area

using a Bayesian network approach.

Point-Based

RADAR R1 Returns the closest record in the

Euclidean distance of signal space.

Averaged RADAR R2 Returns the average of the top

2 closest records in the signal map.

Gridded RADAR GR Applies RADAR using an interpolated

grid signal map.

Highest Probability P1 Applies maximum likelihood estimation

to the received signal.

Averaged Highest Probability P2 Returns the average of the top 2

likelihoods.

Gridded Highest Probability GP Applies likelihoods to an interpolated

grid signal map.

3.1 Signal Strength Attacks

The first step to tackle a security problem is to put oneself in the role of the
adversary and attempt to understand the attacks. To attack signal-strength
based localization systems, an adversary must attenuate or amplify the RSS
readings. This can be done by applying the attack at the transmitting device,
for example simply placing foil around the 802.11 card; or by directing the
attack at the landmarks. For example, we may steer the lobes and nulls of an
antenna to target selected landmarks. A broad variety of attenuation attacks
can be performed by introducing materials between the landmarks and sensors
Li et al. [2005].

In order to support the claim that physical attacks on received signal strength
are feasible and capable of significantly affecting the results of a localization
algorithm, we first examined the possibility of signal strength attacks. Next,
we report results of actual experiments to quantify the effectiveness of various
ways of attenuating/amplifying signal strength.

3.2 Experimental Results of Attacks

Our experiments were performed in our laboratory on the third floor of the
CoRE building at Rutgers University, as shown in Figure 4(a). There are four
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Fig. 2. Signal strength when going through a barrier.

landmarks deployed on the third floor of CoRE. We measured the RSS of beacon
signals coming from each of them. The RSS readings were collected using a
laptop with an Orinoco Silver wireless card, using iwlist to sample the signal
strength. In order to mitigate the effect of fluctuations, we collected samples
once every second for 10 minutes, and averaged the signal strength over 600
samples.

As noted earlier, an adversary may attack the signal strength by attenuating
or amplifying the RSS readings. This can be done either at the receiver or at
the transmitter. Our aim is to find the results of power loss in dB by simple
attacks. Therefore, in the experiments, we placed various obstruction materi-
als close to the laptop’s wireless card and measured the RSS values from each
landmark at the laptop. The following obstructions were used: a thin book, a
thick book, a layer of metal foil, three layers of foil (referred to as more foil), a
mug filled with water (referred to as water), a glass mug (referred to as glass),
a metal cabinet (referred to as metal), and a human body. These materials are
easy to access and attacks utilizing these kind of materials can be simply per-
formed with low cost. The original signal strength values, together with the
signal strength measurements in the presence of these objects, are provided
in Figure 2. The points represent the measured data from experimental re-
sults for various materials, while the lines are the linear least-squares fitting.
The results are intended to show the feasibility of using such materials for
attacks. As we would expect, highly attenuating materials such as the metal
box or foil have a large impact on signal strength, whereas other materials do
not affect the signal much. A more comprehensive study of propagation loss
through common materials can be found in Wilson [2002]. We note that more
powerful attenuation loss is possible by using more advanced materials (such as
RF-absorptive carbon fabric). Finally, we note that these results also imply that
amplification is possible by removing a barrier (e.g. a door) of the corresponding
material or through antenna-based methods.
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3.3 Attack Model

Based upon the results in Figure 2, we further see that there is a linear re-
lationship between the unattacked signal strength and the attacked signal
strength in dB for various materials. The linear relationship implies that there
is an easy way for an adversary to perform and control the effect of an attack
on the observed signal strength by appropriately selecting different materi-
als. Specifically, we envision that an adversary may suitably introduce and/or
remove barriers of appropriate materials so as to attenuate and amplify the
signal strength readings at one or more landmarks. Due to the observed lin-
ear relationship illustrated in Figure 2, we refer to this as the linear attack
model.

In the rest of this article, we will use the linear attack model to describe the
effect of an attack on the RSS readings at one or more landmarks. The resulting
attacked readings are then used to study the consequent effects on localization
for the surveyed algorithms. In particular, in this study, we apply our attacks
to individual landmarks, which might correspond to placing a barrier directly
in front of a landmark, as well as to the entire set of landmarks, which corre-
sponds to placing a barrier around the transmitting device. Similar arguments
can be made for amplification attacks, whereby usually barriers are removed
between the source and receivers. Moreover, we apply attenuation, amplifica-
tion, or a mixture of simultaneous attenuation and amplification attacks to
multiple landmarks and study the performance of localization algorithms. The
broad collection of our attack scenarios has covered the set of possibilities that
an adversary could attempt to accomplish. Although there are many different
and more complex signal strength attack methods that can be used, we believe
their effects will not vary much from the linear signal strength attack model
we use in this article, and note that such sophisticated attacks could involve
much higher cost to perform.

4. MEASURING ATTACK SUSCEPTIBILITY

The aim of a localization attack is to perturb a set of signal strength readings in
order to have an effect on the localization output. When selecting a localization
algorithm, it is desirable to have a set of metrics by which we can quantify
how susceptible a localization algorithm is to varying levels of attack by an
adversary. In this section, we shall provide a formal specification for an attack,
and present several measurement tools for quantifying the effectiveness of an
attack.

4.1 A Generalized Localization Model

In order to begin, we need to specify a model that captures a variety of RF-
fingerprinting localization algorithms. Let us suppose that we have a domain
D in two-dimensions, such as an office building, over which we wish to localize
transmitters. Within D, a set of n landmarks has been deployed to assist in
localization. A wireless device that transmits with a fixed power in an isotropic
manner will cause a vector of n signal strength readings to be measured by the
n landmarks. In practice, these n signal strength readings are averaged over
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a sufficiently large time window to remove statistical variability. Therefore,
corresponding to each location in D, there is an n-dimensional vector of signal
readings s = (s1, s2, . . . , sn) that resides in a range R.

This relationship between positions in D and signal strength vectors defines
a fingerprint function F : D → R that takes our real world position (x, y) and
maps it to a signal strength reading s. F has some important properties. First, in
practice, F is not completely specified, but rather a finite set of positions (x j , y j )
is used for measuring a corresponding set of signal strength vectors s j . Addi-
tionally, the function F is generally one-to-one, but is not onto. This means that
the inverse of F is a function G that is not well-defined: there are holes in the n-
dimensional space in which R resides for which there is no well-defined inverse.

It is precisely the inverse function G, though, that allows us to perform
localization. In general, we will have a signal strength reading s for which there
is no explicit inverse (e.g. perhaps due to noise variability). Instead of using G,
which has a domain restricted to R, we consider various pseudo-inverses Gal g
of F for which the domain of Galg is the complete n-dimensional space. Here, the
notation Galg indicates that there may be different algorithmic choices for the
pseudo-inverse. For example, we shall denote GR to be the RADAR localization
algorithm. In general, the function Galg maps an n-dimensional signal strength
vector to a region in D. For point-based localization algorithms, the image of
Galg is a single point corresponding to the localization result. On the other hand,
for area-based methods, the localization algorithm Galg produces a set of likely
positions.

An attack on the localization algorithm is a perturbation to the correct n-
dimensional signal strength vector s to produce a corrupted n-dimensional vec-
tor s̃. Corresponding to the uncorrupted signal strength vector s is a correct
localization result, p = Galg(s), while the corrupted signal strength vector pro-
duces an attacked localization result p̃ = Galg(s̃). Here, p and p̃ are set-valued
and may either be a single point or a region in D.

4.2 Attack Susceptibility Metrics

We wish to quantify the effect that an attack has on localization by relating
the effect of a change in a signal strength reading, s, to the resulting change
in the localization result, p. We shall use p0, to denote the correct location
of a transmitter, p, to denote the estimated location (set) when there is no
attack being performed, and p̃ to denote the position (set) returned by the
estimator after an attack has affected the signal strength. Figure 3 illustrates
the relationship between the true location and the estimated locations. There
are several performance metrics that we will use:

—Estimator angle bias. The perturbation on the signal strength vector caused
by an attack will result in the variability of location estimation in the physical
space. We want to investigate the bias along the angular dimension. That
is, if we plot the relative error position in polar coordinates, for an unbiased
estimator the error would have an equal probability of falling along any an-
gle. However, when attacking a single landmark, we may expect an angular
bias to be introduced. The estimation angle bias is studied by calculating the
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Fig. 3. Interpretation of distances in location estimation.

estimated position for different experimental trials, and comparing these re-
sults, in a spatial sense, to the true position. An angularly-unbiased algorithm
should uniformly cover the 360 degrees around the true location. For area-based
methods, we replace p̃, which is a set, with its median (along the x and y di-
mensions separately) to get a point. The angular bias is an important metric
since it can serve as an indication as to whether an attacker can skew the lo-
calization result in a specific direction—algorithms with more angular bias are
more skewable and hence worse choices for deployment since an adversary can
use this knowledge to its advantage.

—Estimator distance error. An attack will cause the magnitude of p0 − p̃ to
increase. For a particular localization algorithm Galg, we are interested in the
statistical characterization of ‖p0 − p̃‖ over all possible locations in the build-
ing. The characterization of ‖p0 − p̃‖ depends on whether a point-based method
or an area-based method is used, and can be described via its mean and distri-
butional behavior. For a point-based method, we may measure the cumulative
distribution (cdf) of the error ‖p0 − p̃‖ over the entire building. For area-based
metrics, we calculate the CDF of the distance between the median of the esti-
mated locations p̃med and the true location, i.e. ‖p0 − p̃med‖.

The CDF provides a complete statistical specification of the distance errors.
It is often more desirable to look at the average behavior of the error. For point-
based methods, the average distance error is simply E[‖p0 − p̃‖], which is just
the average of ‖p0 − p̃‖ over all locations. Area-based methods allow for more
options in defining the average distance error. First, for a particular value of
p0, p̃ is a set of points. For each p0, we get a collection of error values ‖p0 − q‖,
as q varies over points in p̃. For each p0, we may extract the minimum, 25th
percentile, median, 75th percentile, and maximum. These quartile values of
‖p0 − q‖ are then averaged over the different positions, p0.

—Estimator Precision. An area-based localization algorithm returns a set p.
For localization, precision refers to the size of the returned estimated area.
This metric quantifies the average value of the area of the localized set p over
different signal strength readings, s. Generally speaking, the smaller the size
of the returned area, the more precise the estimation. When an attack is con-
ducted, it is possible that the precision of the answer p̃ is affected.
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—Precision vs. Perturbation Distance. The perturbation distance is the quan-
tity ‖pmed − p̃med‖. The precision vs. perturbation distance metric depicts the
functional dependency between precision and increased perturbation distance.

—Hölder Metrics. In addition to error performance, we are interested in how
dramatically the returned results can be perturbed by an attack. Thus, we wish
to relate the magnitude of the perturbation ‖s−s̃‖ to its effect on the localization
result, which is measured by ‖Galg(s) − Galg(s̃)‖. In order to quantify the effect
that a change in the signal strength space has on the position space, we borrow
a measure from functional analysis Lang [1993], called the Hölder parameter
(also known as the Lipschitz parameter) for Galg. The Hölder parameter, Halg
is defined via:

Halg = max
s,v

‖Galg(s) − Galg(v)‖
‖s − v‖ , (6)

where s and v are all the possible combinations of signal strength vectors in
signal space. For continuous Galg, the Hölder parameter measures the maxi-
mum (or worst-case) ratio of variability in position space for a given variability
in signal strength space. Since the traditional Hölder parameter describes the
worst-case effect an attack might have, it is natural to also provide an average-
case measurement of an attack, and therefore we introduce the average-case
Hölder parameter:

Halg = avgs,v
‖Galg(s) − Galg(v)‖

‖s − v‖ . (7)

These parameters are only defined for continuous functions Galg, but many
localization algorithms are not continuous. For example, if we look at GR for
RADAR, the result of varying a signal strength reading is that it will yield a
stair-step behavior in position space: small changes will map to the same output
and then suddenly, as we continue changing the signal strength vector, there
will be a change to a new position estimate (we have switched over to a new
Voronoi cell in signal space). In reality, this behavior does not concern us too
much, as we are merely concerned with whether adjacent Voronoi cells map to
close positions. We will revisit this issue in Section 6. Finally, we emphasize
that Hölder metrics measure the perturbability of the returned results, and do
not directly measure error.

5. EXPERIMENTAL RESULTS

In this section we present our experimental results. We first describe our
method. Next, we examine the impact of attacks on the RSS to localization bias
and localization error under different attacking scenarios. We then quantify
the algorithms’ linear responses to RSS changes. Finally, we present a preci-
sion study that investigates the impact of attacks on the returned areas for
area-based algorithms.

5.1 Experimental Setup

Figure 4 shows our experimental setup. The floor map on the left, (a) is the
third floor of the CoRE building at Rutgers, which houses the computer science
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Fig. 4. Deployment of landmarks and training locations on the experimental floors.

department and has an area of 200 × 80ft (16000 ft2). The other floor, shown in
(b), is an industrial research laboratory (we call it the Industrial Lab), which has
an area of 225 × 144ft (32400 ft2). The stars are the training points, the small
dots are testing points, and the larger squares are the landmarks, which are
802.11 access points. Notice that the four CoRE landmarks are more colinear
than the five landmarks in the Industrial Lab. Next, we perform a trace-driven
simulation study to apply our linear attack model to the experimental data
collected from these two buildings.

For both attenuation and amplification attacks, we ran the algorithms but
modified the measured RSS of the testing points collected from these two office
buildings. Specifically, we altered the RSS by +/−5 dB to +/−25 dB, in incre-
ments of 5 dB. We experimented with different ways to handle signals that
would fall below the detectable threshold of −92 dBm for our wireless cards.
We found that substituting the minimal signal (−92 dBm) produced about the
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same localization results and did not require changing the algorithms to special
case missing data.

We experimented with different training set sizes, including 20, 35, 60, 85,
115, 145, 185, 215, 245, 253, and 286 points. Experimental data was collected
at a total of 286 locations in the CoRE building and at a total of 253 locations in
the Industrial Lab. Although there are some small differences, we found that
the behavior of the algorithms matches previous results [Elnahrawy et al. 2004]
and varied little after using 115 training points. We therefore chose to use a
training set size of 115 for this study.

5.2 Localization Angle Bias

In this section, we study the angular bias of the localization schemes introduced
by signal strength attacks. For the Industrial Lab, Figure 5(a) shows the local-
ization result of ABP under no attack for the relative estimation positions to
the true locations, setting as the origin, over all the localization attempts. The
normal performance of the algorithms is unbiased, with the localization results
uniformly distributed around the true locations.

Figure 5(b) shows the relative position estimation results under 25dB at-
tenuation attack on all landmarks, while Figure 5(c) and Figure 5(d) show the
attacked results on single landmarks, landmark 1 and landmark 3, respectively.
Figure 4(b) shows that landmark 1 and landmark 3 are placed in diagonal posi-
tions across the Industrial Lab. We have observed that signal strength attacks
have affected the localization schemes by introducing angular bias on the re-
sults with the location estimation more likely to be in the fourth quadrant rela-
tive to the true location when landmark 1 is attacked, as shown in Figure 5(c).
Because landmark 1 is placed in the upper left corner in the building floor map
shown in Figure 4, signal attenuation on landmark 1 made the localization
system think the sensor node is farther away from landmark 1, and thus the
resulting localization results under attack have been pushed into the fourth
quadrant. This effect has been proved by examining the localization results
when landmark 3 is under attack. As presented in Figure 5(d), the relative lo-
calization results are mostly in the second quadrant since landmark 3 is placed
in the lower right corner of the building floor map. Further, as expected, for si-
multaneous landmark attacks, the localization results are distributed around
the true locations randomly, but with much larger estimation errors as pre-
sented in Figure 5(b). We have observed similar effects for the other algorithms
in the Industrial Lab and the CoRE building.

5.3 Localization Error Analysis

In this section, we analyze the estimator distance error through the statistical
characterization of ‖p0 − p̃‖ by presenting the error CDFs of all the algorithms
as a function of attenuation and amplification attacks. The CDF provides a
complete statistical specification of the distance errors. Specifically, we study
the localization error under four attack scenarios: an all-landmark attack; a
single landmark attack; attacks involving multiple landmarks; and attacks
involving simultaneous amplification and attenuation on multiple landmarks.
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Fig. 5. ABP: localization estimation relative to the true locations for the Industrial Lab.

As a baseline, Figure 6(a) shows the normal performance of the algorithms
for the CoRE building and (e) shows the results for the Industrial Lab. For
the area-based algorithms, the median tile error is presented, as well as the
minimum and maximum tile errors for ABP-75. For BN, we present the results
using the simple Bayesian Network M1 algorithm, denoted as BNmed in the
plot. Note that the results from Bayesian Network M2 are, in fact, better than
M1, and are comparable to the results for the RADAR scheme R1. However,
for the sake of clarity of the plot, we have chosen to only present the results
of M1. As in previous work [Elnahrawy et al. 2004], the algorithms all obtain
similar performance, with the exception of BN, which slightly under-performs
the other algorithms.

First, we look at the performance of localization algorithms under an all-
landmark attack. Figures 6(b) and 6(c) show the error CDFs under simulta-
neous landmark attenuation attacks of 10 and 25 dB for CoRE, respectively,
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Fig. 6. Error CDF across localization algorithms when attacks are performed on all landmarks.
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while Figures 6(f) and 6(g) show similar results in the industrial lab. First, the
bulk of the curves shift to the right by roughly equal amounts: no algorithm
is qualitatively more robust than the others. Comparing the two buildings, the
results show that the industrial lab errors are slightly higher for attacks at
equal dB, but again, qualitatively the impact of the building environment is
not very significant.

Figures 6(d) and 6(h) show the error CDFs for the CoRE and Industrial Lab
under a 10 dB amplification attack. The results are qualitatively symmetric
with respect to the outcomes of the 10dB attenuation attack. We found that, in
general, comparing amplifications to attenuations of equal dB, the errors were
qualitatively the same.

An interesting feature is that in CoRE the minimum error for ABP-75 also
shifts to the right by roughly the same amount as the other curves. Figures 6(a)
and 6(e) show that, in the non-attacked case, the minimum tile error for ABP-
75 is quite small, meaning that the localized node is almost always within or
very close to the returned area. However, under attacks, the closest part of
the returned area moves away from the true location at the same rate as the
median tile. We observed similar effects for the SPM and BN algorithms. We
noticed that under large attacks around 25 dB, the median error CDF curves in
the Industrial Lab have similar performance to those from the CoRE building,
but there are two curves that seem to be outliers, namely ABP75 min and
ABP75max. These two curves represent the best and the worst cases from the
ABP algorithm. We see that they are not moving at the same speed as the
median errors, when compared with the results of the CoRE building. This
tells us that the variance/spread of the performance of area-based algorithms
in the Industrial Lab has increased under an all-landmark attack, but that the
average behavior is consistent across the two buildings.

We then examine attacks against a single landmark. We found attacks
against certain landmarks had a much higher impact than against others
in the CoRE building. Figures 7(a) and 7(b) show the difference in the error
CDF by comparing attacks of landmarks 1 and 2. Figure 4(a) shows that land-
mark 1 is at the left end of the building, while landmark 2 is in the center
and is close to landmark 4. The tails of the curves in Figure 7(a) are much
worse than for 7(b), showing that when landmark 1 is attacked, significantly
more high errors are returned. Figures 7(c) and 7(d) show a similar effect for
amplification attacks. This is because landmark 1 is at one end of the build-
ing alone. The contribution of the signal strength reading from landmark 1
plays an important role in localization, while the contribution of landmark 2
can be reduced by the contribution from the nearby landmark 4 when under
attack.

The Industrial Lab results in Figures 7(e)–(h) show much less sensitivity to
landmark placement compared to the CoRE building. Figure 4(b) shows that
landmark 5 is centrally located and we initially suspected this would result in
increased attack sensitivity. However, the error CDFs show that the remaining
four landmarks provide sufficient coverage: as landmark 5 is attacked, the
error CDFs are not much different from attacking landmark 4. The landmark
placement in the CoRE building is colinear (to maximize the signal coverage

ACM Transactions on Sensor Networks, Vol. 5, No. 1, Article 2, Publication date: February 2009.



Security Analysis of Localization Algorithms • 2:19

Fig. 7. Error CDF across localization algorithms when attacks are performed on an individual

landmark. The attack is 25dB of signal attenuation and signal amplification respectively.
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on the floor), while the landmark placement in the Industrial Lab is closer to
the optimal landmark placement for location accuracy. We believe that better
landmark placement for localization [Chen et al. 2006a] in the Industrial Lab
can account for the localization performance being less sensitive to landmark
placement under attack.

Next, we study attacks on more than one landmark, but not on all land-
marks. Figure 8 presents the localization results in the CoRE building when
attenuation attacks are performed on multiple landmarks, specifically on land-
mark pairs, 1 and 2, 1 and 3, and 2 and 4. We found that attacks on landmark
pair 1 and 3 shown in Figure 8(d) cause larger errors compared to results in
Figures 8(b) and 8(f) when attacking landmark pairs 1 and 2, and 2 and 4. Since
landmarks 1 and 3 are placed at two ends of the building alone, the contribu-
tion of the RSS reading from these two landmarks is significant compared to
the readings from landmarks 2 and 4, which are closely placed and can cover
each other. In general, the impact of multiple landmark attacks on localization
performance is between the performance of a single landmark attack and an
all-landmark attack.

Fourth, we look at the attack scenario in which the adversary simultaneously
performs both amplification and attenuation attacks on multiple landmarks.
The localization results are presented in Figure 9 for the CoRE building. For
a direct comparison, we present results when mixed attacks are applied on
landmark pairs, 1 and 2, 1 and 3, and 2 and 4. We should expect that such
an attack would be more effective in falsifying the location results, and this is
what we observe. But beyond this, we observe that the performance depends
heavily upon which landmarks are attacked. We found that if the attacked
landmarks are close to each other, for example landmarks 2 and 4, which are
located in the center of the building, the effects of amplification and attenua-
tion attacks are canceled out. Thus the impact of mixed attacks does not lead
to significant perturbation in the localization results, as shown in Figure 9(f),
which is about the same as under the single landmark attacks displayed in
Figure 7. However, if the attacked landmarks are farther away from each other,
such as landmarks 1 and 3, which are located at opposite ends of the building,
the simultaneous amplification and attenuation attacks can be very harmful
and cause larger localization errors for all the algorithms presented in Fig-
ure 9(d). The behavior of the error CDFs in Figure 9(d) is qualitatively dif-
ferent from others with very long tails. The effects of the amplification attack
on landmark 1 and the attenuation attack on landmark 3 pushed the local-
ization results further in one direction, and thus introduced large localization
bias.

The four attack scenarios we studied covered a broad collection of possi-
ble combinations of signal strength attacks. We found that simultaneously
attacking all landmarks has more impact on localization performance than
attacking an individual landmark. Further, simultaneous amplification and
attenuation attacks on certain landmarks can cause qualitatively larger er-
rors than other kinds of attacks. Most importantly, we observed that none
of the localization algorithms outperforms the others for the attacks we
examined.
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Fig. 8. CoRE: Error CDF across localization algorithms when attenuation attacks are performed

on multiple landmarks.
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Fig. 9. CoRE: Error CDF across localization algorithms when amplification and attenuation at-

tacks are simultaneously performed on multiple landmarks.
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5.4 Linear Response

In this section, we show that the average distance error, E[‖p0 − p̃‖], of all
the algorithms scales in a linear way to attacks. That is, the mean localization
error changes linearly with respect to the size of the signal strength change
introduced in dB (recall dB is a log-scaled change in power).

Median error versus RSS attenuation for an all-landmark attack is plotted
in Figures 10(a) and 10(e), and for individual landmarks in the other figures.
Figure 11 plots the median localization error under simultaneous signal
strength attenuation and amplification attacks on multiple attacks. Points are
data derived from experimental results, and the lines are linear least-squares
fits. For BN, in this section we only present the results from Bayesian Network
M1 to compare with other algorithms. But note that the performance for the
M2 algorithm is comparable. The most important feature is that, in all cases,
the median responses of all the algorithms fits a line extremely well, with an
average R2-statistic of 0.97 for both the CoRE and Industrial Lab. The mixed
attacks, with amplification attack on landmark 1 and attenuation attack on
landmark 3 in CoRE, shown in Figure 11(d), is an exceptional case with R2 of
0.86 as the worst case.

Comparing the slopes across all the algorithms presented in Tables II, III,
and IV, we found a mean change in positioning error versus signal attenua-
tion of 1.55 ft/dB under an all-landmark attack with a minimum of 1.3 ft/dB
and maximum of 1.8 ft/dB. For the single landmark attack, the slope was sub-
stantially less, 0.64 ft/dB, although BN degrades consistently less than the
other algorithms, at 0.44 ft/dB. Under attenuation attacks on multiple land-
marks, the localization algorithms move at the speed of 0.9 ft/dB to 1.4 ft/dB,
which is between the results of a single landmark attack and an all-landmark
attack. However, the median error moves faster under simultaneous amplifi-
cation and attenuation attacks on landmarks 1 and 3, at the speed of 1.8–2.2
ft/dB, as shown in Table IV. We note the mean error tops out when the at-
tack strength is 25 dB. This confirms our analysis in Figure 9(d) that applying
simultaneous amplification and attenuation attacks on landmarks that are far-
ther apart causes larger impacts on the performance of localization schemes,
although in practice it is hard for an adversary to conduct simultaneous am-
plification and attenuation attacks without using sophisticated equipment. In
general, the linear fit results are quite important, as it means that no algo-
rithm has a cliff where the average positioning error suffers a catastrophic
failure under attack. Instead, it remains proportional to the severity of the
attack.

While the median error characterizes the overall response to attacks, it does
not address whether an attacker can cause a few, large errors. We examined
the response of the maximum error as a function of the strength of the attack
on an all-landmark attack: how the 100th percentile error scales as a func-
tion of the change in dB under an all-landmark attack. The all-landmark at-
tack corresponds to a common attack scenario. It is thus desirable to study the
worst-case situation under an all-landmark attack. We note that this character-
ization is not the same as, nor is directly related to, the Hölder metrics. Those
metrics define the rates of change between physical and signal space within
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Fig. 10. Average location estimation error across localization algorithms under signal strength

attenuation attack.
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Fig. 11. CoRE: Average location estimation error across localization algorithms under simultane-

ous signal strength attenuation and amplification attacks on multiple landmarks.
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Table II. CoRE: Slopes of Average Error from Linear Regression

for Attenuation Attacks on all Landmarks and Individual

Landmark

Buildings CoRE: Attenuation Attack

Landmarks All 1 2 3 4

Area-Based

SPM 1.1048 0.8331 0.662 0.7816 0.6244

ABP-75 1.1656 0.7783 0.5049 0.7052 0.384

BN 1.1157 0.3287 0.3065 0.2544 0.493

Point-Based

R1 1.4922 0.7006 0.5151 0.5702 0.7941

R2 1.4327 0.7534 0.4687 0.5732 0.7425

GR 1.1896 0.8440 0.5033 0.7357 0.7124

P1 1.6306 1.1597 0.5728 0.5026 0.3644

P2 1.4505 1.0123 0.464 0.4251 0.3063

GP 1.2359 0.8915 0.6028 0.8103 0.4595

Average 1.3131 0.8113 0.5111 0.5954 0.5423

Table III. Industrial: Slopes of Average Error from Linear Regression for

Attenuation Attacks on all Landmarks and Individual Landmark

Buildings Industrial Lab: Attenuation Attack

Landmarks All 1 2 3 4 5

Area-Based

SPM 1.6901 0.7753 0.6283 0.5485 0.6455 0.9103

ABP-75 1.6479 0.5615 0.4852 0.4146 0.5469 0.8072

BN 1.7249 0.4528 0.3487 0.5215 0.5615 0.3094

Point-Based

R1 1.8823 0.6827 0.4837 0.4286 0.5867 1.0356

R2 1.8816 0.6524 0.5394 0.4000 0.5861 0.8800

GR 1.7860 0.6514 0.5410 0.4668 0.6331 0.9358

P1 1.8854 0.6856 0.4710 0.4532 0.5881 1.0390

P2 1.8802 0.6448 0.5431 0.4023 0.5875 0.8861

GP 1.7666 0.6148 0.4976 0.4800 0.6213 0.8553

Average 1.7939 0.6357 0.504 0.4573 0.5952 0.8510

Table IV. CoRE: Slopes of Average Error from Linear Regression for Mixed Attacks of

Signal Attenuation and Amplification on Multiple Landmarks

Buildings Attenuation Attacks Amplification and Attenuation Attacks

Landmarks 1 and 2 1 and 3 2 and 4 1 and 2 1 and 3 2 and 4

Area-Based

SPM 1.0054 1.1328 0.8836 1.3358 1.9556 0.8018

ABP-75 0.9740 1.1050 0.8125 1.3670 1.8628 0.5778

BN 0.6716 0.3965 0.8401 0.8665 1.8868 0.1812

Point-Based

R1 1.0392 0.9069 1.1326 1.1895 2.2731 0.7522

R2 1.1013 0.9222 1.2148 1.1841 2.2552 0.7633

GR 1.0276 1.1559 0.9196 1.2337 1.8046 0.7642

P1 1.4142 1.4104 0.9683 1.2414 2.0808 0.6492

P2 1.4735 1.2330 0.9054 1.1921 2.0606 0.5472

GP 1.1003 1.2246 0.9271 1.5197 1.9138 0.7387

Average 1.0897 1.0541 0.9560 1.2367 2.0104 0.6417

ACM Transactions on Sensor Networks, Vol. 5, No. 1, Article 2, Publication date: February 2009.



Security Analysis of Localization Algorithms • 2:27

Fig. 12. CoRE: Maximum error as a function of attack strength from an all-landmark attack.

the localization function itself, while here we characterize the change in the
estimator error to the change in signal: ‖p0 − p̃‖/‖s − v‖.

Figure 12 plots the worst-case error for each algorithm as a function of signal
dB for the CoRE building under an all-landmark attack. The figure shows that
almost all the responses are again linear, with least-squares fits of R2 values
of 0.84 or higher, though SPM does not have a linear response. The second
important point is the algorithms’ responses vary, falling into three groups.
BN, R1, and R2 are quite poor, with the worst case error scaling at about 4
ft/dB. P1 and P2, are in a second class, scaling at close to 3 ft/dB. The gridded
algorithms, GP and GR, as well as ABP-75 fair better, scaling at 2 ft/dB or less.
Finally, SPM is in a class by itself, with a poor linear fit (R2 of 0.61) and the
maximum error topping out at about 85 ft after 15 dB of attack.

Examining the error CDFs and the maximum errors, we can see that most
of the localizations move fairly slowly in response to an attack, at about 1.5
ft/dB. However, for some of the algorithms, particularly BN, R1, and R2, the
top part of the error CDF moves faster, at about 4 ft/dB. What this means is
that, for a few selected points, an attacker can cause more substantial errors of
over 100 ft. However, at most places in the building, an attack can only cause
much smaller errors.

Figure 10 shows that BN is more robust compared to other algorithms for
individual landmark attacks. Recall BN uses a Monte-Carlo sampling tech-
nique (Gibbs sampling) to compute the full joint-probability distribution for not
just the position coordinates, but also for every node in the Bayesian network.
Under a single landmark attack we found the network reduces the contribu-
tion of network nodes directly affected by the attacked landmark to the full
joint-probability distribution while increasing other landmarks’ contributions.
In effect, the network discounts the attacked landmark’s contribution to the
overall joint-density because the attacked data from that landmark is highly
unlikely, given the training data.
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Fig. 13. Contribution of each landmark during sampling in the BN algorithm under attenuation

attacks.

To show this effect we developed our own Gibbs sampler so that we could ob-
serve the relative contributions of each node in the Bayesian network to the final
answer. Figure 13 shows the percentage contribution for each landmark to the
overall joint-density. For instance, in CoRE, the contribution of each landmark
starts almost uniformly. When landmark 1 is under attack, its contribution goes
from 0.25 down to 0.15.

5.5 Precision Study

In this section, we examine the area-based algorithms’ precision in response to
attacks. Figure 14 shows a localization example of the area-based algorithms in
the CoRE building. The actual point is shown as a big dot and the convex hulls
of the returned areas are outlined. Normally, the SPM and ABP algorithms
perform similarly, while the BN algorithm has a much different profile: return-
ing the sampling distribution of the possible estimation. Under signal strength
attacks, we observed that the returned areas are reduced and shifted from the
true location.

Figure 15 shows the CDF of the precision (size of the returned area) for
different area-based algorithms under attack for all the landmarks in CoRE
and Industrial Lab. We found that overall the algorithms did not become
less precise in response to attacks, but rather, the algorithms tended to shift
and shrink the returned areas. Figure 15(a) shows a small average shrink-
age for SPM in the CoRE building, and likewise, 15(b) shows a similar effect
for BN.

ABP-75 had the most dramatic effect. Figures 15(c) and 15(d) show the
precision versus the attack strength for both buildings. The shrinkages are
quite substantial. We found that, under attack, the probability densities of the
tiles shrank to small values that were located on a few tiles—reflecting the fact
that an attacks decreases the likelihood of a position to localize a node. We also
found that this effect held for amplification attacks, as is shown in Figure 15(d).

ACM Transactions on Sensor Networks, Vol. 5, No. 1, Article 2, Publication date: February 2009.



Security Analysis of Localization Algorithms • 2:29

Fig. 14. CoRE: comparison of localization results from the area-based algorithms for a testing

point.

The shrinking precision behavior may be useful for attack detection, although
a full characterization of how this effect occurs remains for future work.

Examining this effect further, Figure 16 presents the precision versus the
perturbation distance ‖pmed − p̃med‖, with a least squares line fit. Figure 16(a)
shows the effect when attacking all landmarks on the CoRE building.
Figure 16(b) shows a downward trend, but much weaker, when one landmark
is under attack. We observed similar results for the Industrial Lab. We see
mostly linear changes in precision in response to attacks, although with great
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Fig. 15. Analysis of precision CDF across area-based algorithms. The attack is performed on all

the landmarks.

differences among the algorithms. The figures show that the decrease in preci-
sion as a function of dB is particularly strong for ABP-75.

5.6 Robust Multidevice Localization

As presented in Section 2, the Bayesian Network M2 algorithm can simulta-
neously localize multiple devices with no training data. Figure 17 presents the
error CDFs of M2 when simultaneously positioning 171 devices under a normal
operational situation and with a 25 dB attack applied to all landmarks (i.e., for
all signals coming into each landmark) respectively. As shown in Figure 17(a),
the performance when simultaneously localizing multiple devices (No Train-
ing, Testing = 171) is very similar to that of positioning only one device at
a time (Training = 115, Testing = 171). However, we found that under an all-
landmark attack with 25 dB severity, the CDF curve of localizing a single device
with training data has a large shift to the right, with the same trend as pre-
sented in Figure 6; but the curve of localizing multiple devices without training
data moves at a much slower speed. This indicates that BN M2 is more robust
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Fig. 16. Precision vs. perturbation distance under attenuation attack.

Fig. 17. Localization error CDFs using Bayesian Network M2 algorithm.

than all the other algorithms under attacks, especially under realistic operating
conditions involving multiple, simultaneous localization tasks.

Usually Bayesian Networks utilize the training data to predict their model
parameters. When no training data is used for localizing multiple transmitting
devices, M2 relies on all the RSS readings from multiple devices to adjust the
parameters specified in the model. Under the case of all-landmark attacks, The
RSS readings of multiple devices are all corrupted and shifted by a constant.
Thus the model parameters predicted by M2 should be qualitatively similar to
those predicted under the normal situation without attack. Therefore, the BN
M2 algorithm is attack-resistant if there is a massive attack, where all signals
coming into each landmark are being attacked by adversaries.
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Table V. Analysis of Worst-Case H and Average-Case H

Algorithms CoRE: H LAB: H CoRE: H LAB: H

Area-Based

SPM 23.7646 11.0659 1.8856 2.3548

ABP-75 20.0347 23.0652 1.8548 2.3424

BN 31.7324 14.9168 2.0595 2.5873

Point-Based

R1 36.2400 20.7846 1.9750 2.3677

R2 19.8586 8.7313 1.9138 2.3058

GR 35.9880 20.6886 1.9691 2.3628

P1 20.8832 20.7846 1.9793 2.3683

P2 19.8586 8.7313 1.9178 2.3058

GP 21.8303 20.6886 1.9649 2.2882

6. DISCUSSION ABOUT HÖLDER METRICS

In the previous section we examined the experimental results, and looked at
the performance of a set of representative localization algorithms in terms of
error and precision. We now focus on the performance of these localization
algorithms in terms of the Hölder metrics. The Hölder metrics measure the
variability of the returned answer in response to changes in the signal strength
vectors.

We first discuss the practical aspects of measuring H and H for different
algorithms. In Section 4, the Hölder parameters are defined by calculating the
maximum and average over the entire n-dimensional signal strength space. In
practice, it is necessary to perform a sampling technique to measure H and H.
Additionally, as noted earlier, the definitions of H and H are only suitable for
Hölder continuous functions, Galg. In reality, several localization algorithms,
such as RADAR, are not continuous and involve the tessellation of the signal
strength space into Voronoi cells Vj , and thus only a discrete set of localization
results are produced (image of Vj under Galg). Hence, for any s ∈ Vj we have
GR(s) = (x j , y j ). Unfortunately, for neighboring Voronoi cells, we may take
s ∈ Vj and v ∈ Vi such that they are arbitrarily close (‖s − v‖ → 0), while
‖GR(s) − GR(v)‖ �= 0. In such a case, the formal calculation of H and H is not
possible. However, for our purposes, we are only interested in measuring the
notion of adjacency of Voronoi cells in signal space yielding close localization
results. Thus, our calculation of H and H is only performed over the centroids
of the various Voronoi cells for localization algorithms that tessellate the signal
strength space.

The Hölder parameters for the different localization algorithms are pre-
sented in Table V. Examining these results, there are several important ob-
servations that can be made. First, if we examine the results for H we see that,
for each building, all of the algorithms have very similar H values. Hence, we
may conclude that the average variability of the returned localization result
with respect to a change in the signal strength vector is roughly the same for
all algorithms. This is an important result as it means, regardless of which RF
fingerprinting localization system we deploy, the average susceptibility of the
returned results to an attack is essentially identical.
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However, if we examine the results for H, which reflects the worst-case sus-
ceptibility, then we see that there are some differences across the algorithms.
First, comparing H and H for both point-based and area-based algorithms, we
see that the worst-case variability can be much larger than the average variabil-
ity. Additionally, the point-based methods appear to cluster. Notably, RADAR
(R1) and Gridded Radar (GR) have similar performance across both CoRE and
the Industrial Lab, while averaged RADAR (R2) and averaged Highest Proba-
bility (P2) have similar performance across both buildings. A very interesting
phenomenon is observed by looking at the algorithms that returned an average
of likely locations (R2 and P2). Across both buildings, these algorithms exhib-
ited less variability compared to other algorithms. This is to be expected, as
averaging is a smoothing operation, which reduces variations in a function.
This observation suggests that R2 and P2 are more robust from a worst-case
point-of-view than other point-based algorithms.

7. RELATED WORK

There have been many active research efforts developing localization systems
for wireless and sensor networks. Here, we give a short overview of the different
localization strategies. We next discuss the work in secure localization, and then
describe the works most closely related to ours.

In general, localization algorithms can be categorized as: range-based ver-
sus range-free, scene matching (fingerprint matching), and aggregate or sin-
gular. The range-based algorithms involve distance estimation to landmarks
using the measurement of various physical properties like RSS [Hightower
et al. 2000], Time Of Arrival (TOA) [Enge and Misra 2001] and Time Dif-
ference Of Arrival (TDOA) [Priyantha et al. 2000]. Rather than use precise
physical property measurements, range-free algorithms use coarser metrics
like connectivity [Shang et al. 2003] or hop-counts [Niculescu and Nath 2001]
to landmarks to place bounds on candidate positions. In scene matching ap-
proaches, a radio map of the environment is constructed, either by measuring
actual samples, using signal propagation models, or some combination of the
two. A node then measures a set of radio properties (often just the RSS of a
set of landmarks), the fingerprint, and attempts to match these to known loca-
tion(s) on the radio map. These approaches are almost always used in indoor
environments because signal propagation is extensively affected by reflection,
diffraction and scattering, and thus ranging or simple distance bounds can-
not be effectively employed. Matching fingerprints to locations can be cast in
statistical terms [Youssef et al. 2003; Roos et al. 2002], as a machine-learning
classifier problem [Battiti et al. 2002], or as a clustering problem [Bahl and
Padmanabhan 2000]. Finally, a third dimension of classification extends to ag-
gregate or singular algorithms. Aggregate approaches use collections of many
nodes in the network in order to localize (often by flooding), while localization
of a node in singular methods only requires it to communicate to a few land-
marks. For example, algorithms using optimization [Doherty et al. 2001] or
multidimensional scaling [Shang et al. 2003] require many estimates between
nodes.
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Recently, it has been recognized that there are many noncryptographic at-
tacks that can affect localization performance. For example, wormhole attacks
tunnel through a faster channel to shorten the observed distance between two
nodes [Hu et al. 2003]. Compromised nodes may delay response messages to
disrupt distance estimation [Li et al. 2005] and compromised landmarks may
even broadcast completely invalid information [Liu et al. 2005]. Physical bar-
riers can directly distort the physical property used by localization. Li et al.
[2005] provided a thorough survey of potential attacks to various localization
algorithms based on their underlying physical properties.

Secure localization algorithms have been proposed to address these attacks.
Capkun and Hubaux [2005] use a distance bounding protocol [Brands and
Chaum 1994; Sastry et al. 2003] to upperbound the distance between two nodes.
Location estimation (via multilateration) with distances from the bounding pro-
tocol can be verified against these bounds and any inconsistency will then indi-
cate attack. Capkun and Hubaux [2006] uses hidden and mobile base stations
to localize and verify location estimates. Since such base station locations are
hard for attackers to infer, it is hard to launch an attack, thereby providing
extra security. Lazos et al. [2005] uses both directional antenna and distance
bounding to achieve security. Compared to all these methods, which employ lo-
cation verification and discard location estimates that indicate attack, Liu et al.
[2005] and Li et al. [2005] try to eliminate the effects of attack and still pro-
vide good localization. Li et al. [2005] make use of data redundancy and robust
statistical methods to achieve reliable localization in the presence of attacks.
Liu et al. [2005] propose detecting attacks based on data inconsistency from
received beacons and using a greedy search or voting algorithm to eliminate
the malicious beacon information.

Lim et al. [2006] proposed a localization algorithm that used the truncated
singular value decomposition (SVD) technique and a lateration method for
building a zero-configuration, robust, indoor localization system. Based on its
theoretical analysis and system development, it is not clear whether this algo-
rithm will be affected by signal strength attacks including an all- landmark at-
tack, a single landmark attack, and mixed attacks of signal attenuation and am-
plification. Since this algorithm calibrates RSS at known transmission power
levels for a wireless device only once at the deployment phase, we suspect that it
cannot handle systematic signal strength bias at any dB levels caused by signal
attacks, especially when the attack is only performed on a single landmark or
multiple landmarks with simultaneous signal amplification and attenuation.
Further, Tao et al. [2003] presented an interesting mechanism using the differ-
ence of signal strength readings to maintain robustness of localization when a
malicious node operates at different power levels or uses different WLAN cards.
Although this technique should still work when a node is being attacked, which
corresponds to an all-landmark attack scenario in our study, because it takes
the differences of RSS readings as localization inputs, this approach cannot
address adversarial situations with mixed attacks on multiple landmarks and
single landmark attacks. In this work, we studied a representative set of local-
ization algorithms employing signal strength for localization instead of just two
algorithms as discussed in Tao et al. [2003]. In previous work, Li et al. [2005]
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proposed a possible solution to triangulation-based and fingerprint-based lo-
calization, but the susceptibility and performance of various localization meth-
ods were not completely investigated. In addition, we have experimentally
performed our analysis using real networks deployed in two different build-
ings, hence our analysis supports the case for robustness in practical system
deployments.

8. CONCLUSION

In this article, we provided a performance analysis of the robustness of RF-
based localization algorithms to attacks that target signal strength measure-
ments. We first examined the feasibility of conducting signal amplification and
attenuation attacks, and observed a linear dependency between non-attacked
signal strength and attacked signal strength readings for different barriers
placed between the transmitter and a landmark receiver. We then provided
a set of performance metrics for quantifying the effectiveness of attenua-
tion/amplification attacks and their impacts on localization. Our metrics in-
cluded localization angular bias, localization error, the precision of area-based
algorithms, and a new family of metrics, called Hölder metrics, that quantify
the variability of the returned location results versus change in signal strength
vectors.

We conducted a trace-driven evaluation of a representative set of point-based
and area-based localization algorithms where the linear attack model was ap-
plied to data measured in two different office buildings. We investigated the
impact of signal attenuation as well as signal amplification attacks on a sensor
node or landmark by applying signal perturbations to individual landmarks,
multiple landmarks, and all landmarks. We found that the localization error
scaled similarly for all algorithms under attack, except for the Bayesian Net-
works algorithm. Large localization errors are introduced under severe attacks,
resulting in 20–30 feet location perturbation under an attack strength of 15 dB.
Further, we found that, when attacked, area-based algorithms did not experi-
ence a degradation in precision although they experienced degradation in accu-
racy and more uncertainty in location estimation. One important observation
is that Bayesian Networks are more robust under both an individual landmark
attack when positioning a single device, as well as an all-landmark attack when
localizing multiple devices simultaneously.

We then examined the variability of the localization results under attack by
measuring the Hölder metrics. We found that most algorithms had similar av-
erage variability, but those methods that returned the average of a set of most
likely positions exhibited less variability. This result suggests that the aver-
age susceptibility of the returned results to an attack is essentially identical
across point-based and area-based algorithms, though it might be desirable to
employ either area-based methods or point-based methods that perform aver-
aging in order to lessen the worst-case effect of a potential attack. Additionally
this investigation indicates that the performance of most of the RSS-based
localization algorithms degrades significantly under signal strength attacks,
and consequently that network designers need to resort to more complicated
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secure localization algorithms for dealing with potential attacks in an uncon-
trolled environment.
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