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Abstract Received signal strength (RSS) based algo-

rithms have been very attractive for localization since they

allow the reuse of existing communication infrastructure

and are applicable to many commodity radio technologies.

Such algorithms, however, are sensitive to a set of non-

cryptographic attacks, where the physical measurement

process itself can be corrupted by adversaries. For exam-

ple, the attacker can perform signal strength attacks by

placing an absorbing or reflecting material around a wire-

less device to modify its RSS readings. In this work, we

first formulate the all-around signal strength attacks, where

similar attacks are launched towards all landmarks, and

experimentally show the feasibility of launching such

attacks. We then propose a general principle for designing

RSS-based algorithms so that they are robust to all-around

signal strength attacks. To evaluate our approach, we adapt

a set of representative RSS-based localization algorithms

according to our principle. We experiment with both sim-

ulated attacks and two sets of real attack scenarios. All the

experiments show that our design principle can be applied

to a wide spectrum of algorithms to achieve comparable

performance with much better robustness.

Keywords Wireless localization � Signal strength

attacks � Robust algorithms � Design principle

1 Introduction

With the proliferation of wireless communication and

wireless networks, ubiquitous wireless applications are

becoming commonplace. Contextual information such as

location of the wireless devices is critical for many of the

high level applications as it is inherent to their logic. The

problem of accurately localizing wireless node’s location

thus has drawn intense research interests recently. Among

all the proposed approaches, received signal strength (RSS)

based algorithms are particularly attractive since they allow

the reuse of existing communication infrastructure and are

applicable to many commodity radio technologies.

A typical setup for an RSS-based localization system is

as follows: within the environment, there are a few pre-

deployed landmarks with known location information,

Liðxi; yiÞ; i ¼ 1; 2. . .; n; when a mobile device enters the

area, its signal can be sensed by all landmarks, which

together form a fingerprint of its current position

SS
�!ðhSS1; SS2. . .; SSniÞ and can be used for localization. In

order to account for the chaotic signal propagation in

indoor environment, many previously proposed RSS based

indoor localization systems have an offline phase and an

online phase. In the offline phase, signal fingerprints are

empirically measured at m locations. All m fingerprints

along with their locations ½ðxi; yiÞ; SSi
�!� constitute the fin-

gerprints for the sampled environment. In the online
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localization phase, RSS fingerprint collected for the mobile

device is then used to compare with the pre-collected fin-

gerprints during offline to estimate the location.

However, RSS-based localization algorithms are sensi-

tive to a set of non-cryptographic attacks, where the

physical measurement process itself can be corrupted by

adversaries [6]. For example, the attacker can perform

signal strength attacks by placing an absorbing or reflecting

material around a wireless device to modify its RSS. Chen

et al. [6] evaluated a whole spectrum of algorithms in terms

of robustness to such attacks through simulation and

observed performance degradation for all algorithms. Such

vulnerability to signal strength attacks threatens the local-

ization algorithms’ viability for a wide domain of appli-

cations using wireless systems.

Several previous works [20, 21, 29] have proposed

secure localization algorithms to address the signal strength

attacks that are non-cryptographic. They, however, assume

that only a small percentage (less than half) of the landmark

readings are under attack. In this work, instead, we focus on

addressing all-around signal strength attacks, where similar

attacks are launched towards all landmarks. Such attacks

are easy to launch in practice and may affect many appli-

cations. For example, in an environment where valuable

commodities are monitored via RSS-based localization, a

thief can easily put what he stole in a metal box or suitcase

to throw off the localization system; Malicious devices (for

example, performing jamming) in wireless systems can also

continuously change their transmission power level to avoid

being caught by the localization system.

To address the all-around attacks, we propose a princi-

ple that advises the usage of a new ratio-based signal

strength metric (RSM) instead of RSS in designing local-

ization algorithms. Such a metric maps to information

about distance ratio to a set of landmarks (thus ratio-based

metric), which aims to achieve robust localization under

attacks. The attack resilience of algorithms following our

principle guidance comes from the inherent robustness of

this new metric to all-around attacks.

Our principle does not correspond to any particular

algorithms. It, instead, is a general design rule that can be

applied to many different algorithms. To demonstrate such

general applicability, we adapt a set of representative

localization algorithms according to our principle. We then

evaluate the set of adapted algorithms with data collected

across multiple experiment sites, and with both simulated

attack scenarios and two sets of realistic attacks. Our

experiments show that the adapted algorithms offer com-

parable performance with the original RSS-based algo-

rithms under normal conditions. When all-around attacks

are launched, however, the adapted algorithms demonstrate

much less performance degradation, thus achieve better

robustness.

In the rest of the paper, we first discuss the all-around

signal strength attacks in Sect. 2. Section 3 presents the

principle we propose to design localization algorithms

robust to signal strength attacks. Section 4 demonstrates the

general applicability of our principle by adapting a set of

existing algorithms according to our principle. We further

validate our principle by evaluating the adapted algorithms

in Sect. 5. Section 6 discusses related research work and

finally we conclude in Sect. 7.

2 All-around signal strength attacks

In this section, we discuss the kind of attacks we study in

this paper. We first present our attack model. We then

conduct two real signal strength attacks to demonstrate the

feasibility of such attacks.

2.1 Attack model

In this work, we consider all-around signal strength attacks.

We define the all-around signal strength attacks as that

when similar attacks are launched towards all landmarks.

When such an attack is launched against a wireless device,

the collected RSS measurements of the wireless device will

be corrupted. Specifically, if the normal signal strength

fingerprint for a mobile device is as follows with n

landmarks:

SS
�! ¼ hSS1; SS2; . . .; SSni;

then the fingerprint measurement under the all-around

signal strength attack would be

SS
�!0

¼ hSS
0

1; SS
0

2; . . .; SS
0

ni
¼ hSS1 � SSt; SS2 � SSt; . . .; SSn � SSti;

which indicates that it suffers a signal attenuation of SSt

under the attack.

We consider addressing this type of attack because it is

easy to launch and very harmful to many localization

algorithms [6]. Several previous works [20, 21, 29] have

proposed solutions to another attack where only a small

percentage (less than half) of the landmark readings are

under attack.

2.2 Attack feasibility study

Practically, all-around signal strength attacks are easy to

launch. We next demonstrate its feasibility by launching

such attacks with two simple methods.

Our experimental data were collected on the second

floor of Buchard building at Stevens Institute of Technol-

ogy, which is a 80 ft 9 70 ft area as shown in Fig. 1 (We
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refer to this experimental area as Site I in the rest of the

paper). This is a large lab area containing office wall

dividers and furniture, such as desks, shelves and chairs.

We deployed 5 landmarks and collected RSS fingerprints

for 20 sample locations. Landmarks and sample locations

are shown as stars and dots respectively in Fig. 1.

Received signal strength measurements were conducted

using a localization testbed [5] with active RFID tags and

readers from InPoint [32]. Each RFID tag has a unique

identifier and periodically beacons its identifier, which is

received by the landmarks. The tags transmit without colli-

sion avoidance or detection; the readers identify overlapping

signals. We connect the RFID reader to a Linux machine with

2 GHz CPU, 1 GB RAM and 20 GB disk to serve as our

landmark. In our localization testbed, landmarks continu-

ously monitor the channels’ traffic at the packet-level and

forward their observed RSS readings to a central server. The

server is responsible for averaging the RSS readings over

multiple packets to produce fingerprints. In our experiments,

each averaged RSS reading is obtained over 100 packets.

We conducted two sets of attacks: tin can attack and

power variation attack. In tin can attack, the attacker

places the RFID tag within a tin can to attenuate its signal

strength. Whereas in power variation attack, the attacker

programs the RFID tag to change its transmission power to

affect signal strength measurements. We assume the nor-

mal transmission power to be 10 dBm while attackers can

use both -10 and -30 dBm, thus launching attacks of 20

and 40 dB respectively.

Figure 2 plots the signal strength attack, SSt ¼ SS
0
i

�SSi, on all landmarks at a particular sample location. It

shows the effects of both tin can attack and two levels of

power variation attacks. We observed that the simple tin can

attack is very effective, resulting in 20–30 dB attenuation,

and the power variation attack achieves an average of around

20 and 40 dB signal attenuation corresponding to its attack

severity of 20 and 40 dB respectively. The attacks on all

landmarks are not exactly the same, however they are indeed

very similar. We show in Sect. 3 that our attack model allows

for the derivation of a simple yet effective principle for

robustness design, while the similarities of attacks among

the landmarks is sufficient to achieve robustness.

3 Design principle for robust localization

The key principle we propose is to use a more robust signal

strength metric instead of RSS while designing localization

Fig. 1 Experiment site I
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Fig. 2 All-around signal strength attacks: attack feasibility study.

a Tin can attack. b Power variation attack: 20 dB. c Power variation

attack: 40 dB
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algorithms. In the following, we first introduce the new

metric in Sect. 3.1 and then explain how it allows for

localization in Sect. 3.2.

3.1 A robust signal strength metric

Received signal strength-based localization is feasible

mainly because it is a metric inherently characterizing the

distance separation between the transmitter and the recei-

ver (for example, between the mobile device and the

landmarks, di; i ¼ 1; 2. . .; n). When all-around signal

strength attack is launched, such relationship is corrupted.

However, since similar attacks are launched towards all the

landmarks, any pair of signal strength value (SSi, SSj) still

carries correct information about the relative length of the

distance separations, i.e. distance ratio di

dj

� �

, which can still

be used for localization. We thus propose to use RSM to

achieve robustness. More details about how this metric

relates to distance ratio and how it allows for localization is

discussed in Sect. 3.2.

Our RSM metric characterizes the relative signal strength

values measured at two landmarks, Li and Lj, for a particular

mobile device. Its formal definition is as following:

RSMij ¼ SSi � SSj ð1Þ

According to our attack model, RSM is robust to all-

around signal strength attacks since

RSM
0

ij ¼ SS
0

i � SS
0

j

¼ ðSSi � SStÞ � ðSSj � SStÞ ¼ RSMij

ð2Þ

We noticed in Sect. 2 that exact uniform attacks to all

landmarks may not be practical. However, the similarity

among attacks towards all landmarks still offers RSM

better robustness than RSS. To demonstrate such

robustness, we quantify the attacks to both metrics as:

AttackRSS ¼
Pn

i¼1 jSS
0
i � SSij

n

AttackRSM ¼
Pn�1

i¼1

Pn
j¼iþ1 jRSM

0

ij � RSMijj
n�ðn�1Þ

2

ð3Þ

Figure 3 plots the attack intensity to both RSS and RSM

in our three different all-around attacks. We see that RSM

is subject to significantly less attacks than RSS under the

same attack scenarios. We show in Sect. 5 that such

robustness in RSM metric does translate to better

robustness in localization.

3.2 RSM allows for localization

We explain the feasibility of using RSM for localization in

two steps. First, we map RSM metric to distance ratio in

Sect. 3.2.1. We then explain why distance ratio information

can be used for localization in Sect. 3.2.2.

3.2.1 RSM maps to distance ratio

Normally, signal propagation is modeled as the distance

dependent path loss model [1, 27]. For example, with

consideration of possible attacks, the signal strength (dBm)

measured at landmark Li from a mobile device can be

modeled as:
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Fig. 3 Metric robustness analysis: RSS versus RSM. a Tin can

attack. b Power variation attack: 20 dB. c Power variation attack:

40 dB
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SSiðdiÞ ¼ SSiðd0Þ � nilog10

di

d0

� �

þ dSSi � SSt

dSSi�Nð0; riÞ
ð4Þ

where SSi(d0) is the RSS measured at some reference dis-

tance d0 which is normally small, ni indicates the signal

degradation rate, di is the distance from the mobile device

to Li, dSSi represents the signal strength bias caused by

local environmental noise around the measurement loca-

tion, and SSt is the effect from signal strength attacks.

SSi(d0) is mostly decided by the transmitter’s model and

its transmission power. For localizing a particular device,

since all landmarks measure signal strength from the same

device, SSi(d0) should be the same for all landmarks.

According to our attack model, the same amount of attack

is applied to all landmarks, thus SSt should be the same for

all landmarks as well.

With the above clarification, RSM metric for any two

landmarks, Li and Lj, for a particular mobile device can be

represented as

RSMij ¼ njlog10

dj

d0

� �

� nilog10

di

d0

� �

þ dSSij

dSSij�Nð0; rijÞ
ð5Þ

where di and dj are the distance from the mobile device to

Li and Lj, respectively. RSMij also has a normal distributed

noise, since the subtraction of normal distributions still

follows normal distribution.

The signal degradation rate ni (as shown in Eq. 4) is

generally decided by the travel path of the signal, thus even

though measured for the same transmitter, the rates for sig-

nals arriving at different landmarks may be different.

However, all the signal propagation is subject to the same

environmental effect at a coarse level. If we approximate the

rates to be the same (n) in an environment, Eq. 5 can be

further simplified as

RSMij ¼ nlog10

dj

di

� �

þ dSSij

dSSij�Nð0; rijÞ
ð6Þ

Equation 6 shows that there is direct mapping between

RSM metric, RSMij, and distance ratio
dj

di
: RSM-based

localization is feasible mainly because knowing distance

ratio to a set of landmarks allows for localization.

3.2.2 Ratio-based localization

Apollonius circles [11] can be used to demonstrate how

distance ratio information helps with localization. Apollonius

circles represent the set of all points whose distances from

two fixed points are in a constant ratio m:n. In case

m = n, this set of points become a line, which is the

perpendicular bisector of the line segment connecting the two

fixed points. For example, in Fig. 4 the top most circle drawn

in solid line represents all the points whose distance to point

A, dA, and point C, dC, satisfy the constraint that dA

dC
¼ 1:49:

Similarly, the other two circles drawn in solid line represents

all the points where dA

dB
¼ 2:41 and dB

dC
¼ 0:62 respectively.

For localization, landmarks can be treated as a set of

fixed points (for example, point A, B, C, D in Fig. 4). If we

know the distance ratio from a mobile device to the set of

landmarks dA

dB
; dB

dC
; dA

dC

� �

, its location can then be calculated

as the intersection point of a set of Apollonius Circles.

Although our RSM-based algorithms do not use distance

ratio information explicitly, the direct mapping relationship

between RSM and distance ratio determines the feasibility

of localization using our RSM metric.

Normally we need at least three circles to find a unique

intersection point. We, however, see in Fig. 4 that the three

Apollonius circles drawn in solid line do not render a unique

intersection point. This is because the third Apollonius

circle from the three fixed points, A, B, C, is redundant in

terms of locating the intersection point. Given the first two

circles, dA

dC
¼ 1:49 and dA

dB
¼ 2:41; the third one could easily

be calculated without requiring any new information, dB

dC
¼

dA

dC

.

dA

dB
: It does not contribute any new constraint either.

This determines that we need at least four fixed points to

uniquely identify the intersection point. In Fig. 4, the circle

drawn in dashed line represents dA

dD
¼ 4:01: The addition of

this circle uniquely identifies an intersection point.

For localization, this constraint translates to the need of

at least four landmarks in order to uniquely locate mobile

devices using RSM information. Our RSM-based locali-

zation algorithms thus require one additional landmark

than the set of RSS-based algorithms [2, 12, 13, 22, 25, 31].

Fig. 4 Apollonius circles
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However, due to the unpredictable nature of indoor signal

propagation, normally at least four landmarks are deployed

even for the RSS-based algorithms. We thus consider this

requirement as easily satisfiable.

4 Adaptation of localization algorithms

Our proposed principle in Sect. 3 is a general rule that can

be used while designing new algorithms or be applied to

adapt many existing algorithms. In this section, we dem-

onstrate its usage by adapting a set of previously proposed

representative localization algorithms according to our

design principle. We further use them to evaluate the

effectiveness of our principle in Sect. 5.

4.1 Lateration based

Localization using the lateration based approach is popu-

lar [8, 14, 23] and involves 2 steps: ranging and latera-

tion. In the ranging step, distances (di, i = 1, 2…, n) from

the mobile device M = (x, y) to all the landmarks

(Li = (xi, yi), i = 1, 2.., n) are estimated, where di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � xÞ2 þ ðyi � yÞ2
q

: In the lateration step, the position

of the mobile device is estimated based on the estimated

distances d̂i and the known positions Li = (xi, yi) of the

landmarks. There are a variety of physical modalities can

be used to perform the ranging and many methods have

been proposed to perform lateration. In this work, we use

RSS to perform ranging and Nonlinear Least Squares

(NLS) method to localize. In NLS, the position (x, y) of

the mobile device is estimated by finding ðx̂; ŷÞ satisfying:

ðx̂; ŷÞ ¼ argminx;y

X

n

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � xÞ2 þ ðyi � yÞ2
q

� d̂i

� 	2

ð7Þ

To adapt NLS to use RSM, we estimate distance ratios

ðrij ¼ di

dj
Þ in the ranging step, and in the lateration step, the

position (x, y) of the mobile device is estimated by finding

ðx̂; ŷÞ satisfying:

ðx̂; ŷÞ ¼ argminx;yRR ð8Þ

where ratio residual RR is defined as

RR ¼
X

n�1

i¼1

X

n

j¼iþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � xÞ2 þ ðyi � yÞ2

ðxj � xÞ2 þ ðyj � yÞ2

s

� r̂ij

" #2

ð9Þ

4.2 Fingerprint matching

The Radar algorithm [1] is a classic machine learning

method based on fingerprint matching, which requires

building a signal map consisting of RSS fingerprints with

known (x, y) locations. Gridded radar (GR) [7] is an exten-

sion to the Radar algorithm. It builds a regular grid of tiles

over the localization area and uses the measured training

fingerprints to interpolate RSS fingerprints for each tile in the

grid. Given a RSS fingerprint of a mobile device, GR returns

the position (x, y) of the tile in the IMG (Interpolated Map

Grid) that has a fingerprint closest to the one of the mobile

device as the location estimation, where closeness is mea-

sured in Euclidean distance in the signal space.

To modify GR algorithm according to our principle, we

simply change the matching function that measures the

closeness of two fingerprints, Fð SS
�!1

; SS
�!2
Þ; to use RSM

instead of RSS. Specifically, the original function measures

Euclidean distance in RSS:

FRSSð SS
�!1

; SS
�!2
Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

ðSS1
i � SS2

i Þ
2

s

ð10Þ

We now instead measures Euclidean distance in RSM:

FRSMð SS
�!1

; SS
�!2
Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n�1

i¼1

X

n

j¼iþ1

ðRSM1
ij � RSM2

ijÞ
2

v

u

u

t ð11Þ

4.3 Probabilistic based

In this work, we choose to study area based probability

(ABP) [7], which is a representative method based on the

statistical Bayes’ Rule to perform location estimation. ABP

also uses the interpolated signal map as in GR and com-

putes the likelihood of the observed fingerprint of a mobile

device matching a fingerprint of each tile in the interpo-

lated signal map. The top probability tile set whose sum

matches the desired confidence level a (for example,

a = 0.75 in our experiments) represents the area where the

mobile device is most likely to be in. For ease of com-

parison, we use a point-based version of ABP algorithm,

where the center of the probable area is returned as the

position estimate.

By using Bayes’ rule, ABP computes the probability of

being at each tile Tk (with expected fingerprints as SS
�!k

) on

the floor given the fingerprint of the mobile device SS
�!

as:

PðTkj SS
�!Þ ¼ Pð SS

�!jTkÞ � PðTkÞ
Pð SS
�!Þ

ð12Þ

where

Pð SS
�!jTkÞ ¼

Y

n

i¼1

PðSSijSSk
i Þ ð13Þ

To adapt ABP algorithm, we simply change the

calculation of Pð SS
�!jTkÞ to use RSM:

50 Wireless Netw (2012) 18:45–58
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Pð SS
�!jTkÞ ¼

Y

n�1

i¼1

Y

n

j¼1þ1

PðRSMijjRSMk
ijÞ ð14Þ

4.4 Bayesian networks

Bayesian Networks [7] utilizes the Bayesian Graphical

Model to compute the distribution of the position (x, y) of a

mobile device. In particular, Bayesian Networks encodes

the relationship between the RSS readings and the location

based on the signal-distance propagation model. The initial

parameters of the model are unknown, and the training set

collected from multiple known locations is used to adjust

the parameters of the model according to the relationships

encoded in the network.

Figure 5(a) depicts the basic Bayesian Graphical Model.

The random variables SSi; i ¼ 1. . .n denotes the expected

signal strength at landmark Li. The values of these random

variables depend on the Euclidean distance di between the

landmark’s location (xi, yi), and the location where the

signal SSi is measured (x, y). The baseline expected value

of SSi follows a signal propagation model SSi = b0i ?

b1ilog(di), where b0i, b1i are the parameters specific to each

Li. The distance di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� xiÞ2 þ ðy� yiÞ2
q

in return

depends on the location (x, y) of the measured signal. The

network models noise and outliers by modeling the

expected value, SSi, as a Gaussian distribution around

the propagation model, with variance si, SSi* N(b0i ?

b1ilogdi, si). The usage of b0, sb0, b1, sb1 is to exploit the

similarities of signal propagation for all landmarks in

the same environment. Using the training fingerprints, the

network can learn the specific values for all the unknown

parameters b0, sb0, b1, sb1, b0i, b1i, si and the joint distri-

bution of (x, y) location of the mobile device. In general,

there is no closed form solution for the returned joint dis-

tribution of the (x, y) location. Therefore, we use a Markov

Chain Monte Carlo (MCMC) simulation approach to draw

samples from the joint density, and then return the center of

the sample area as the estimated position.

Figure 5(b) explains our adaptation of BN algorithm.

The random variables RSMij denotes the expected RSM

metric for landmark Li and Lj. The baseline expected

value of RSMij follows the model RSMij = b1ilog(di)

- b1jlog(dj), where b1i, b1j are the parameters specific to Li

and Lj respectively. Measured RSMij is also modeled as a

Gaussian distribution around the above propagation model,

with variance sij to accommodate for noise.

5 Evaluation

In this section, we evaluate the algorithms adapted

according to our design principle. We first explain the

experimental setup in Sect. 5.1. The algorithms’ perfor-

mance and robustness to attacks are then evaluated in detail

in Sects. 5.2 and 5.3 respectively.

5.1 Experimental setup

We focus our evaluation of the algorithms on both per-

formance and robustness. Our experimental data collected

at Site I (as described in Sect. 2) allow us to evaluate

realistic scenarios on RFID networks from both

perspectives.

To extend our coverage, we experimented with many

other data traces using simulated attacks. Due to the sim-

ulation nature, such experiments are more relevant in

evaluating the algorithms’ performance, we thus use them

only in Sect. 5.2. Our evaluation results are compatible

from all the trace data collected in three other sites,

including both WiFi and Zigbee (using mote sensors) data.

Due to the space constraint, we present experiments from

only one other site in this paper.

Figure 6 represents the floor plan of our second exper-

iment site—a floor in a computer science department

building at an academic institution, which we refer to as

Site II. In the figures, grey spaces are corridors; white

spaces are offices or laboratories. Site II contains just over

50 rooms in a 200 ft 9 80 ft area. We collected 286 fin-

gerprints with the pre-deployed WiFi network [Fig. 6(a)]

using a Dell laptop running Linux equipped with an Ori-

noco silver card. The Zigbee network [Fig. 6(b)] was setup

with 4 Telos Sky motes as landmarks and 94 fingerprints

were collected. For both networks, each RSS value is

(a) (b)

Fig. 5 Bayesian graphical model in our study. a RSS-based. b RSM-

based
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obtained as average over 60 sampled readings. Landmarks

and sample locations for both networks are shown as stars

and dots respectively.

We used the leave-one-out method for evaluating the

localization performance, which means that we chose one

location as the testing point, whereas the rest of the loca-

tions as the offline training data. As evaluation metric, we

use distance accuracy, the distance between the true

location and the estimated location, to characterize locali-

zation algorithms’ accuracy.

5.2 Performance comparison

Our design principle allows us to adapt algorithms to

achieve robustness to all-around signal strength attacks.

We expect such adaptation to offer robustness with com-

parable performance when there is no attack, i.e. without

considerable accuracy loss. To demonstrate this, we com-

pare the performance of both versions of the algorithms

without attacks as well as with attacks so that tradeoff can

be evaluated within the robustness context. We evaluate

the performance comparison with simulated attacks at Site

II and real attacks at Site I.

5.2.1 Site II, simulated attacks

Attacks in the experiments at Site II were simulated by

attenuating the testing point’s signal strength fingerprint

for the same amount (5, 10, and 20 dB) along all the

landmarks. Figures 7 and 8 plot the distance accuracy

CDF (Cumulative Distribution Function) for both the

original and the adapted algorithms using WiFi and Zig-

bee data respectively. Both sets of algorithms were eval-

uated for without attack and under different intensity of

signal strength attenuation attacks, annotated via legends.

The adapted algorithms have only one plot for each setup

since they offer complete robustness under strict all-

around signal strength attacks, which is the case with the

simulation.

Firstly, we see that all the algorithms degrade significantly

as the attack becomes more intense. This illustrates the

importance of designing algorithms robust to signal strength

attacks. Notice that in Fig. 8(d), algorithm degradation

appears to be less significant, mainly because its X-axis scale

is much larger than the other plots in the same figure.

Secondly, when there are no attacks, the adapted algo-

rithms have achieved comparable performance to the ori-

ginal algorithms. For WiFi data, the performance is almost

identical. For Zigbee data, the adapted algorithms suffer a

little more accuracy loss. We suspect this is due to the

inherent weakness and less-differentiating nature of this

data set. Notice, however, that all the adapted algorithms

still offer better performance than the original algorithms

under 10 dB attenuation attacks. Considering the attack

intensity we achieved with the simple tin can attack (20–30

dB, as shown in Sect. 2), we believe our adapted algorithms

still offer better tradeoff.

Finally, we notice that the adapted algorithms may

sometimes result in a few outliers with really bad perfor-

mance, shown as the long tails in Figs. 7(a) and 8(d). We

suspect this is due to the underlying ratio-based localiza-

tion approach in our adapted algorithms being less con-

straining, and further investigation is part of our future

work. Such outlier cases, however, should not outweigh the

overall comparable performance and robustness benefits

offered by the adapted algorithms.

5.2.2 Site I, real attacks

Figure 9 plots the distance accuracy CDF for both the

original and the adapted algorithms with or without tin can

attack. Figure 10 plots the performance for both versions of

algorithms with or without power variation attacks.

Firstly, without attacks, the adapted algorithms offer

very similar performance to the original algorithms. In fact,

they even perform better in certain cases [for example,

Fig. 9(a)]. Secondly, from the performance degradation in

reaction to attacks, we see that adapted algorithms offer
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much better robustness to attacks. Finally, we see that

power variation attacks of 20 and 40 dB have similar

effects on the set of original algorithms (Fig. 10). This is

different from what we observe in Sect. 5.2.1, where the

algorithms continuously degrade as the attack intensity

increases (Figs. 7, 8). This will be part of our further

investigation, while currently we suspect it may be related

to the limited amount of sample locations at Site I.

In summary, evaluations across two sites under different

wireless technologies (RFID, WiFi, and Mote sensor), with

both simulated and real attacks, demonstrate that algorithms

adapted according to our design principle offer comparable

performance to the original ones when there is no attack, thus

robustness is achieved (which will be further demonstrated

in the next section) without sacrificing much accuracy.

5.3 Robustness comparison

As mentioned in Sect. 3, real attacks do not strictly follow

all-around signal strength attack model. We expect our

design principle to achieve better robustness because the

RSM metric tends to go under less severe attack than RSS.

In this section, we evaluate if the adapted algorithms are

more robust, i.e. experience less performance degradation

than the original ones when under attacks.

Part of our evaluations in Sect. 5.2.2 on real attacks

scenarios demonstrated the overall robustness of our

adapted algorithms via the comparison of distance accu-

racy CDF. When attacks happen, however, we are more

concerned with the effect at each individual location. Thus

here we conduct more detailed analysis on robustness by

examining the accuracy degradation for each sample

location. Specifically, we characterize the accuracy deg-

radation as accuracyattack - accuracynormal. The robust-

ness is then represented by the distribution of degradations

across all the locations.

Figures 11 and 12 draw the boxplot for the distribution

of accuracy degradation from all algorithms under tin can

attack and power variation attack respectively. On each

box, the central mark is the median, the edges of the box

are the 25th and 75th percentiles, the whiskers extend to

the most extreme data points not considered outliers, and

outliers are plotted individually.

Firstly, notice that some of the degradation distribu-

tions extend into negative values, which means that for

certain sample locations attacks have in fact improved

localization accuracy. This is possible because signal

propagation is very noisy in indoor environment, and the

attacks may to some extent correct the bias introduced by

the noise.
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Fig. 8 Performance comparison, site II, Zigbee
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Secondly, we see that the accuracy degradation plot

reveals more details about the effect of attacks. For exam-

ple, according to Fig. 9(c), we may expect the accuracy for

using the adapted ABP algorithm, ABP-RSM, to degrade no

more than 10 ft [comparing ABP-RSM vs. ABP-RSM, attack

in Fig. 9(c)]. Figure 11, however, shows that in certain

extreme cases the degradation goes up to more than 20 ft.

Finally, compared to the corresponding original algo-

rithms, although the adapted algorithms are not always

better in terms of the best case in the degradation distri-

bution [minimum degradation, for example, in Fig.12(b)],

they are always better and in many cases significantly

better in terms of 25th percentile, median, 75th percentile,

and the worst case of the degradation distribution. We thus

conclude that our adapted algorithms experience consid-

erable less degradation than the original algorithms, indi-

cating much better robustness.

6 Related work

Localization has been researched in several settings

(indoor, outdoor, and with the use of wireless sensor net-

works) and a wide range of technologies has been explored

(ultrasound [24], infrared [28], WiFi, and custom radios).

Within this wide variance, the works using WiFi and signal

strength [1, 13, 22] are most closely related to ours. Our

work is not a specific localization approach. It instead

proposes a general design guideline that can be applied to

many RSS-based algorithms to achieve the desired

robustness to signal strength attacks.

The usage of new metric RSM in our design principle

essentially relies on the fact that distance ratio information

allows for localization. Several previous works have pro-

posed ratio-based localization algorithms. Yang et al. [30]

proposed a ratio-based localization algorithm within
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wireless sensor networks for better energy efficiency, where

distance information is straightforwardly approximated by

hop-count from the sensor node to the landmark nodes. Li

et al. [17] proposed to localize by solving the non-linear least

square problem formed by the ratio relationship. Lee et al.

[16] proposed a less computationally intensive algorithm to

iteratively localize. Lee et al. [16], Li et al. [17] both assume

signal degradation rate is known to translate RSS directly

into distance ratio, which requires inference from the offline

profiling data. Li [18] demonstrated that the fundamental

ratio relationship in the RSS data (even without knowing the

exact distance ratio) can be explored to completely avoid the

offline profiling phase. Our work is not another ratio-based

algorithm. It is instead a general design principle, which

recognizes that the benefits of robustness from using RSM

metric can be integrated into many existing RSS-based

algorithms. Hossain et al. [9, 10] are related to our work as

they also made use of the RSM metric. Their work, however,

focused on robustness across different mobile devices.

Comparatively, we have also extended the applicability of

our principle to a broader spectrum of algorithms.

Recently, it has been recognized that there are many non-

cryptographic attacks that can affect localization perfor-

mance [6] and secure localization algorithms have been

proposed to address these attacks. Capkun and Hubaux [4]

uses a distance bounding protocol [3, 26] to upperbound the

distance between two nodes. Location estimation (via mul-

tilateration) with distances from the bounding protocol can

be verified against these bounds and any inconsistency will

then indicate attack. Lazos et al. [15] uses both directional

antenna and distance bounding to achieve security. Liu et al.

[21] proposes to detect attacks based on data inconsistency

from received beacons and to use a greedy search or voting

algorithm to eliminate the malicious beacon information. Li

et al. [20] makes use of the data redundancy and robust

statistical methods to achieve reliable localization in the

presence of attacks. Li et al. [20] is most related to our work

as they proposed a possible solution to the fingerprinting-

based localization that we focus on. Their solution works

when less than half of the landmark readings are under attack

while we focus on all-around attacks, where all the landmark

readings are affected.

7 Conclusion

We focused this work on providing a principle to design

localization algorithms so that they are robust to signal

strength attacks. We formulated the so-called all-around

signal strength attack, where similar attacks are launched

towards all landmarks. Our experiments in a real office-

building environment confirmed the feasibility of launch-

ing such attacks. To make the location estimates resilient to

attack, we proposed the RSM to achieve robustness. We

showed theoretically the correctness of using RSM to

perform robust wireless localization under the all-around

signal strength attack. We further demonstrated its usage

by adapting a broad set of localization algorithms,
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including lateration based, fingerprint matching, probabi-

listic based, and Bayesian Networks, according to our

proposed design principle.

We evaluated both performance and robustness of the

adapted localization algorithms. Through the real attacks

conducted in experiment site I by using RFID tags and the

simulated attacks applied to the data sets collected from

experiment site II by using both WiFi cards and mote

sensors (Zigbee), we compared the performance of our

adapted algorithms to those original ones. Our results

obtained from the set of adapted algorithms are promising,

showing comparable performance to the original ones

under normal condition (no attacks). Moreover, we con-

ducted two real sets of attacks by using tin can and varying

transmitter’s power level respectively. We found that the

adaptive algorithms experienced significantly less perfor-

mance degradation under attacks than original algorithms,

indicating much better robustness when using our RSM

design principle. Our work provides design guidance for

achieving resilient location estimation under all-around

signal strength attacks, which does not require additional

computational cost yet easy to adapt.
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