
Achieving Secure and Efficient Data Collaboration in
Cloud Computing

Xin Dong†, Jiadi Yu†, Yuan Luo†, Yingying Chen‡, Guangtao Xue† and Minglu Li†
†Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, P.R.China

Email: {xindong, jiadiyu, yuanluo, gt xue, mlli}@sjtu.edu.cn
‡Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken NJ 07030, USA

Email: yingying.chen@stevens.edu

Abstract—Cloud storage services enable users to remotely
store their data and eliminate excessive local installation of
software and hardware. One critical issue is how to enable
a secure data collaboration service including data access and
update in cloud computing. A data collaboration service is to
support the availability and consistency of the shared data among
multi-users. In this paper, we propose a secure and efficient
data collaboration scheme SECO. In SECO, we employ a two-
level hierarchical identity based encryption (HIBE) to guarantee
data confidentiality against untrusted cloud. This paper is the
first attempt to explore secure cloud data collaboration service
that precludes information leakage and enables a one-to-many
encryption paradigm, data writing operation and fine-grained
access control simultaneously. Security analysis indicates that
the SECO enforces fine-grained access control and collusion
resistant. Extensive performance analysis and experiment results
demonstrate that SECO is highly efficient and low overhead on
computation and communication.

I. Introduction

Cloud computing [1], the long-held dream of computing
as a utility, is rapidly evolving to revolutionize the way data is
stored/used. Cloud computing benefits the data users in that it
allows convenient access and use of storage resources offered
by a cloud server provided (CSP). Challenges in security,
however, posed by outsourcing data to cloud, come along with
benefits. Outsourcing users’ data to the cloud initiates a series
of problems about security and privacy. Examples of security
breach never stop showing up [2]. Therefore, maintaining data
confidentiality becomes critical to enable wide deployment of
CSP-based data service with high quality.

Recently, the notion of secure cloud storage services has
been proposed in the content of ensuring remotely stored
data under different systems. These existing works addressed
secure cloud storage issue either by introducing attribute-based
encryption (ABE) [3] for fine-grained access control [4][5], or
by utilizing owner-write-user-read mechanism [6] to achieve
cryptography-based access control and only support course
grained access control. The ABE-based schemes are data-read
sharing services, while owner-write-user-read mechanism is
a one-to-one encryption paradigms meaning encrypted data
can only be decrypted by a particular recipient. Consequently,
existing solutions mainly focus on how to afford secure data
access control (read) for single user. None of works takes into

Research was sponsored by the Doctoral Program of Higher Education of
China (No. 20100073110016)

account that multi-users operate data (read/write) collabora-
tively, i.e, data collaboration service.

A Data Collaboration service is to support the availability
and consistency of the shared data among multi-users. Let’s
consider a typical data collaboration service scenario. Com-
panies outsource their data to the cloud and then authorize
employees to access these data. The untrusted cloud servers,
however, may disclose confidential information about an en-
terprise to their business competitors or even hide data loss
to maintain their reputations [7][8]. In order to ensure data
security, companies and enterprises usually have to encrypt the
data before outsourcing it to the cloud, a fact that challenges
the convenience when employees need to access data. To avoid
information leakage, data have to be restrained within the reach
of authorized users. Thus the access policy is: user can only
access the authorized data; the CSP and other unauthorized
users knows nothing about data. In addition, whoever updates
data can determine the access privilege of the data.

To satisfy the above policies in data collaboration ser-
vice, we face the following challenges. Firstly, the encryp-
tion paradigm should be one-to-many that indicates multiple
recipients can decrypt the encrypted data to achieve data
collaboration. Secondly, authorized users have the privilege
to operate the cloud data, so the encryption paradigm should
support data writing operation. Thirdly, the system should
provide fine-grained access control to the team members. Thus,
realizing secure data collaboration service will be essential in
achieving robust and secure cloud storage systems. However,
there is no existing solution, to the best of our knowledge, to
tackling the problem of secure data collaboration service in
cloud computing.

In this paper, we propose a scalable scheme (SECO) to
enable secure cloud data collaboration with explicit dynamic
data/user. For cloud data security, we employ a two-level
hierarchical identity-based encryption (HIBE) scheme, which
contains a root private key generator (PKG) and a number of
independent cooperative domains. Each domain has a domain
PKG that requests a private key from the root PKG and
generates secret keys for each domain user. During data
collaboration, to achieve one-to-many encryption paradigm,
a user encrypts data with multiple recipients’ public keys so
that only the intended domain recipients are able to decrypt
the data. To support writing operation, every authorized user
can encrypt the decrypted data after modifying (read/write) the
decrypted data, and then send it into the cloud to share with
other domain users. The data writing operation does not in-

978-1-4799-0590-4/13/$31.00 ©2013 IEEE

troduce security problems. Specifically, the main contributions
of this paper can be summarized as following: we propose
SECO that enables secure and efficient data collaboration
in cloud computing, which realized one-to-many encryption
paradigm, writing operation, fine-grainedness and collusion
resistant simultaneously without any information leakage. Our
work is the first attempt to explore secure data collaboration
in cloud computing. We have conducted extensive theoretical
analysis and real experiments to evaluate the performance
of SECO. The result indicates that SECO introduces low
overhead on computation, communication and storage and
realizes the effectiveness and efficiency.

The rest of the paper is organized as follows. Section II
discusses related work. In Section III, we introduce the system
model and thread model. Section IV presents details of SECO.
Section V and VI analyze the security and performance of
SECO respectively. Finally, Section VII concludes the whole
paper.

II. Related work

With enterprises outsourcing their data into the cloud, a
number of cryptosystems have been used to encrypt these data.
Identity-based encryption (IBE) is one of the popular choices.
The concept of IBE is proposed by Shamir [9], and the first
fully functional IBE schemes are described by Boneh [10]
and Cocks [11]. In IBE, the public key for a unique user
can be set to any value (such as one’s identity) and the
corresponding private key is generated by a trusted third party
called private key generator (PKG). Relatively speaking, the
IBE scheme is a public key cryptosystem (PKC) and can
eliminate the searching for recipient’s public key. To reduce the
workload on the PKG, Horwitz et al. [12] introduced a HIBE
scheme with collusion-resistance. Gentry et al. [13] presented
a HIBE scheme with total collusion resistance and chosen
ciphertext security (CCA) in the random oracle model. Later
on, Boneh et al. [14] introduced an efficient HIBE scheme
with selective-ID security without random oracles model under
BDH assumption. In recent works, Gentry et al. [15] presented
a fully secure HIBE scheme that has full security for more than
a constant number of levels. However, these HIBE schemes are
all one-to-one encryption paradigms.

Furthermore, existing works can be found in the areas of
secure outsourced data storage and sharing services. Adya et
al. [16] used symmetric keys to encrypt data and provided
a secure, scalable data system that logically functions as a
centralized data server but is physically distributed among
a set of untrusted servers. However, every user used their
public key to encrypt the symmetric keys and thus bring
high overhead on key management. In [17], Kallahalla et al.
proposed a cryptographic data system and used verify and
sign keys to determine whether or not a user can read or
write data respectively. Since the key generation procedure
is proportional to the total number of data-groups, the above
schemes are not suitable for the case of data collaboration in
cloud computing, in which the number of data-groups could
be enormous. In addition, the above schemes are one-to-one
encryption paradigms and only support coarse-grained access
control.

Goh et al. proposed SIRIUS [18] that adopted a compli-
cated structure and provided end-to-end security. However, the

Domain

Cloud Servers

R-PKG

Domain Domain

Fig. 1. System model.

complexity of the scheme depends on each meta data size and
thus is not scalable. Wang et al. [6] proposed a mechanism in
owner-write-users-read applications that assigned every data
block with a different key to achieve flexible cryptography
based access control. However, the users only can read the
data but not write data, and thus are not suitable for data
collaboration in cloud computing.

III. Problem Statement

A. System Model

Generally, a cloud data collaboration system has four
different parties in network: Cloud Server (CS) provides high-
quality services utilizing a number of servers with significant
storage space and computation power; Users cooperate with
each other to complete a project, store their data in the CS
and reply upon the CS for data maintenance; Root Private
Key Generator (R-PKG) possesses a master key and generates
corresponding private keys for lower-level PKGs; Domain
Private Key Generators (D-PKGs) request private key from
R-PKG and generates private keys for domain entities.

Fig.1 depicts the system model, which is characterized by
a two-level HIBE scheme. From the system model, we can
see that it consists of a R-PKG and a number of domains.
A domain consists of a D-PKG and a number of users who
cooperate to complete a project. In practice, R-PKG is a trusted
third party which assigns keys, and D-PKG is a team leader
who manages all users. All entities in a domain store their data
into a set of cloud servers that are running in a cooperated
and distributed manner. Users use their keys to decrypt the
data stored in the CS. All entities in the domain can interact
with the CS to dynamically access (read, write, update, etc.)
the data so that they can work collaboratively. The R-PKG
generates keys for all D-PKGs and system public parameters
for all system entities. Furthermore, PKGs and users do not
have to be online all the time, whereas the cloud server is
always online.

B. Thread Model

The adversary model considers most threats toward cloud
data confidentiality. In the system model, cloud server is semi-
trusted. Namely, it behaves properly most of time, but for
some benefits the cloud server might try to find out as much
secret information as possible.In fact, there are three types of
threats: Both inner threats (CSP and users who might obtain
the unauthorized data) and outer threats (external adversaries
beyond the domain of this system, e.g., unauthorized attackers)
might be presented; Attacks can either be active (unauthorized

users who may inject malicious data into the cloud) or be
passive (unauthorized users eavesdropping on conversations
between users and the cloud); For the purpose of harvesting
data contents, CSP and users may collude and try to access
unauthorized data. Note that, in the adversary model, the
communication channels between users and CS are secured
under existing protocols, such as SSL.

IV. The Design of SECO

In order to achieve secure cloud data collaboration, we
propose a two-level HIBE scheme SECO. SECO realizes one-
to-many encryption paradigm such that an encrypted domain
data can be decrypted by many authorized users.

A. Overview

To embody the users’ role in data collaboration, SECO
employs a two-level hierarchical architecture in cloud com-
puting. The P-PKG manages a number of D-PKGs while each
D-PKG manages a number of domain users. In a domain, a
user encrypts data with multiple recipients’ public key and
stores it to the CS after modifying the data. So only those
intended recipients and the D-PKG can decrypt the data using
their own secret keys. A user only takes public keys of the
recipients and system parameters as inputs to encrypt data.
Any other users outside the recipients list cannot obtain any
data information even if all of them collude. Therefore, users
in the same domain can cooperate to complete work without
worrying about their data security.

B. Preliminaries

We give some related definitions and assumptions similar
to those given in [10][13], which are used in SECO.

Bilinear Diffie-Hellman (BDH) Parameter Generator: As
in [13], a randomized algorithm IG is a BDH parameter
generator which takes a security parameter K >0 as input,
and outputs the description of two groups G1, G2 of the prime
order q and a bilinear map ê : G1 × G1 → G2 in polynomial
time.

Bilinear Map: Let G1 and G2 be two groups of prime
order q, and g1 is the generator of group G1. ê is a bilinear
map if ê : G1 ×G1 → G2 satisfies the following properties:

• Bilinearity: for all u, v ∈ G1 and a, b ∈ Zq where
Zq = {0, 1, 2,q − 1}, have ê(ua, vb) = ê(u, v)ab.

• Computability: for any u, v ∈ G1, there is a polynomial
time algorithm to compute ê(u, v) ∈ G2.

• Non-degeneracy: ê(g1, g1) , 1.

BDH Problem: Randomly choose P as well as aP, bP and
cP where P ∈ G1 and a, b, c ∈ Zq, compute ê(P, P)abc.

BDH Assumption: As in [13], the advantage AdvIG(B)
that an algorithm B has in solving the BDH problem is
defined to be the probability that the algorithm B takes
G1,G2, ê, P, aP, bP, cP as inputs and outputs ê(P, P)abc, where
(G1,G2, ê) is the output of BDH parameter generator IG for
large security parameter K > 0, P is a random generator
of group G1, and a, b, c are random elements of Zq. The
BDH assumption is that AdvIG(B) is negligible for all efficient
algorithm B.

C. Construction of SECO

SECO is a two-level HIBE system, where Level0 = {R-
PKG} and Level1 = {D-PKGs}. R-PKG generates private keys
for the D-PKGs, and then D-PKG generates private keys for
the domain users. The D-PKG has two secret keys: a private
key and a master key. D-PKG uses the two keys to generate
private keys for all his domain users. Each user then picks a
random seed as his master key. In a domain, each user and
D-PKG has a primitive ID, which is an arbitrary string, such
as users ID card number and email address. An user’s public
key is an ID-tuple consisting of the D-PKG’s ID and his own
ID, i.e, (D-PKG’s ID, User’s ID) [12]. In addition, the R-PKG
also publishes several system parameters used to encrypt and
decrypt the cloud data.

Let K be the security parameter used by a BDH parameter
generator IG. The ID-tuple for user Ei is (IDdom, IDi) where
IDdom is the ID of the D-PKG. SECO is specified by the
following five randomized algorithms.

Root Setup: The R-PKG takes a security parameter K as
input, and outputs params (system parameters) and a root
master key s0. The system parameters which contain the
description of plaintext spaceM, ciphertext space C and some
other parameters are published, while the root master key s0
only is known to the R-PKG.

The R-PKG takes as input a security parameter K and
runs the BDH parameter generator IG to generate two group-
s G1, G2 of prime order q. It generates a bilinear map
ê : G1 × G1 → G2 which has the properties of bilinearity,
computability and non-degeneracy. The R-PKG then picks an
arbitrary generator P0 ∈ G1 and a seed s0 ∈ Zq randomly,
where Zq = {0, 1, 2,q − 1}, and it sets Q0 = s0P0. Finally,
the R-PKG defines four cryptographic hash functions H1 :
{0, 1}∗ → G1, H2 : G2 → {0, 1}n, H3 : {0, 1}n×{0, 1}n → Zq and
H4 : {0, 1}n → {0, 1}n for some n, and the four hash functions
will be treated as random oracles.

The plaintext space is M = {0, 1}n, while the ciphertext
space is C = Gt

1×{0, 1}n where t is the number of the intended
recipients. The parameters of the system are params =<
G1,G2, ê, P0,Q0,H1,H2,H3,H4 >. The master key of R-PKG
is s0 ∈ Zq.

The Domain Setup: Each D-PKG obtains the system
parameters (params) from the R-PKG. Each D-PKG randomly
picks a sdom ∈ Zq as his master key which will be used to issue
private keys to the domain users. Except for sdom, each D-PKG
is not permitted to generate any other parameters.

Key Generation: The R-PKG uses its master key to gen-
erate private keys for D-PKGs while D-PKG uses the system
parameters params and their secret keys to compute private
keys for all the domain users. Let S 0 be the identity element
of group G1.

For each D-PKG Edom ∈ Level1, it picks a random
sdom ∈ Zq as its master key. Given the public IDdom, the R-
PKG generates the private keys S Kdom for each Edom. It first
calculates Pdom = H1(IDdom) ∈ G1; then the R-PKG computes
private key for D-PKG as:

S Kdom = S 0 + s0Pdom

and sends the value Qdom = sdomP0 to Edom.

For each D-PKG, it has two secret keys: a master key sdom
and a private key S Kdom. Private key S Kdom is used to decrypt
all domain data stored in the CS. Each D-PKG uses his private
key S Kdom and master key sdom to generate private keys for
all users belonging to this domain.

For each user whose D-PKG is Edom, the ID-tuple for user
Ei is (IDdom, IDi). Ei randomly picks an element si ∈ Zq as
his master key. Edom generates the private key S Ki for Ei.

For each user Ei, the D-PKG Edom first calculates Pi =
H1(IDdom, IDi) ∈ G1; then it computes private key for Ei as:

S Ki = S Kdom + sdomPi

and sends to Ei the value Qdom and Qi which Qi = siP0. Ei
has two secret keys: a master key si and a private key S Ki. Ei
uses si and S Ki to decrypt the authorized data in the CS.

Encryption: A user inputs system parameters params,
plaintext M ∈ M and the ID-tuples of the intended data
recipients, and then calculates a ciphertext C ∈ C. After
modifying data D, the user encrypts it with t recipients’ ID-
tuple (IDdom, IDi) for 1 ≤ i ≤ t in the same domain.

The user first calculates Pi = H1(IDdom, IDi) ∈ G1 for
1 ≤ i ≤ t and Pdom = H1(IDdom). Then the user picks a random
σ ∈ {0, 1}n and sets r = H3(σ,M). Therefore, the ciphertext is
set as:

C = [rP0, rP1, ..., rPt, σ� H2(gr),M � H4(σ)]

where g = ê(Q0, Pdom) ∈ G2 as before. The user encrypts the
data D with t intended recipients in the same domain, and
sends the ciphertext C to the CS. Note here, as the D-PKG
manages all the domain users, a user can get the recipients’
public keys from the D-PKG or other users.

Decryption: A user or D-PKG inputs system parameters
params, ciphertext C ∈ C, and its private key S K, and then
recovers the data D ∈ M. The D-PKG can decrypt all the
encrypted data belonging to the domain, whereas the users
only can decrypt the authorized data.

Given C = [U0,U1, ...,Ut,V,W] be the ciphertext encrypted
using the t recipients’ ID-tuple (IDdom, IDi). Here Ui =
rPi,V = σ� H2(gr) and W = M � H4(σ). If (U1, ...,Ut) < Gt

1,
Edom rejects this ciphertext. To decrypt C, the D-PKG Edom
computes V � H2(ê(U0, S Kp)). We observe that:

V � H2(ê(U0, S Kdom))
= V � H2(ê(rP0, S 0 + s0Pdom))
= V � H2(ê(s0P0, rPdom))
= V � H2(ê(Q0, Pdom)r) = σ.

After calculating the value of σ, Edom then computes W �
H4(σ) = M.

Given the ciphertext C = [U0,U1, ...,Ut,V,W] to each
intended recipient Ei of 1 ≤ i ≤ t. If (U1, ...,Ut) < Gt

1, Ei
rejects this ciphertext. To decrypt C, the recipient Ei executes
the following setups:

• computes Pi = H1(IDdom, IDi);

• computes V � H2(ê(U0, S Ki)/ê(Qp,Ui)) to recover σ;

• computes W � H4(σ) = M.

• sets r = H3(σ,M), tests that Ui = rPi. If not, rejects
the ciphertext. Otherwise, outputs M as the decryption
of C.

Observe that:

V � H2(ê(U0, S Ki)/ê(Qdom,Ui))
= V � H2(ê(rP0, S Kdom + sdomPi)/ê(Qdom, rPi))
= V � H2(ê(rP0, s0Pdom)ê(rP0, sdomPi)/ê(Qdom, rPi))
= V � H2(ê(s0P0, rPdom)ê(sdomP0, rPi)/ê(Qdom, rPi))
= V � H2(ê(s0P0, Pdom)r) = σ.

The domain users cooperate to complete a project and store
their project data into the CS. The domain PKG can decrypt
all domain data while any user in this domain only can access
the data that he is allowed.

D. Signature scheme

SECO also has ability to support signature. Compared
to traditional public key infrastructure (PKI), IBE scheme
does not require online public key lookup. Indeed, we can
transform any PKI signature scheme to an ID-based signature
scheme using certificates. When a user E j wants to sign M
with his public key (IDdom, ID j), he first calculates PM =
H1(IDdom, IDi,M) ∈ G1 and S ig(IDdom, IDi,M) = S K j+s jPM .
Then, E j sends [S ig,Q j] as the signature for (IDdom, ID j, M)
where Q j = s jP0. When the recipients receive the signature,
they confirm the following equation:

ê(P0, S ig) = ê(Q0, P1)ê(Qdom, P j)ê(Q j, PM).

In practice, we can use the signature and the aforementioned
proposed scheme SECO in a PKI system together.

V. Security Analysis

In the previous section, we show that our secure data col-
laboration scheme SECO can realize one-to-many encryption
paradigm and writing operation simultaneously. In this section,
we first discuss the security about SECO. By lack of space, we
omit the rigorous security proof about the proposed scheme.
Then, we provide the realization of fine-grained of access
control and collusion resistant.

A. Security of SECO

In SECO, the message M is encrypted in the form of
C = [rP0, rP1, ..., rPt, σ � H2(gr),M � H4(σ)]. Obviously, the
adversary need to construct σ. To obtain σ, the adversary
can recovery ê(Q0, Pdom)r. Although the adversary can obtain
some public parameters available. i.e, Q0 and Pdom, he is
unaware of the value of random seed r. Therefore, ê(Q0, Pdom)r

cannot be constructed directly. We know that ê(Q0, Pdom)r =
ê(U0, S Kdom). To construct ê(Q0, Pdom)r, the adversary can
obtain ê(U0, S Kdom) instead. We recall that, the occurrence
of S Kdom is in the D-PKG secret key, the adversary cannot
obtain the private keys. For this reason, outside adversaries
cannot compromise the ciphertext and SECO is secure.

B. Fine-grained of access control

In SECO, the user who modifies data is able to define and
enforce who can access this data and encrypt with multiple
recipients’ public keys. Each user has secret keys from the
D-PKG. Suppose a user Ei download the encrypted data.
If this data is encrypted with Ei public key, Ei can obtain
the corresponding Ui = rPi, and then decrypts this data by
calculating: W �H4(V �H2(ê(U0, S Ki)/ê(Qdom,Ui))) to obtain
the plaintext. However, if a user is not in the encryption
list, then he cannot obtain Ui in the ciphertext text. So the
decryption algorithm will fail. Specifically, only those intended
recipients can decrypt this data. Therefore, users only can
access the data they are allowed and not access the data they
are not authorized to.

C. Fully collusion secure

In SECO, the data M is encrypted in the form of C =
[U0,U1, ...,Ut,V,W] where V = σ�H2(gr) and W = M�H4(σ).
Obviously, unauthorized users must construct H2(gr) where
g = ê(Q0, Pdom) ∈ G2 to decrypt ciphertext C. Although
unauthorized users can obtain Q0 and Pdom, they are un-
aware of the random seed r, so ê(Q0, rPdom) cannot to be
constructed directly. Beside, unauthorized users observe that:
ê(Q0, rPdom) = ê(U0, S Kdom). To recover plaintext, unautho-
rized users may recover ê(Q0, rPdom) instead of ê(U0, S Kdom).
However, since S Kdom is only known to R-PKG and D-PKG,
unauthorized users also cannot recover ê(U0, S Kdom). There-
fore, colluded users cannot recover plaintext. In addition, for an
unauthorized ciphertext, there does not exist the corresponding
Ui for these unauthorized users. Unauthorized users cannot use
decryption algorithm to recover plaintext. Therefore, any of
these unauthorized outside the intended recipients will have
no idea of the plaintext, even if all of them collude.

VI. Performance Analysis

In this section, we first evaluate the computation complex-
ity. Then we analyze the communication overhead. At last, we
present the storage cost.

A. Computation Complexity

In SECO, the R-PKG generates two groups G1, G2 of order
q and a bilinear map to achieve the five randomized algorithms.
In all computations, pairing computation, i.e., bilinear map
computation, is the most expensive operation. In SECO, Root
Setup generates the system parameters and a master key for
R-PKG, and Domain Setup picks a master key for D-PKG.
In Key Generation, PKGs generate keys for users. These
three algorithms have no pairing computations and need to
run only once at initialization time. Moreover, the size of
system parameters and keys are fixed in length. Therefore, the
computation complexity of these three algorithms is negligible.
In key generation, the R-PKG needs two scalar multiplications
to compute S Kdom and Qdom for each D-PKG Edom, and the D-
PKG needs two scalar multiplications to calculate S Ki and Qi
for each domain user Ei. In Encryption, a user encrypts data
with t recipients’ public keys. He needs one pairing computa-
tion to calculate ê(Q0, Pdom), and t + 1 scalar multiplications
to compute rPi for 0 ≤ i ≤ t. Since the pairing computation is
independent with data encryption and Q0, Pdom are the same in

100 200 300 400 500 600 700 800 900 1000

Number of Users

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
i
m
e
(
s
)

16KB

32KB

64KB

Fig. 2. The cost of encryption algorithm.

a domain, for each different data, pairing computation is calcu-
lated only once for all domain users. In Decryption, the D-PKG
needs one pairing computation to calculate ê(U0, S Kdom), and
user Ei needs two pairing computations to calculate ê(U0, S Ki)
and ê(Qdom,Ui). Since U0, S Kdom and S Ki are fixed, the D-
PKG calculates ê(U0, S Ki) once, and Ei calculates ê(U0, S Ki)
once. From the above analysis, the computation complexity of
SECO is acceptable.

We also conduct a thorough experimental evaluation about
the time cost of SECO. We calculate the total computing to
gain the time cost. The whole experiment system is implement-
ed by Python language on a Windows 7 machine with Core 2
Duo CPU running at 2.0 GHz. We report the average of 100
trials. Fig.2 plots the encryption cost for preparing three kinds
of data size as the number of recipients various. From Fig. 2,
we see the encryption time grows linearly with the number
of the recipients. The time to encrypt 64KB data with 800
recipients approaches to 1.6 seconds, which is an ideal result.
Fig.3 plots the D-PKG and user decryption cost as the data
size various. In Fig. 3, we notice the cost both by the D-PKG
and user is nearly linearly proportional to the number of the
data size. Meanwhile, users take more time than the D-PKG
in decryption as the above analysis. To decrypt 64KB data,
the D-PKG takes 1 second and user Ei takes 1.5 seconds. The
algorithm does the pairing computation for each data, but the
pairing computation can be done once at the beginning as the
above analysis. The results of our experiments show SECO is
light weighted and efficient to be applied in practice.

B. Communication cost

In SECO, the communication cost is mainly attributable
to the encrypted data transmission. After encryption, the fol-
lowing information is sent by users along with the encrypted
data to the cloud: Value of Ui for every intended data recipient
which requires (t + 1)log|G1| bits, value of V which requires
n bits, and value of W which requires n bits. Thus, the
communication cost is given by (t+1)log|G1|+2n bits. Table I
shows the communication expenses comparison among SECO,
ABE-based schemes and symmetric key cryptosystem (SKC)
schemes. Here n is the length of the plaintext, t is the numbers
of the users, i is the number of attributes used in ABE-based
scheme [5] and k is the length of keys used in SKC-based
scheme [18]. Since the data size is fixed (n), t, k and i are
varying but have the same order of magnitude as n. From
Table I, we can see that SECO takes little communication
cost. The reason is that every data block is bind with t users
KeyID and two secret keys in SKC-based scheme, while in
ABE-based scheme, the data owner needs transfer the access
structure of the data and other parameters to the cloud. From
the above analysis, SECO takes little communication overhead

16 24 32 40 48 56 64

File Length (KB)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
i
m
e
(
s
)

D-PKG

E

i

Fig. 3. The cost of decryption algorithm.
TABLE I. Communication cost in ABE-based scheme, SKC-based scheme

and SECO

Scheme Communication costs
ABE-based |i| + 2log|i| + (|i| + 1)log|G1 | + log|G2 | + n
SKC-based 3tk + n
SECO (t + 1)log|G1 | + 2n

to achieve secure and efficient data collaboration service in
cloud computing.

C. Storage cost

The storage cost is one of the most significant aspects of
the data access control scheme in cloud storage services. We
analyze the storage overhead of SECO and compare it with
SKC-based scheme and ABE-based scheme. The storage cost
is assessed in terms of ciphertext storage overhead and key
storage overhead (secret keys and system parameters stored
on the users and D-PKG). Table II presents the comparative
results.
Ciphertext storage overhead: In ABE-based scheme, the size
of ciphertext is O(max(|I|, n)), with |I| as the number of
attributes the ciphertext issued. For SKC-based scheme, to
achieve read and write permission, each data is binding with
each user access privilege. The size of ciphertext depends on
the numbers of users and the size of key. Thus, the size is
O(n2). In SECO, as depicted in Section IV, the ciphertext is
composed of t intended recipients’ information and a body.
The body is just the encrypted message. The length of the
ciphertext is linear with the recipient quantity. The length
will increase an element on G1 when adding a recipient.
Thus the message size is O(n). Note here, when joining more
recipients, it just have one ciphertext which contains more
intended recipients’ information. From Table II, we can see
SECO takes the least ciphertext storage cost.
Key storage overhead: Compared with ABE-based scheme and
SKC-based scheme, SECO greatly reduced the key storage
overhead of the D-PKG(data owner). In ABE-based scheme
and SKC-based scheme, the data owner needs to store ev-
ery users access privilege. While in SECO, the D-PKG just
stores his own secret keys and system parameters. Users only
need store their own secret keys and system parameters in
SCK-based scheme and SECO. However, users in ABE-based
scheme have to store their own access structures with there
corresponding secret keys. Therefore, SECO also takes little
key storage overhead to achieves data collaboration in cloud
computing.

VII. Conclusion

In this paper, we address the one-to-many encryption
paradigm, writing operation and fine-grained access control
issue, and propose a secure cloud data collaboration scheme

TABLE II. Storage cost in ABE-based scheme, SKC-based scheme and
SECO

Scheme Ciphertext storage Key storage
D-PKG(Data owner) User

ABE-based O(max(|I|, n)) O(n) O(logn)
SKC-based O(n2) O(n) O(1)

SECO O(n) O(1) O(1)

SECO. SECO employs a two-level HIBE scheme to guarantee
data security against the cloud. SECO realizes a one-to-many
encryption paradigm and data writing operation simultaneously
to achieve secure data collaboration in cloud computing. Se-
curity analysis show that SECO is secure and can realize fine-
grained access control and collusion resistance. In addition,
we evaluate the performance of SECO about computation
complexity, communication cost and storage cost. The result
shows that SECO is low overhead and highly efficient.

References
[1] A. Fox et al., “Above the clouds: A berkeley view of cloud computing,”

University of California, Berkeley, Rep. UCB/EECS, vol. 28, 2009.
[2] M. Arrington, “Gmail disaster: Reports of mass email deletions,”

Online at http://www. techcrunch. com/2006/12/28/gmail-disasterreports-
ofmass-email-deletions, 2006.

[3] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in CCS’2006.
Alexandria, USA: ACM, pp. 89–98.

[4] G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based encryption for
fine-grained access control in cloud storage services,” in Proceedings of
the 17th ACM conference on Computer and communications security.
Chicago, USA: ACM, 2010, pp. 735–737.

[5] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable,
and fine-grained data access control in cloud computing,” in INFO-
COM’2010, San Diego, USA, pp. 1–9.

[6] W. Wang, Z. Li, R. Owens, and B. Bhargava, “Secure and efficient
access to outsourced data,” in Proceedings of the 2009 ACM workshop
on Cloud computing security. Chicago, USA: ACM, 2009, pp. 55–66.

[7] M. Shah, M. Baker, J. Mogul, and R. Swaminathan, “Auditing to keep
online storage services honest,” in Proceedings of the 11th USENIX
workshop on Hot topics in operating systems, San Diego, USA, 2007.

[8] G. Ateniese et al., “Provable data possession at untrusted stores,” in
Proceedings of the 14th ACM conference on Computer and communi-
cations security. Alexandria,USA: ACM, 2007, pp. 598–609.

[9] A. Shamir, “Identity-based cryptosystems and signature schemes,” in
Advances in cryptology. Springer, 1985, pp. 47–53.

[10] D. Boneh and M. Franklin, “Identity-based encryption from the weil
pairing,” in Advances in CryptologyłCRYPTO 2001, 2001, pp. 213–229.

[11] C. Cocks, “An identity based encryption scheme based on quadratic
residues,” Cryptography and Coding, pp. 360–363, 2001.

[12] J. Horwitz and B. Lynn, “Toward hierarchical identity-based encryp-
tion,” in Advances in CryptologyłEUROCRYPT 2002, pp. 466–481.

[13] C. Gentry and A. Silverberg, “Hierarchical id-based cryptography,”
Advances in CryptologyłASIACRYPT 2002, pp. 149–155, 2002.

[14] D. Boneh, X. Boyen, and E. Goh, “Hierarchical identity based
encryption with constant size ciphertext,” Advances in Cryptology–
EUROCRYPT 2005, pp. 562–562, 2005.

[15] C. Gentry and S. Halevi, “Hierarchical identity based encryption with
polynomially many levels,” in Theory of Cryptography, 2009.

[16] A. Adya, et al., “Farsite: Federated, available, and reliable storage for
an incompletely trusted environment,” ACM SIGOPS Operating Systems
Review, vol. 36, pp. 1–14, 2002.

[17] M. Kallahalla, E. Riedel, Q. Wang, and K. Fu, “Plutus: Scalable secure
file sharing on untrusted storage,” in Proceedings of the 2nd USENIX
Conference on File and Storage Technologies, 2003, pp. 29–42.

[18] E. Goh, H. Shacham, N. Modadugu, and D. Boneh, “Sirius: Securing
remote untrusted storage.” NDSS, 2003.

