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Abstract—Wireless localization using the received signal
strength (RSS) can have tremendous savings over using
specialized positioning infrastructures. In this work, we ex-
plore improving RSS localization performance in multipath
environments by varying the transmitter’s signal power
and frequency. Using a theoretical analysis, we first show
how selection of different signal powers and frequencies
can improve localization accuracy for the least squares
algorithm. We next develop a set of selection methods
that attempt to select the combinations of power and
frequencies which minimize the localization error. Our
selection methods are based on the observed standard
deviations of RSS as well as algorithm specific residuals.
Using active RFID tags, we experimentally characterize the
effect of using multiple signal powers and frequencies on
a wide spectrum of RSS-based algorithms. We found that
the performance of all the algorithms improves when lever-
aging on multiple power levels and frequencies, although
different algorithms present different sensitivity in terms
of localization accuracy under different selection methods.

I. INTRODUCTION

Using wireless devices to provide location is an
emerging area that will impact a diverse set of ap-
plications including those in asset tracking, workflow
management, geographic routing, and physical security.
Given that wireless devices are carried by many peo-
ple and objects, and all modern radio chipsets include
the hardware necessary to measure the received sig-
nal strength (RSS) of transmitted packets, there is a
tremendous cost and deployment advantage to re-using
the existing RSS infrastructure of the communication
network for localization.

The basic strategy of most RSS-based localization
follows a typical pattern: a transmitter or receiver, called
the device, measures the RSS to a number of landmarks
with known positions. The resulting collection of RSS
values, or fingerprint, is then used to position the device.
A wide range of algorithmic strategies have been tried,
ranging from minimization of least squares methods to
machine learning approaches.

However, multipath effects are key challenge to wire-
less localization using RSS. These effects include shad-

owing, i.e., blocking a signal, reflection, i.e., waves
bouncing off an object, diffraction, i.e., waves spreading
in response to obstacles, and refraction, i.e., waves
bending as they pass through different mediums. These
effects impact the RSS, and properly accounting for all
of them in complex indoor environments is a difficult
task. Typically, the average localization errors are around
10 ft and maximum errors are often 30 ft or more.

In this paper we explore one approach of improving
RSS localization performance in face of multipath ef-
fects. Our strategy is for the transmitter to vary its signal
frequency and power level, thus generating multiple RSS
values between the device and each landmark. The re-
sulting distinct RSS values for each frequency and power
level combination create a larger fingerprint than is
typical with a single frequency and power level. We call
each frequency and power level combination a dimension
of the fingerprint. We then apply a selection algorithm
that attempts to create a fingerprint that minimizes the
localization error.

In order to form a selection strategy, we must first
define what a higher-quality fingerprint is. We use two
metrics to help select the higher-quality fingerprint: the
deviation of RSS readings and the residual. We further
develop three selection strategies: (1) Whole Dimension,
whereby all dimensions of frequency and power level
are used for localization; (2) Matching Characteristic,
whereby a fingerprint is constructed with all landmarks
using the same frequency and power level combination;
and (3) Constrained Landmark, whereby all landmarks
are enforced to be used, but allowing any dimension to
be chosen for a landmark.

We applied both a theoretical analysis as well as
experimental validation of our approach. Our analysis
centers on the Linear Least Squares (LLS) algorithm; it
shows that selection should improve performance, and
the selection should take the dimensions with the mini-
mum variance within a dimension. We also experimen-
tally applied our approach to a broad class of localization
algorithms with a range of mathematical foundations,
from lateration based, to fingerprint matching, to proba-
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bilistic based, and Bayesian Networks. Leveraging a real
localization testbed, we programmed RFID transmitters
with varying frequency and power level. We were able to
vary the frequency at two levels, 400 MHz and 900 MHz
as well as simultaneously vary the power by 3 levels, 10,
5 and 0 dBm, resulting in 6 additional dimensions of RSS
between a device and a landmark. We then used a trace-
driven approach to evaluate the impact of our selection
strategies on this broad class of localization algorithms.

We found that using multiple frequencies and power
levels improved the performance of all the algorithms.
An interesting effect common across all the algorithms
is that median errors were substantially reduced. Exam-
ining a cumulative distribution function (CDF) of local-
ization errors, the median errors improved over 40% for
all the algorithms using multiple frequencies and power
levels, whereas the improvement of 90th percentile errors
varied from 32% to 58% depending on the algorithm. We
further found that different algorithms react differently
to the selection strategies. Selection was necessary to
improve performance and reduce computational cost
compared to using Whole Dimension selection, although
each algorithm required a slightly different selection
strategy.

The remainder of our paper is organized as follows.
We first provide background and related work in sec-
tion II. Section III provides our selection metrics and
describes the broad class of localization algorithms.
We also present our theoretical analysis of linear least
squares in Section III. Next, we describe our experimen-
tal methodology and present our selection strategies in
Section IV. Section V evaluates the effectiveness of the
various selection strategies on localization algorithms.
Finally, Section VI concludes our work.

II. RELATED WORK

Localization has been researched in several settings:
outdoor localization, indoor localization, and localization
with the use of wireless sensor networks. In the indoor
localization category, a wide range of technologies have
been explored: ultrasound [11], infrared [13], 802.11,
and custom radios. Within this wide variance, the works
using 802.11 and signal strength [1], [6], [9] are most
closely related to ours. Our work, however, does not
propose any specific localization algorithm. Instead, we
experiment to characterize the effect on a wide spectrum
of RSS-based indoor localization algorithms when the
wireless devices are equipped with multi-frequency and
multi-power.

Due to properties of wireless signal propagation, both
power level and frequency may inherently affect the per-
formance of localization: The power level at which the
signal is sent out decides how far the signal can travel;
the frequency at which the signal is transmitted dictates
how its propagation will be affected by the environment.
Thus, many works have proposed to utilize them in

different aspects of localization and position verification.
[8] proposed to use multi-frequency to allow more
accurate range estimation of RFID tags which is then
used in localization [17]. [12] recognized the challenge
for RSS-based localization if nodes in wireless sensor
networks conduct power scheduling for topology control,
then proposed to incorporate the power information into
MAC layer message in order to correctly localize with
such dynamic transmission power change. [15] proposed
to have the anchor node information broadcasted and
forwarded using different power levels so that hop count
can provide better estimate for distance. Transmitting
in multiple power levels is also proposed in [19] to
provide rough area localization for underwater sensors.
Finally, [18] proposed to use transmission power adjust-
ment to verify location claims from new devices.

Comparing to the above, our work does not utilize the
frequency or transmission power information directly.
We focus on examining the effect on localization al-
gorithms when multiple sets of RSS data (via different
frequency and power level) can be selected and used in
the system.

III. LOCALIZATION ALGORITHMS AND THEORETIC

ANALYSIS

In this section, we first define two selection metrics,
the deviation and the residual, which are used to help
select higher-quality RSS fingerprints. We then describe
a broad class of localization algorithms using RSS,
ranging from lateration based, to fingerprint matching,
to probabilistic based, and to Bayesian Networks. For
the linear least squares method, we provide a theoretical
analysis to show how our selection metrics can improve
the localization accuracy.

A. Terminology

We use the following definitions and terms to in-
troduce the localization algorithms and selection met-
rics. The fingerprints (i.e., RSS readings) are gen-
erated at multiple locations. For a targeting device
at location j, the fingerprint is represented as a
vector ((xj , yj), Sj) with (xj , yj) as the location j
where the RSS vector is collected. For example,
Sj = (sL1

1j , ..., s
Lq

1j , ..., sL1
ij , ..., s

Lq

ij ..., sL1
nj , ..., s

Lq

nj ) rep-
resent the RSS vector from n landmarks with Lq di-
mensions: element s

Lp

ij represents the RSS reading of a
targeting device at location j from the ith (i = 1...n)
landmark on the Lpth (Lp = L1...Lq) dimension. In
this work, a dimension represents each frequency and
power level combination at a landmark. We note that
certain localization algorithms need training data to build
signal maps during the offline phase, which is used for
the online real-time localization. We use the fingerprints
collected from multiple locations to form the training
data and denote T as the training set with multiple
vectors ((xj , yj), Sj) for j = 1...m, and m is the number
of locations used for training.
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B. Selection Metrics

Choosing the best fingerprint among the many possi-
ble combinations requires a characterization of the input
RSS values. In this section we describe the two metrics
we used for selection; the deviation of RSS readings and
residual. A given combination of RSS values can be
evaluated according to these metrics, and the best one
is selected as input to the localization algorithm.
Deviation of RSS Readings. We define the deviation

of RSS readings as the measurement of the Root Mean
Square Error (RMSE) when fitting the RSS readings
to the signal propagation model for each individual
dimension under one landmark. Thus, for a targeting
device at location j in the Lpth dimension of landmark i,
the deviation of RSS readings can be represented as the
RMSE of the estimated RSS ŝ

Lp

ij from the fitted signal

propagation model with respect to the observed RSS s
Lp

ij :

RMSE(ŜLp

i ) =

√√√√ 1
m

m∑
j=1

(ŝLp

ij − s
Lp

ij )2, (1)

where there are m fingerprints, and ŝ
Lp

ij is estimated by
the signal to distance propagation model based on our
prior work [14], and s

Lp

ij is the observed RSS of the Lpth
dimension in landmark i for j = 1...m locations.
Residual. The residual is represented as an error

during the intermediate step of the localization process,
which affects the final localization accuracy. Due to
different localization principles, various algorithms have
different residuals that are the leading factors contribut-
ing to the localization error. We next present our defi-
nition of residual for each algorithm together with the
algorithm description in the following.

C. Localization Algorithms

1) Lateration Based: Localization using the lateration
based approach is popular [5], [7], [10] and involves 2
steps: ranging and lateration.
Ranging Step: The purpose of the ranging step is to

estimate the distance di from the position of the targeting
device P = (x, y) to the ith landmark Li = (xi, yi),
which is represented as di =

√
(xi − x)2 + (yi − y)2.

A variety of physical modalities can be used to perform
the ranging step such as Received Signal Strength (RSS),
Time Of Arrival (TOA), Time Difference Of Arrival
(TDOA) and hop count. In this work, we employ RSS
to perform ranging. In particular, we used the linear
regression approach in our prior work [14] to obtain the
estimated distance d̂i.
Lateration Step: There are two popular meth-

ods, Nonlinear Least Squares(NLS) and Linear Least
Squares(LLS), to get the estimated position of the target
device P̂ = (x̂, ŷ). In NLS, from the estimated distance
d̂i and known positions Li = (xi, yi) of the landmarks,

the position (x, y) of the target device can be estimated
by finding (x̂, ŷ) satisfying:

(x̂, ŷ) = argminx,y

n∑
i=1

[
√

(xi − x)2 + (yi − y)2− d̂i]2,

(2)
where i = 1...n for n total number of landmarks. NLS
usually requires high computational complexity and is
difficult to analyze.

NLS can be approximated by solving a set of linear
equations [3] as AP̂ = b, where:

A =

⎛
⎜⎝

x1 − 1
n

∑n
i=1 xi xn − 1

n

∑n
i=1 xi

...
...

y1 − 1
n

∑n
i=1 yi yn − 1

n

∑n
i=1 yi

⎞
⎟⎠ (3)

and

b =
1
2

⎛
⎜⎜⎜⎜⎜⎝

(x2
1 − 1

n

∑n
i=1 x2

i ) + (y2
1 − 1

n

∑n
i=1 y2

i )
−(d̂2

1 − 1
n

∑n
i=1 d̂2

i )
...

(x2
n − 1

n

∑n
i=1 x2

i ) + (y2
n − 1

n

∑n
i=1 y2

i )
−(d̂2

n − 1
n

∑n
i=1 d̂2

i ).

⎞
⎟⎟⎟⎟⎟⎠

(4)

A is described by the coordinates of landmarks, and b
is composed of estimated distances to the landmarks
and the coordinates of landmarks. We call the above
formulation of the problem linear Least Squares(LLS).
The position estimation of the targeting device is done
by solving P̂ = (AT A)−1AT b.
Residual. We define the residual R of the lateration

method as the averaged difference between the estimated
distance to each landmark d̂i and the distance of the
localized position to each landmark

∥∥∥P̂ − Li

∥∥∥. The
residual is represented as

R =
1
n

n∑
i=1

(d̂i −
∥∥∥P̂ − Li

∥∥∥)2. (5)

Intuitively, we expect the smaller residual can lead to bet-
ter localization accuracy. We next provide an analysis of
the relationship between the residual and the localization
error.
Error Analysis. The residual can be represented in

the following format by replacing P̂ = (AT A)−1AT b
in Equation (5):

R =
1
n

n∑
i=1

(d̂i −
∥∥(AT A)−1AT b− Li

∥∥)2. (6)

We can write d̂i=di + εi where εi is the distance
estimation error, and substitute d̂i in Equation (4). Then
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we have:

b =
1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

(x2
1 − 1

n

∑n
i=1 x2

i ) + (y2
1 − 1

n

∑n
i=1 y2

i )
−((d1 + ε1)

2 − 1
n

∑n
i=1(di + εi)

2)

.

.

.
(x2

n − 1
n

∑n
i=1 x2

i ) + (y2
n − 1

n

∑n
i=1 y2

i )
−((dn + εn)2 − 1

n

∑n
i=1(di + εi)

2)

⎞
⎟⎟⎟⎟⎟⎟⎠

=
1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

(x2
1 − 1

n

∑n
i=1 x2

i ) + (y2
1 − 1

n

∑n
i=1 y2

i )
−(d2

1 + ε21 + 2d1ε1 − 1
n

∑n
i=1(d

2
i + ε2i + 2diεi))

.

.

.
(x2

n − 1
n

∑n
i=1 x2

i ) + (y2
n − 1

n

∑n
i=1 y2

i )
−(d2

n + ε2n + 2dnεn − 1
n

∑n
i=1(d

2
i + ε2i + 2diεi))

⎞
⎟⎟⎟⎟⎟⎟⎠

(7)

we further define b̃ as:

b̃ =
1
2

⎛
⎜⎜⎜⎜⎜⎝

(x2
1 − 1

n

∑n
i=1 x2

i ) + (y2
1 − 1

n

∑n
i=1 y2

i )
−(d2

1 − 1
n

∑n
i=1 d2

i )
...

(x2
n − 1

n

∑n
i=1 x2

i ) + (y2
n − 1

n

∑n
i=1 y2

i )
−(d2

n − 1
n

∑n
i=1 d2

i )

⎞
⎟⎟⎟⎟⎟⎠

(8)

Thus, b can be rewritten by b̃ as:

b = b̃− 1
2

⎛
⎜⎝

ε21 + 2d1ε1 − 1
n

∑n
i=1(ε

2
i + 2diεi)

...
ε2n + 2dnεn − 1

n

∑n
i=1(ε

2
i + 2diεi)

⎞
⎟⎠

(9)

and the true position of the targeting device P is P =
(AT A)−1AT b̃. Next, we continue Equation (6) by using
Equation (9) and obtain

R =
1

n

n∑
i=1

⎛
⎜⎝di + εi −

∥∥∥∥∥∥∥
P − Li − (AT A)−1AT

⎛
⎜⎝

M1

.

.

.
Mn

⎞
⎟⎠

∥∥∥∥∥∥∥

⎞
⎟⎠

2

,

(10)

where Mt = 1
2 (2dtεt + ε2t − 1

n

∑n
i=1(2diεi + ε2i )) with

t = 1...n. Since the quadratic terms of ε2
t and ε2

i are
much smaller than the first degree terms of εt and εi.
We can leave out the quadratic terms of ε2

t and ε2
i and

use M ′
t = dtεt − 1

n

∑n
i=1(diεi) with t = 1...n for

residual R. Continuing Equation (10), the residual can
be approximated as:

R ≈ 1

n

n∑
i=1

⎛
⎜⎜⎝di + εi −

∥∥∥∥∥∥∥∥
P − Li − (A

T
A)
−1

A
T

⎛
⎜⎜⎝

M ′
1

.

.

.
M ′

n

⎞
⎟⎟⎠

∥∥∥∥∥∥∥∥

⎞
⎟⎟⎠

2

=
1

n

n∑
i=1

(di + εi − ‖P − Li + ωε‖)2, (11)

where ε is the vector of εi, which is ε = (ε1...εn)T , and
ω is given by,

ω = −(AT A)−1AT Diag{d1 · · · dn}

+
1
n

(AT A)−1AT

⎛
⎜⎝

1
...
1

⎞
⎟⎠(

d1 · · · dn

)

= (AT A)−1AT (
1
n

⎛
⎜⎝

1
...
1

⎞
⎟⎠(

d1 · · · dn

)

−Diag{d1 · · ·dn}). (12)

Further, continuing Equation (11)

R =
1
n

n∑
i=1

(di + εi

−
√

(P − Li)T (P − Li) + 2(P − Li)T ωε + εT ωT ωε)2

=
1
n

n∑
i=1

(di + εi −
√

d2
i + 2(P − Li)T ωε + εT ωT ωε)2.

(13)

From our empirical study, we found that (P −L i)T ωε ≈
di

√
εT ωT ωε, so R can be further approximated as:

R ≈ 1
n

n∑
i=1

(di + εi − (di +
√

εT ωT ωε))2

=
1
n

n∑
i=1

(di + εi − (di +
√

εT Wε))2

=
1
n

n∑
i=1

(εi −
√

εT Wε)2, (14)

where W is defined as W = ωT ω. Therefore, the
expectation value of the residual R from Equation (14)
can be obtained as:

E(R) = E(
1
n

n∑
i=1

(εi −
√

εT Wε))2

= E(
1
n

n∑
i=1

(ε2i − 2
√

εiεT Wεεi + εT Wε)). (15)

We further define σi to be the standard deviation of
the estimated error εi to the ith landmark. By further
expanding Equation (15), we got

E(R) =
1
n

E(
n∑

i=1

ε2i )−
2
n

E(
n∑

i=1

√
εiεT Wεεi)

+ E(εT Wε)

=
1
n

n∑
i=1

σ2
i −

2
n

n∑
i=1

Wi,iσ
2
i +

n∑
i=1

Wi,iσ
2
i

=
1
n

n∑
i=1

σ2
i +

n− 2
n

n∑
i=1

Wi,iσ
2
i . (16)
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We next turn to examine the localization error e as the
following:

e =
∥∥∥P̂ − P

∥∥∥
2

=
∥∥(AT A)−1AT b− P

∥∥2
. (17)

Then, by substituting b from Equation (4) and P =
(AT A)−1AT b̃, we obtain

e =

∥∥∥∥∥∥∥
P − P − (AT A)−1AT

⎛
⎜⎝

M ′
1

...
M ′

n

⎞
⎟⎠

∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥
(AT A)−1AT

⎛
⎜⎝

M ′
1

...
M ′

n

⎞
⎟⎠

∥∥∥∥∥∥∥

2

= ‖ωε‖2
= εT ωT ωε = εT Wε. (18)

We note that the derivation of Equation (18) is similar to
Equation (11), and ω is given by Equation (12). Further,
since the representation of e in Equation (18) is the same
as the third term in Equation (16) for the expectation
value of the residual, we can thus write the expectation
of the localization error e as:

E(e) =
n∑

i=1

Wi,iσ
2
i . (19)

We note that W is a symmetric matrix. It is thus non-
negative definite and Wi,i is equal or larger than zero.

Based on the above error analysis, we observed that
both the residual and localization error are highly cor-
related with distance estimation error, which is derived
from the RSS measurement in our study. The noise,
measurement errors, and system bias in the RSS mea-
surement will impact the distance estimation accuracy,
and consequently the residual and localization error.
Moreover, we found that larger residual may cause larger
localization error, which suggests improving localization
accuracy through selecting smaller residual. In this study,
we derive methods to show that how to select from the
combination of wireless devices’ multiple frequencies
and multiple power levels so that to reduce the residual
and the corresponding localization error.

2) Fingerprint Matching: The Radar algorithm [1] is
a classic machine learning method based on fingerprint
matching, which requires building a signal map con-
sisting of RSS fingerprints with known (x, y) locations.
On top of the basic fingerprints in RADAR, Gridded
Radar (GR) uses the IMG (Interpolated Map Grid) to
build an interpolated signal map. GR builds a regular
grid of tiles over the localization area that describes
the expected fingerprint for the area described by each
tile. Given a RSS fingerprint of a targeting device, GR
returns the position (x, y) of the closest fingerprint in
the interpolated signal map to the one of the targeting
device as the location estimation, where closest means

the Euclidean distance of the fingerprints in the signal
space.
Residual: Given the observed fingerprint of a target-

ing device at location j, the residual of Gridded Radar
is defined as the Euclidean distance of the fingerprint
from the targeting device to the interpolated signal map
in signal space:

R =

√√√√ n∑
i=1

colM∑
col=1

rowM∑
row=1

∥∥∥s
Lp

ij − SG
Lp

i (row, col)
∥∥∥

2

(20)

where n is the number of landmarks, s
Lp

ij is the RSS
reading of the targeting device at location j in the Lpth
dimension of the ith landmark where Lp = L1...Lq with
q as the total number of dimensions under that landmark,
and SG

Lp

i represents the interpolated RSS matrix of the
Lpth dimension for the ith landmark, where row is the
total number of rows in the interpolated RSS matrix with
row = 1...rowM and col is the total number of columns
in the interpolated RSS matrix with col = 1...colM . We
note that for different landmark i, dimension Lp can be
different.

3) Probabilistic Based: In this work, we choose to
study Area Based Probability (ABP) [4], which is a
representative method based on the statistical Bayes’
Rule to perform location estimation. ABP also uses
the interpolated signal map as in GR and computes
the likelihood of the observed fingerprint of a target-
ing device matching a fingerprint of each tile in the
interpolated signal map. It returns the top probability tile
set whose sum matches the desired confidence level α.
In particular, by using Bayes’ rule, ABP computes the
probability of being at each tile Tj on the floor given
the fingerprint of the targeting device ST :

P (Tj |ST ) =
P (ST |Tj)× P (Tj)

P (ST )
(21)

Residual: Since the number of tiles in the returned
tile set represents how well the algorithm captures the
true location of the targeting device, the less the number
of returned tiles indicates the better the probabilistic
matching is found. We thus define the residual of ABP
as the number of tiles returned based on the confidence
level α.

4) Bayesian Networks: Bayesian Networks [4] uti-
lizes the Bayesian Graphical Model to compute the
distribution of the position (x, y) of a targeting device. In
particular, Bayesian Networks encodes the relationship
between the RSS readings and the location based on
the signal-distance propagation model. The initial pa-
rameters of the model are unknown, and the training
set collected from multiple known locations is used to
adjust the parameters of the model according to the
relationships encoded in the network.
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Figure 1. Bayesian graphical model in our study.

Figure 1 depicts the basic Bayesian Graphical Model
The random variables si, i = 1...n denotes the expected
signal strength of the corresponding dimension (e.g., a
combination of frequency and power level) in the land-
mark Li. The values of these random variables depend
on the Euclidean distance di between the landmark’s
location (xi, yi), and the location where the signal si

is measured (x, y). The baseline expected value of s i

follows a signal propagation model si = b0i+b1ilog(di),
where b0i, b1i are the parameters specific to each Li.
The distance di =

√
(x − xi)2 + (y − yi)2 in return

depends on the location (x, y) of the measured signal.
The network models noise and outliers by modeling
the expected value, si, as a t-distribution around the
above propagation model, with variance τ i, si ∼ t(b0i +
b1ilogdi, τi, 2). Using the training fingerprints T , the
network can learn the specific values for all the unknown
parameters b0i, b1i, τi and the joint distribution of (x, y)
location of the targeting device.

In general, there is no closed form solution for the
returned joint distribution of the (x, y) location. There-
fore, we use a Markov Chain Monte Carlo (MCMC)
simulation approach to draw samples from the joint
density, and then pick the samples that give a 95%
confidence on the density. Finally, we approximate the
returned area by the tiles where those samples fall.
Residual: When computing the joint distribution of

the location of the targeting device, we define the
residual as: R =

√
σ2

x + σ2
y , where σx and σy are

the standard deviation of the position variable x and
y, which represents how stable the estimated position
distribution is. Intuitively, the more stable the distribution
of the estimated position is, we expect better localization
accuracy.

IV. EXPERIMENTAL METHODOLOGY AND

SELECTION STRATEGY

In this section, we first describe our experimental
methodology by presenting the testbed infrastructure
and the data collection process. We then present our
dimension selection strategies and selection procedures
to characterize the impact of multiple frequencies and
multiple power levels from the transmitting device.

Figure 2. Burchard 2nd floor map

A. Testbed Infrastructure and Data Collection

RSS measurements were conducted using a localiza-
tion testbed [2] with active RFID tags and readers from
InPoint [16]. Each RFID tag has a unique identifier
and periodically beacons its identifier, which is received
by the landmarks. The tags transmit without collision
avoidance or detection; the readers identify overlapping
signals. We connect the RFID reader to a Linux machine
with 2GHz CPU, 1GB RAM and 20GB disk to serve as
our landmark. In our localization testbed, landmarks con-
tinuously monitor the channels’ traffic at the packet-level
and forward their observed RSS readings to a central
server. The server is responsible for averaging the RSS
readings over multiple packets to produce fingerprints. In
our experiment, each averaged RSS reading is obtained
over 100 packets.

We collected experimental data on the second floor
of Buchard building at Stevens Institute of Technology,
which is a 70ft× 80ft area as shown in Figure 2. This
is a large lab area containing office wall dividers and
furniture, such as desks, shelves and chairs. We deployed
5 landmarks and collected RSS fingerprints for 51 testing
points. Landmarks and testing positions are shown as
stars and dots respectively. We programmed the RFID
tag to transmit between two frequencies, 400MHz and
900MHz, alternatively. Data collection is then repeated
for 3 transmission power levels (0 dBm, 5 dBm, and
10 dBm) at 2 frequencies (400MHz and 900MHz) by
placing three transmitters at the same testing location,
which approximates a system with 6 different dimen-
sions (power level and frequency combinations). Given
the number of testing points and the dimension of each
testing point, the total number of fingerprints in our
experimental dataset is 51× 30 = 1530.

We used the leave-one-out method for evaluating the
localization performance under different combinations of
multiple frequencies and multiple power levels, which
means that we chose one location as the testing point,
whereas the rest of the locations (i.e., 50 points) as the
training data.

B. Synthetic Data Generation

To study the propagation of the RSS readings and
validate our approach, we also generated a synthetic RSS
data set using a simple signal propagation model [14]
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with Gaussian noise. To be comparable with the real
data, we use the same setup including testing area,
landmarks and testing points’ positions as described in
Section IV-A.

The synthetic data set is generated in such a way that it
mimics the real data set in terms of the fitting to the path
loss signal propagation model. Specifically, we used the
R2 metric (also called the coefficient of determination)
and made the resulting values of R2 from the synthetic
data as close to those from the real data as possible.
We note that the R2 value varies from 0 to 1, with 1
indicating a perfect fit and a value close to 0 indicating
a bad fit.

C. Performance Baseline

Based on our data collection using multiple frequen-
cies (i.e., 400MHz and 900MHz) and multiple power
levels (i.e., 0dBm, 5dBm, and 10dBm), we have total
6 single dimension RSS readings for each landmark.
We can perform localization by using each individual
dimension, which has a fixed frequency and a fixed
power level (e.g., 900MHz and 0dBm). We use the
localization performance from running these 6 single
dimension data sets to report baseline results, which will
be used to compare with those from different combina-
tion of frequency and power level through selection.

D. Selection Strategies

We next develop three selection methods, namely
Whole Dimension, Matching Characteristic, and Con-
strained Landmark, which explore which utilize different
combination of multiple frequencies and multiple power
levels to perform localization.
Whole Dimension. This is a straightforward se-

lection method. Each combination of a frequency
and a power level from an individual landmark is
treated as one dimension. Given there are 5 land-
marks and 6 possible combinations from each landmark
in our experimental setup, there are total 30 dimen-
sions. In this selection method, all the dimensions are
used to construct a fingerprint. For instance, S =
[s1

1, ..., s
6
1, ..., s

1
i , ..., s

6
i , ...s

1
5, ..., s

6
5] is the fingerprint for

a testing point when the Whole Dimension selection
method is used. This method may incur high compu-
tational cost for certain algorithms such as BN since it
needs to compute the joint position distribution across
high dimensions.
Matching Characteristic. In our experiments, each

dimension has a fixed frequency and power level, which
we call a signal characteristic. In contrary to the Whole
Dimension method, the Matching Characteristic method
tries to keep the number of dimensions as the same as the
number of landmarks when selecting RSS fingerprints.
In the Matching Characteristic selection method, we
request the same characteristic to be chosen from the
6 dimensions for each landmark, that is, during one

selection process for localization, the combination of the
frequency and power level selected should be the same
across all landmarks. Based on this selection metric,
there are total 6 possible combinations of frequency
and power level. To perform localization, Matching
Characteristic will use our selection metrics to determine
what is the appropriate combination of the frequency and
power level to be chosen as the characteristic for each
testing point in our experiments.

When Matching Characteristic selection is applied us-
ing RMSE, RMSE will be calculated for each combina-
tion of the frequency and power level and compare across
all the 6 possible combinations. Within each combina-
tion, we can first calculate RMSE

Lp

i (Ŝ) for dimension
Lp of landmark i based on Equation (1). We then cal-
culate the RMSE for this combination over all the land-
marks as RMSELp(Ŝ) =

√∑n
i=1 RMSE

Lp

i (Ŝ)2 with
Lp = 1...6. The RSS fingerprints from the frequency
and power level combination that produces the minimum
value of RMSE RMSEmin = minLp(RMSELp(Ŝ))
over all the combinations will be selected as the appro-
priate characteristic for performing localization.

On the other hand, When Matching Characteristic
selection is applied using residual, the residual is calcu-
lated for all the frequency and power level combinations.
We choose the frequency and power level combination
that produces the minimum residual as characteristic to
perform localization for each algorithm. For different
testing points, the selected characteristic may be differ-
ent, because it is possible that different testing points
have different combinations of frequency and power
level that produces the minimum residual.
Constrained Landmark. Instead of using the full

dimension of the data, the objective of the Constrained
Landmark takes advantage of using multiple frequencies
and multiple power levels, but without increasing the
dimension for algorithm computation and without fix-
ing the characteristics across landmarks. ‘Constrained’
means that the RSS fingerprint must be constructed
by selecting from different landmarks. However, the
dimension chosen in each landmark could be different
from different landmarks. Particularly, the constructed
RSS fingerprint is composed of element S

Lp

i with i =
1...5 in our experiments, and for each landmark i, the
dimension Lp can be selected differently corresponding
to different combinations of frequency and power level.
Therefore, there can be total 65 = 7776 different combi-
nations when applying Constrained Landmark selection
in our experiments. The computational cost of using
Constrained Landmark is higher than using Matching
Characteristic.

This selection method will be used together with
our selection metrics to perform localization by each
algorithm. When the Constrained Landmark selection
method is applied by using RMSE, the same calculation
of RMSE will be performed as described in the Matching
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(a) LLS, Residual based selection (b) LLS, RMSE based selection
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(c) NLS, Residual based selection (d) NLS, RMSE based selection
Figure 3. Lateration based algorithms: Localization accuracy CDF
under different selection strategies.

Characteristic selection to search for the frequency and
power level combination with the minimum RMSE,
however, there are total 65 combinations. Likewise, when
the Constrained Landmark selection method is applied
by using residual, the same computation of residual will
be performed as presented in Matching Characteristic.
The combination of the frequency and power level that
produces the minimum residual across the 65 combina-
tions will be selected.

V. EVALUATION RESULTS

In this section, we experimentally evaluate the impact
of multiple frequencies and multiple power levels on
the performance of localization algorithms. We study all
the algorithms described in Section III-C and evalua-
tion is conducted using both selection metrics (RMSE
and Residual) and all three selection strategies (Whole
Dimension, Constrained Landmark, and Matching Char-
acteristic). In addition, we study the feasibility of using
synthetic data for our multi-dimension evaluation.

In all our studies, localization performance is charac-
terized by the Accuracy metric, which is the Euclidean
distance between the estimated location from the algo-
rithm and the device’s actual location.

A. Lateration Based Algorithms

Figure 3 presents the localization accuracy Cumulative
Distributed Function (CDF) for lateration based algo-
rithms under different selection strategies. Results are
included for both LLS and NLS algorithms, and for both
residual and RMSE based selection metrics. Performance
for each single dimension is also plotted as our baseline
for comparison.

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

localization error(feet)

P
ro

b
a

b
il

it
y

900MHz 10dBm
900MHz 5dBm
900MHz 0dBm
400MHz 10dBm
400MHz 5dBm
400MHz 0dBm
Constrained Landmark
Matching Characteristic
Whole Dimension

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

localization error (feet)

P
ro

b
a

b
il

it
y

900MHz 10dBm
900MHz 5dBm
900MHz 0dBm
400MHz 10dBm
400MHz 5dBm
400MHz 0dBm
Constrained Landmark
Matching Characteristic
Whole Dimension

(a) Residual based selection (b) RMSE based selection
Figure 4. Fingerprint Matching algorithm (GR): Localization accuracy
CDF under different selection strategies.

Firstly, we notice that the accuracy CDFs from all
6 single dimensions are similar to each other. This indi-
cates that simply changing the dimension characteristics,
for example from using one transmitting frequency to an-
other, is unlikely to offer much accuracy improvements.

Secondly, contrary to our initial expectations, although
using Whole Dimension achieves a performance close to
the best among all the single dimensions, the additional
information does not bring significant accuracy improve-
ments for lateration based algorithms. This actually is
directly related to how this set of algorithms is designed.
For lateration based algorithms, path loss signal propa-
gation model is strictly enforced for distance estimation
without any accommodation for noise in the data. Noisy
RSS information thus directly translates to uncertainty
in the lateration phase. Furthermore, full dimension
only provides additional sets of distance estimation to
the same group of landmarks. Thus, in this selection
approach more uncertainty is added to lateration along
with more distance information, but with no further
geometrical constraints. Simple least squares metric is
not sufficient to cope with the additional uncertainty.

Finally, compliant to our theoretical analysis, the
intelligent selection strategies based on both metrics suc-
cessfully achieve better localization accuracy for latera-
tion based algorithms. For example, using Constrained
Landmark with residual metric, LLS’s median error
decreases from 12ft to 5ft (58% improvement) and the
90th percentile error changes from 22ft to 10ft (54%
improvement). Similarly, using Matching Characteristics
with RMSE metric, LLS’s median error decreases from
12ft to 7ft (42% improvement) and the 90th percentile
error changes from 22ft to 15ft (32% improvement).
We also notice that Constrained Landmark significantly
outperforms Matching Characteristics and always per-
forms the best among all the selection strategies. Such
accuracy gain however, as pointed in Section IV, comes
with significantly more computational cost.

In summary, for lateration based algorithms, it is not
sufficient to simply deploy multi-frequency and multi-
power levels and expect performance improvements.
Intelligent selection strategies are required to prune
the RSS measurements to better utilize the additional
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(a) Residual based selection (b) RMSE based selection
Figure 5. Probabilistic based algorithm (ABP): Localization accuracy
CDF under different selection strategies.

dimensions.

B. Fingerprint Matching Algorithm (GR)

Figure 4 shows the localization accuracy CDFs of
Gridded Radar algorithm while using residual and RMSE
as metric under different selection strategies. We again
observe that performance for single dimension consis-
tently agrees with each other, indicating no improvement
by simply changing transmission power or frequency.
Whole Dimension, however, outperforms single dimen-
sions. Specifically, the median error decreases from 8
ft to 6 ft (20% improvement) and the 90th percentile
error shrinks from 25 ft to 13ft (48% improvement). This
is because GR is a machine learning based matching
algorithm which straightforwardly benefits from a more
precise signal map generated by adding more dimen-
sions.

Furthermore, the intelligent selection strategies, Con-
strained Landmark and Matching Characteristic, tend
to improve the performance over single dimensions. Al-
though they do not necessarily offer much more accuracy
advantage over using full dimension directly, the lower
computational cost, especially for Matching Characteris-
tic, compared to Whole Dimension makes them attractive
for achieving better localization than using single dimen-
sions only. We also noticed that RMSE based selection
strategies perform better than residual based selection
strategies. Overall, for GR algorithm, deploying multi-
frequency and multi-power can bring around significant
performance improvements. There is also a tradeoff
between localization accuracy and computational cost
when deciding on different selection strategies.

C. Probabilistic Based Algorithm (ABP)

Figure 5 compares the effect of different selection
metrics and selection strategies on ABP algorithm. We
notice very similar overall results to the GR algorithm
we just described in Section V-B. This is because GR
and ABP are very similar in nature. They both localize
with a sampled signal map: GR uses Euclidean distance
in signal space while ABP uses a probabilistic method
to compare the similarity of RSS fingerprints. Therefore,
for ABP algorithm, employing multiple frequencies and
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(a) Residual based selection (b) RMSE based selection
Figure 6. Bayesian Networks algorithm: Localization accuracy CDF
under different selection strategies.

power levels and a simple Whole Dimension strategy are
most effective in improving localization accuracy.

D. Bayesian Networks Algorithm

Results for selection strategies comparison on BN
algorithm are presented in Figure 6. We see that all
three selection approaches improve the accuracy in a
similar way. Comparatively, BN is able to handle full
dimension more gracefully than LS algorithms. This
is because although both algorithms rely on the data’s
compliance with path loss signal propagation model,
for BN noise in RSS is inherently incorporated in the
algorithm model design. Such direct incorporation of
noise consideration allows it to take better advantage
of the additional dimensions than LS algorithms. We
also observe a similar accuracy improvement to GR and
ABP. For instance, when using residual metric, all the
selection approaches can reduce the median error from
13 ft to 9 ft (30% improvement) and the 90th percentile
error from 28ft to 18 ft (36% improvement). This is on
similar magnitude with the 20% and 48% improvement
offered by GR.

E. Discussion on usage of synthetic data

Synthetic data is often used in localization studies
because of the difficulty measuring RSS in real environ-
ments. In this section, we thus evaluate the effectiveness
of synthetic data in our multi-frequency and multi-power
study. Specifically, we investigated whether adjusting the
Gaussian noise in our signal propagation model sufficient
characterizes the algorithms’ responses.

The synthetic data generation is described in Sec-
tion IV-B and the result of our study using the corre-
sponding synthetic data is presented in Figure 7. At a
qualitative level, we see that the synthetic data is not
able to produce similar responses as actual RSS data.
For example, it does not capture the significant accuracy
advantage for using intelligent selection approaches over
Whole Dimension for lateration based algorithms. We
thus conclude that simple approach of path loss signal
propagation model with random Gaussian noise for
synthetic data generation is not sufficient to characterize
the effects of using multiple frequencies and multiple
power levels.
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Figure 7. Synthetic data: localization accuracy CDF under different
selection strategies over all algorithms.

VI. CONCLUSION

In this paper, we explored improving wireless lo-
calization performance in face of multipath effects by
utilizing multiple frequencies and transmission powers.
We studied a broad range of algorithms employing
received signal strength (RSS) to perform localization
including lateration based, fingerprint matching, prob-
abilistic based, and Bayesian Networks. We developed
three selection strategies, Whole Dimension, Matching
Characteristic, and Constrained Landmark. Our selec-
tion strategies work with selection metrics, e.g., devia-
tion of RSS readings and residual, to form high quality
RSS fingerprints out of multiple dimensions resulting
from the use of multi-frequency and multi-power.

We performed both a theoretical analysis as well as
experimental validation of our approach. Our analysis on
the Linear Least Squares (LLS) algorithm showed that
selection should improve the localization performance.
Further, our trace-driven study on a localization testbed
with RFID transmitters varying the frequency and power
simultaneously showed that using multiple frequencies
and power levels improved the performance of all the
algorithms under study. We also found that different
algorithms react differently to the selection strategies.
Lateration based algorithms were the most sensitive to
selection, whereas algorithms rooted in machine learning
were much more robust to adding dimensions. In addi-
tion, we observed there is a tradeoff between improving
performance and reducing computational cost through
intelligent selection.
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