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Abstract

We present the DECODE technique to determine from a

remote receiver whether a set of transmitters are co-moving,

i.e., moving together in close proximity. Co-movement in-

formation can find use in applications ranging from in-

ventory tracking, to social network sensing, and to opti-

mizing mobile device localization. DECODE detects co-

moving transmitters by identifying correlations in commu-

nication signal strength due to shadow fading. Unlike lo-

calization systems, it can operate using measurements from

only a single receiver. It requires no changes in or coopera-

tion from the tracked devices other than sporadic transmis-

sion of packets. Using experiments from an office environ-

ment, we show that DECODE can achieve near perfect co-

movement detection at walking-speed mobility using corre-

lation coefficients computed over approximately 60-second

time intervals.

1 Introduction

Many location-aware applications benefit from higher-

level information about the movement of transmitters. One

instance of such higher-level information is co-movement,

which describes whether a set of transmitters are moving

together on a common path. While it is straightforward to

derive co-movement relationship from position coordinates

and trajectories generated by a localization system, suffi-

ciently accurate and precise data is not always available.

Global Positioning System (GPS) accuracy is frequently de-

graded in urban canyons [5] or not used in portable devices

due to its energy consumption. For indoor environments,

localization systems require the presence of multiple land-

marks or receivers, which adds infrastructure cost. Coarse

co-movement information can also be obtained from con-

nectivity through short-range radios [7]. This, however, re-

quires tracking software to be installed on all mobile de-

vices, it can not easily be inferred through infrastructure so-

lutions alone.

Overview of Decode: In this paper, we study a co-

movement detection technique that operates solely on com-

munication signal strength traces, requires only a single re-

ceiver (or landmark), and does not rely on modifications

of the tracked devices (under the assumptions that the de-

vices will periodically transmit messages to communicate).

It exploits commonalities in the received signal power fad-

ing patterns observed from a set of co-located transmitters.

The wireless communications literature [17] distinguishes

shadow and multi-path fading effects that attenuate a signal

in addition to the path loss due to communication distance.

Shadow fading refers to obstacles in the environment that

attenuate the transmitted signal, when it travels through the

object. The magnitude of this effect depends on the mate-

rial and width of the object (e.g., about 10dB attenuation

was observed when an outside antenna was moved inside

of a vehicle [10]). Multi-path fading describes the effect

that objects in the environment reflect and scatter the trans-

mitted signal, so that the signal often arrives at the receiver

along multiple paths. The signal components constructively

or destructively interfere, leading to fast changes in received

signal strength. Also, if the position of the receiver changes

by merely one-half the wavelength of the communication

frequency used (59mm for ISM Band 2.4GHz [14]), it will

experience a very different multi-path fading channel, re-

sulting in signal strength changes that can exceed 20dB. As

transmitters or receivers move, the time varying attenuation

due to these effects will be unique for each path. Two re-

ceivers co-moving with a separation of less than one-half

wavelength, will experience nearly identical signal power

curves and thus can be distinguished from transmitter pairs

separated by larger distances. For high communication fre-

quencies in the unlicensed band, however, only few trans-

mitters will be sufficiently close to allow such straightfor-

ward detection.

Thus, this paper presents the DECODE technique, which

allows detection of co-moving transmitters through similar-

ities in the shadow fading component of the received sig-

nal. These similarities persist even if the separation between



transmitters is larger than one-half the wavelength. DE-

CODE records, at one receiver, the signal power changes

over multiple frames emitted from each of several transmit-

ters. It then applies a three-step detection algorithm, which

begins with extracting periods of high signal variance from

each of the traces. It then filters out fast fading effects and

calculates correlation values over the resulting data for each

transmitter pair. High correlation indicates co-movement of

the transmitter pairs.

Uses of Co-Movement InformationMany applications

can benefit from co-movement information. Some of the

important ones are:

Mapping Devices to Persons: Many location-aware ap-

plication such as Friend finders are tracking devices

as a proxy to infer the position of the device owner.

The proliferation of mobile devices and distinct radio

technologies on each mobile device make monitoring

this mapping of devices to their owners increasingly

cumbersome. For example, as a mobile device moves

from outdoors to building location it may be tracked

by a variety of different technologies, where each uses

a different identifier (usually the radio MAC address)

to identify the device. By monitoring co-movement

of different transmitters a localization system may be

able to infer which devices belong to the same owner,

or which addresses represent the same device.

Social Network Mining: Recent work [7] has sought to

infer social relationships from mobile device connec-

tivity patterns. Applications for such techniques in-

clude automatically determining access control poli-

cies and viral marketing. Current techniques moni-

tor Bluetooth advertisement messages to determine

when and how long devices from different owners

meet. This requires software on mobile devices. The

co-movement techniques could also extract this infor-

mation through external observations (from a commu-

nications base station).

Localization optimizations: Knowing that two mobile de-

vices move together helps collaborative positioning

mechanisms that provide lower energy consumption or

better accuracy. For example, one device could power

down its GPS receiver to conserve energy, while the

other device’s receiver still provides accurate position

updates. In challenging environments for localization,

position estimates may also be improved through re-

dundancy.

The remainder of the paper is organized as follows: In

Section 2, we review related research and Section 3 presents

the DECODE technique. In Section 4, we discuss our ex-

perimental methodology and results. Concluding remarks

are given in Section 5.

2 Related Work

The previous work on detecting co-located and co-

moving objects have either been based on absolute location

of the transmitters obtained using localization indoors and

GPS outdoors or from proximity sensing using short range

infrared (IR) or Bluetooth devices. We know of no other

work that infers co-location or co-movement directly from

signal strength measurements. In this section we divide the

related work into 2 main categories.

Location based inference: There have been active

prior efforts in determining the locations of transmitters.

RADAR [1] which works for 802.11 uses RF Fingerprint

information observed at three receivers and performs a near-

est neighbor matching algorithm to determine the location

of the transmitters with a three meters median accuracy.

[8] uses Bayesian learning algorithm on RF fingerprints ob-

served at three or more receivers to obtain a median 802.11

localization accuracy of 3-4 meters. The most accurate

802.11 location system to date is [12] which uses Hidden

Markov Model and Bayesian inference derived from obser-

vations at nine different receivers yielding a median accu-

racy of one meter. Further, the average localization accu-

racy employing RSS in a 802.15.4 (Zigbee) network [4] and

an active RFID system [3] is about the same with median er-

rors around 3-4mwhen using four receivers. All of these lo-

calization approaches need three or more receivers to work

in concert to perform co-location detection . Whereas our

scheme only needs to work with one receiver.

Proximity Based inference: Proximity based co-

location inference techniques mainly consist of using short

range IR or Bluetooth devices to estimate distance between

the transmitters. Reality Mining project [7] [6] used Blue-

tooth capable GSM phones to record the other nearby blue-

tooth devices and transmit them to the central server for in-

ferring social interaction patterns. SpotOn system [9] used

radio signal attenuation to estimate the relative distance

between the special tags. Though these techniques look

attractive for co-location detection, they requires tracking

software on the devices themselves and are effective only

for detecting devices that have the same technology. Our

scheme is more generic as it involves measurement of RSSI

which is common to GSM, WLAN, Zigbee, Bluetooth.

3 DECODE SYSTEM DESIGN

The environment in which wireless communication takes

place affects the received signal power (i.e., Signal-to-Noise

ratio). The key idea underlying the DECODE technique is

exploiting shadow fading, signal attenuation due to objects

blocking the path of communication. Two transmitters in

close proximity will be similarly affected by surrounding

buildings, furniture, or passing people. Therefore, the ob-



served signal power from these transmitters should be cor-

related.

Received signal strength, however, also significantly

varies due to multi-path fading. It can introduce received

signal strength changes of more than 20dB between loca-

tions separated only by half the wavelength of the carrier

frequency, if no line-of-sight path to the transmitter is avail-

able. These variations render the similarities due to shadow

fading difficult to detect. To address this challenge, DE-

CODE uses a filter that reduces or removes multi-path ef-

fects by calculating the mean of the signals observed from

the moving path of a transmitter.

Movement also helps detection of shadow fading simi-

larities, because co-moving transmitters will experience re-

ceived signal strength changes due to shadowing at simi-

lar points in time (e.g., two co-moving transmitters would

pass a building corner at the same time). Intuitively, higher

speed of the transmitters will increase the frequency of these

changes and thus facilitate co-movement detection.

Figure 1 illustrates the system design and key process-

Figure 1. System diagram and data flow

ing steps of the DECODE system. A receiver measures the

received signal strength for signals emitted from the trans-

mitters. It reports a transmitter identifier, signal strength

and a reception timestamp for each observation to the DE-

CODE processing unit, usually over an existing wired net-

work infrastructure. For each transmitter, DECODE first

performs time alignment and interpolation to facilitate later

processing in the face of missing samples. It then extracts

periods of high signal variance, which are likely to corre-

spond to movement of transmitters. In the next step, it uses

moving window averaging to eliminate fast fading compo-

nents from the received signals of all transmitters. Finally,

correlation coefficients are calculated for each transmitter

pairs and correlation values exceeding a specified threshold

indicate co-movement of a transmitter pair.

In our prototype, we have implemented DECODE by

monitoring the RSSI indicators reported for each packet

reception by the receiver. RSSI has been shown to be a

good indicator of channel quality [19], hence it should pro-

vide adequate information about fading patterns. RSSI is

also available across all wireless technologies, which allows

measuring co-movement across different transmitters.

In the following subsections, we give details of each of

the components of DECODE.

3.1 Alignment and Filtering Steps

Time alignment. The following co-movement detec-

tion seeks to compare RSSI values observed at the same

time from different transmitters. The packets originating

from transmitters attached to different devices may not be

synchronized in time. Even if one attempts to synchronize

transmitters attached to the same device, the inherent chan-

nel access delays will cause packets to arrive at slightly dif-

ferent times. Depending on wireless channel conditions,

packets are also lost due to collisions or path loss. Thus, the

time alignment step synchronizes and interpolates samples

received from two transmitters. Given the packet traces for

two transmitters, our implementation matches every packet

from the first transmitter with the last prior packet trans-

mission from the second transmitter. If a sample is missing

from the second transmitter, this procedure interpolate the

missing sample with the last observed sample from the sec-

ond transmitter.

Extracting high variance periods. Recall that DE-

CODE focuses on periods of mobility because during these

periods it can observe correlated signal changes due to large

scale fading. Several techniques have been proposed to de-

tect mobility [18, 13, 15, 11]. Of these, we choose the

straightforward signal strength variance threshold detection

technique. DECODE divides the RSSI traces into blocks. It

then extracts and concatenates all blocks where the variance

exceeds the specified threshold. We empirically determined



the optimal variance threshold to be three and the period

over which it has to be estimated to be 5s.

Filtering multi-path fading. Variance due to fast fading

should be removed from the RSSI traces to allow calcula-

tion of correlation primarily over large scale fading compo-

nents. DECODE uses a moving window averaging process

with a window size of one second for the elimination of fast

fading components.

3.2 Detection of co-movement

DECODE determines co-movement by monitoring

whether two transmitters experience similar changes in

RSSI. To this end, DECODE calculate a correlation coef-

ficient, which measures the strength of a linear relationship

between the two RSSI streams. DECODE uses the Pear-

son’s product moment correlation co-efficient [2], a pre-

ferred method for quantitative measures such as the RSSI

traces used. For n samples each from two random variables

X and Y , Person’s product moment correlation coefficient

rx,y is defined as

rxy =

∑
xiyi − nx y

(n − 1)SxSy

(1)

where Sx and Sy are the sample standard deviations. The

correlation co-efficient lies in the interval [−1, 1], where
0 indicates no correlation, +1 indicates maximum positive

correlation, and -1 indicates maximum negative correlation.

We empirically determined a correlation coefficient thresh-

old of 0.6 (see section 4.2), values that exceed this threshold

indicate co-movement.

4 Experimentation

The measured environment is a typical office environ-

ment with partitioned cubicle offices. We use the ORBIT

nodes [16] to setup IEEE 802.11b/g(Wifi) receivers at 4 dif-

ferent locations inside the office space as shown in Figure 2.

The Wifi receivers were configured to monitor Channel 1 in

promiscuous mode.

We used four IEEE 802.11b/g cards as transmitters

where a pair of WiFi cards were placed together in the

first laptop and the other pair of WiFi cards were placed

together in the second laptop as illustrated in Figure 2. The

WiFi cards generated ICMP ping packets on channel 1 at

the rate of 10packets/sec. We use the ORBIT infrastructure

for capturing and logging each IEEE 802.11 packet from

these transmitters and store them in a postgres database.

For each packet, we logged the transmitter’s MAC address,

the receiver’s MAC address, RSSI and the time when the

packet was captured. We also recorded the ground truth

about the mobility of the transmitters. We note that we set

Figure 2. Floorplan of the experiment envi-
ronment and the node placement

up pairwise transmitters in our expreriments to show how

DECODE works, but our approach could be applied to a set

of transmitters that are co-moving.

Two of the authors carried one laptop each (that contains

two WiFi cards each) and conducted the experiment. The

experiment was one-hour long with alternative static and

mobile periods. In that one hour duration, the authors were

walking at a speed of 1ft/sec for about 20-minutes. We call

this experiment Slow Mobility. We chose very slow speeds

because this represents the most challenging case. The same

one hour experiment was repeated once more where the

moving speed of the transmitters was increased from 1ft/sec

to 4-5ft/sec (normal human walking speed). We refer to this

second experiment asWalking-Speed Mobility.

4.1 Effectiveness of DECODE

To evaluate the effectiveness of DECODE, we first ex-

amine the detection rate and the false positive rate in de-

termining the co-mobile transmitters. Figure 3 depicts the

detection rate and the false positive rate as a function of

time with respect to each receiver for the 802.11 network

for both Slow Mobility as well as Walking-Speed Mobility

experiments.

We compute the correlation coefficient for the samples

accumulated over the last Ts seconds and if the computed

correlation coefficient is larger than 0.6, the pair of trans-

mitters are declared to be co-mobile. Otherwise, this pair of

transmitters are declared to be not moving together. A de-

tailed discussion of the choice of the threshold is presented

in Section 4.2.We then estimate Detection rate as the per-

centage of times DECODE correctly reports Co-Mobility
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Figure 3. Effectiveness of DECODE in detect-

ing Co-Mobility

when the pair of transmitters are indeed moving together

and False positive rate as the percentage of times DECODE

incorrectly reports Co-Mobility when the Transmitters are

NOT moving together.

Figure 3 shows that in both the Walking-Speed Mobility

and SlowMobility experiments, the detection rate increases

to 100% and the false positive rate drops to 0% as Ts in-

creases. This is because, with more time, a better shadow

fading profile that is common to the two co-mobile trans-

mitters but completely different for the two non-co-mobile

transmitters can be extracted.

We found that the mobility speed also has an impact on

the time required to achieve high detection rate and low

false positive rate. In the Walking-Speed Mobility experi-

ment, it takes about 130 seconds to achieve 100% detection

rate with 0% false positive rate. Whereas it takes around

370 seconds to achieve the same in the Slow Mobility ex-

periment. This indicates that, with a higher moving speed,

more of the shadow fading effects could be observed within

a shorter duration and since we are essentially capturing the

shadow fading effects for detecting co-mobile transmitters,

a high detection rate could be achieved quicker in the ex-

periment conducted under the walking speed. The results of

the Slow Mobility experiment represent the worst case de-

tection performance of DECODE. In the next sections, we

provide our analysis for the Walking-Speed Mobility exper-

iment since it represents more typical scenarios for devices

carried by humans.

4.2 Sensitivity to Sampling Rate and Cor-
relation Coefficient Threshold

In this section, we study the sensitivity of our scheme

with respect to the different sampling rates and various cor-

relation coefficient thresholds.

The sampling rate is defined as rate at which the trans-

mitter transmits packets. We study the impact of varying

the sampling rate on DECODE’s effectiveness at detecting

Co-Mobility.
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Figure 4. Sensitivity of DECODE to Sampling

rate.

Figure 4 presents the detection rate and false positive

rate as a function of time for packet sampling rates of 0.5

pkt/sec, 1 pkt/sec, 5 pkt/sec, and 10 pkt/sec observed at

Receiver-2. We do not present the results from other Re-

ceivers as the performance is very similar. The threshold of

the correlation coefficient is empirically determined to be

0.6. We found that for the sampling rates of 1 pkt/sec, 5

pkt/sec, and 10 pkt/sec, the time taken to achieve 100% of

detection rate and 0% of false positive rate is similar, about

130 seconds, although when the sampling rate is 0.5 pkt/sec

(i.e., one packet every 2 seconds), the time to reach 100%

detection rate increases marginally to 150 seconds. This is

encouraging as it indicates that DECODE is not very sensi-

tive to the sampling rates.

We next analyze the sensitivity of DECODE to the var-

ious thresholds τ of correlation coefficients. Choosing an

appropriate threshold will allow our detection scheme to be

robust to false detections. Figure 5 presents the detection

rate and the false positive rate when τ equals to 0.4, 0.5, 0.6,

0.7 and 0.8 respectively. As expected, we observed that the

detection rate takes longer to reach 100% as the threshold

goes up, while the false positive rate drops to 0% quicker.

When τ is 0.6, the false positive rate remains below 10% at

all times and the detection rate reaches 100% at almost the

same time as that of smaller thresholds 0.4 and 0.5. Hence,

we chose a correlation coefficient threshold of 0.6.



Figure 5. Sensitivity of DECODE to Correla-

tion Co-efficient Threshold. We pick a thresh-
old of 0.6 for Co-Movement.

5 Conclusion

In this work we presented DECODE, a system that de-

tects co-moving wireless devices. DECODE’s strategy is

founded on observing the correlation coefficient of streams

of RSSI values from the transmitters.

Given one minute of mobile data, DECODE can drive

the true positive rate to 100% and the false positive rate to

0%. However, a key finding of this work is that mobility

is critical for our approach, and that the DECODE’s effec-

tiveness scales with both the time and speed of the devices

mobility. We also showed that DECODE’s performance is

insensitive to the sampling rate and a sampling rate of 1

packet/sec for 60 seconds was sufficient to achieve a near

perfect co-movement detectioin at Walking Speeds indicat-

ing that the approach is practical.
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