
E3: Energy-Efficient Engine for Frame Rate Adaptation on
Smartphones

Haofu Han, Jiadi Yu, Hongzi Zhu
Department of Computer Science and

Engineering
Shanghai Jiao Tong University

{hanhaofu, jiadiyu, hongzi}@sjtu.edu.cn

Yingying Chen
Department of Electrical and Computer

Engineering
Stevens Institute of Technology

yingying.chen@stevens.edu
Jie Yang

Department of Computer Science and
Engineering

Oakland University
yang@oakland.edu

Guangtao Xue, Yanmin Zhu, Minglu Li
Department of Computer Science and

Engineering
Shanghai Jiao Tong University

{gt_xue, yzhu, mlli}@sjtu.edu.cn

ABSTRACT
Touch-screen technique has gained the large popularity in
human-screen interaction with modern smartphones. Due to
the limited size of equipped screens, scrolling operations are
indispensable in order to display the content of interest on
screen. While power consumption caused by hardware and
software installed within smartphones is well studied, the en-
ergy cost made by human-screen interaction such as scrolling
remains unknown. In this paper, we analyze the impact
of scrolling operations to the power consumption of smart-
phones, finding that the state-of-art strategy of smartphones
in responding a scrolling operation is to always use the high-
est frame rate which arouses huge computation burden and
can contribute nearly 50% to the total power consumption
of smartphones. In recognizing this significance, we further
propose a novel system, Energy-Efficient Engine(E3), which
automatically tracks the scrolling speed and adaptively ad-
justs the frame rate according to individual user preference.
The goal of E3 is to guarantee the user experience and mini-
mize the energy consumption caused by scrolling at the same
time. Extensive experiment results demonstrate the effi-
ciency of E3 design. On average, E3 can save up to 58% of
the energy consumed by CPU and 34% of the overall energy
consumption.

Categories and Subject Descriptors
H.5.2 [INFORMATION INTERFACES AND PRE-
SENTATION]: User Interfaces—Input devices and strate-
gies

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SenSys’13, November 11–15, 2013, Rome, Italy.
Copyright 2013 ACM 978-1-4503-1169-4 ...$15.00.

General Terms
Design, Experimentation, Human Factors

Keywords
Energy efficiency, user experience, touch screen, scrolling
operation, frame rate

1. INTRODUCTION
Mobile devices such as smartphones and tablets have re-

ceived increasing popularity over the recent years (e.g., al-
most one billion smartphones have been sold since 2009[17]).
Millions of appealing apps on smartphones bring users new
style of information sharing and more efficient communica-
tions. New features and powerful hardware have been con-
stantly embedded into smartphones to provide more func-
tionalities. Battery capacity, however, has not kept the pace
with the increasing demand for energy posed by all-singing-
all-dancing applications[24], and drains quickly by the en-
hanced features and the complex operations performed by
smartphones. Longer battery life has been considered as one
of the most important feature to smartphone users[7], and
has aroused great attention in both the academia and the
industry.

Existing studies on extending smartphone battery life mo-
stly focus on saving power consumed by CPU computa-
tion, radio usage, and application activities. For example,
through wisely adjusting the CPU frequency[6][23], mini-
mizing the tail effect[4][21][25], and eliminating energy bugs
in applications[18][20], considerable energy saving could be
achieved. Furthermore, power consumption could be re-
duced by adjusting screen display parameters such as LCD
backlight level[2] and OLED color scheme[9]. Although many
efforts have been made to improve the energy-efficiency of
mobile devices, the impact of human-screen interactions on
the power consumption of mobile devices remains unknown.

With the rapid advancement of touch-screens, most mo-
bile devices are equipped with touch-screens. Due to the
limited size of the screen, finger operations such as clicking
and scrolling are indispensable in order to display the con-
tent of interest on screen. ProfileDroid[27] reveals that the
interaction-intensive applications may generate more than

Figure 1: Energy consumption of screen scrollings
during a web surfing on Nexus S.

20 input-events per second, which results in more than 30%
time for human-screen (i.e., touch-screen) interactions when
using applications like browsing and gaming. For exam-
ple, Figure 1 plots the power consumption of a smartphone,
Nexus S, during a typical web surfing process. The surpris-
ing finding is that after loading the content of the webpage,
the power consumption level jumps three times higher than
usual upon each time the user scrolls the screen. During
this web surfing process, the scrolling operations consume
up to 53.4% of the total energy consumption, whereas load-
ing the web browser (triggered by a click) and open the web-
page only consume 6.3% in total. We find that the human-
screen interaction causes large energy consumption. The
human-screen interaction, however, is essential for touch-
screen smartphone usage and dominates the user experience.
To save the energy consumption caused by the human-screen
interaction, we face the following great challenges. First, the
energy consumption should be reduced without compromis-
ing user experience. Second, the response to human-screen
interaction should be instant and accurate. Finally, the solu-
tion should be lightweight and not bring in noticeable over-
head. Although there has been work[2][9] on adaptive screen
power management of mobile devices, the focus is on sav-
ing energy through changing the LCD backlight and OLED
color scheme. To the best of knowledge, our work is the first
attempt to tackle the problem of high power consumption
caused by the human-screen interactions.

In this paper, we first set out to investigate the root cause
of the high energy consumption in screen scrolling. Through
empirical study of over 300 volunteers, we find that the root
cause of the high energy consumption incurred by scrolling
is because of the current frame rate adjusting strategy on
smartphones that always uses the highest frame rate to dis-
play contents. This poses large computation burden and
therefore consumes much energy (nearly 50% of the total
power consumption). Based on our observations, we pro-
pose Energy-Efficient Engine (E3) system, which can signifi-
cantly reduce the power consumption caused by the scrolling
operations while still keeping the user experience of smart-
phones un-compromised. In E3, we define a new metric
called satisfied frame rate, which is the minimum frame rate
under which human eyes cannot feel falters on the screen.
We calibrate the relationship between the satisfied frame
rate and the scrolling speed, and show that the Logarith-
mic model grounded on the least-square regression analysis
can precisely characterize this relationship. Our E3 system

can wisely configure a particular setting most suitable for
a specific user, and has the capability to adaptively adjust
the satisfied frame rate according to the trained model. The
main advantage of E3 is two-fold. First, E3 can optimize
the frame rate with respect to energy consumption while
satisfying the user-experience simultaneously. Second, E3

is easy to implement and computational feasible on mobile
platforms including both smartphones and tablets. Our pro-
totype implementation of E3 on Android-based mobile de-
vices verifies the feasibility of using E3 in real environments.

We highlight our main contributions as follows:

• We empirically investigate the impact of human-screen
interactions to the power consumption on mobile de-
vices including smartphones and tablets. Specifically,
we find that scrolling operations can consume tremen-
dous energy with current frame rate scheme. Our ex-
periment results show the amount of energy consumed
by scrolling can reach up to 50% on average over a
large range of applications.

• We propose E3, an innovative frame rate adaptation
system, which can adaptively adjust the satisfied frame
rate without compromising the user experience. We
find that Logarithmic model can accurately capture
the relationship between the scrolling speed and satis-
fied frame rate based on least-squares regression anal-
ysis.

• We implement our system on five different mobile de-
vices including smartphone and tablet. Our prototype
of E3 verifies the feasibility of the design in real-world
scenarios.

• We conduct extensive experiments with 327 volunteers
to evaluate the performance of E3. The results show
that, on average, E3 can save up to 34% of the overall
energy consumption while keeping a user satisfaction
rate over 93%.

The remainder of this paper is organized as follows. Re-
lated work is reviewed in Section 2. We give an in-depth
analysis of energy consumption caused by human-screen in-
teraction in Section 3. Section 4 presents the design details
of E3. Section 5 introduces the prototype implementation.
In Section 6, we evaluate the performance of E3 and present
the results. Finally, we give conclusive remarks and discuss
future directions in Section 7.

2. RELATED WORK
Active work have been done to improve the energy-effi-

ciency of smartphones. We categorize the existing work in
the following aspects.

Smartphone Power Model : many efforts have been
made to improve the accuracy of smartphone energy profil-
ing. In earlier work, the energy estimation relay on external
hardware [11][5]. Dong et al.[10] first attempted to design
a self-constructive power model of mobile devices. While
Pathak et al. gave another trial on accounting energy con-
sumption based on the system-call[19] and then improved
his work to a fine grained energy accounting system[20].

CPU Power Consumption : Due to the increasingly
computing power, the energy consumption of CPU also grows
rapidly. Studies on energy consumption of smartphone CPU

Figure 2: CPU utilization and energy consumption
during one scrolling operation on a webpage.

endeavored to find an energy-efficient strategy to dynami-
cally adjusting the CPU frequency and voltage based on the
concept of DVFS[6][23].

Radio Power Consumption : since communication is
the basic function of smartphones, the power consumption
of wireless module draws a lot attention in researching area.
Niranjan et al. first found the tail [4] overhead which is
caused by the lingering in high power states after complet-
ing a transfer. Then, in 2012, Qian et al. elaborately sum-
marized several optimizing schemes[22][21] on tail energy.
Besides, Athivarapu et al. explored a method to reduce the
radio usage by monitoring the program execution pattern[3].
In another direction, Schulman et al. discussed the impact
of signal strength on communication energy in [25].

Application Power Consumption : with the Explosive
growth of smartphone applications, increasingly researchers
are interested in investigating the energy consumption in ap-
plications. Narseo made a statistical analysis on the energy
consumption of different types of Apps in [26]. Besides, [13]
discussed the impact on energy consumption of cooperation
between Apps and operating system. [18][20] proposed the
concept of energy bug in smartphones and gave a first trial
on diagnosing energy bugs.

Display Power Consumption : due to the physical char-
acteristics of display hardware, energy saving could be achi-
eved by wisely adjusting LCD and OLED display param-
eters. Existing work studies screen hardware power con-
sumption through studying the screen power model[16], cal-
ibrating the backlight level[2] or the display color scheme[9],
while our work explores the power consumption of mobile
device made by exorbitant screen frame rate.

Although the battery-life issues of mobile devices have
gained much attention, the energy cost made by human-
screen interactions such as scrolling remains elusive. There
are some studies on frame rate recently, but these works
mainly focus on how to improve frame rate through hard-
ware and software[28] or how to use frame rate as a QoS
metric[8][15]. Therefore, existing work has not concerned
the impact of frame rate to the energy consumption.

3. EMPIRICAL STUDIES & TRACE ANAL-
YSIS

We first conduct an empirical study to show that human-
screen interactions may be a new element in the spectrum of
power consumption on smartphones. Among all normal in-

Figure 3: Scrolling time ratio and energy consump-
tion ratio of several popular smartphone applica-
tions.

teraction operations, scrolling is a very typical one to display
the content of interest on screen. Moreover, the interaction-
intensive applications such as browsing and reading are more
likely to have a higher ratio of scrolling to click (1.4 in Angry-
Birds and 1.1 in CNN)[27]. Besides, the energy consumption
caused by click is much lower than scrolling. In this section,
we explore the influence of scrolling operations to the energy
consumption on smartphones.

3.1 Power Consumption Caused by Scrolling
on Screen

To illustrate the relationship between screen scrolling op-
erations and power consumption, we first examine one scro-
lling operation when browsing a webpage using a typical
smartphone (Nexus S). During this operation, we record
the CPU utilization and the measurement of energy con-
sumption then plot the results in Figure 2. It is clear to
see that, once the scrolling starts, the CPU utilization im-
mediately increases to 100%. Meanwhile, the power jumps
up twice higher than usual. Moreover, the CPU utilization
and power consumption keep high until the scrolling action
ends. Similar results are obtained through more trials of this
experiment with different users and mobile devices. Fur-
thermore, we also conduct this experiment with different
scrolling speeds and directions, and get the same results.

We then further examine the impact of scrolling opera-
tions among different most popular applications on different
smartphones. Specially, we randomly select 327 volunteers
(i.e., 56 faculty members and 271 students) on campus dur-
ing lunch time, and let them try at least five applications in-

stalled on our test devices (i.e., Nexus One, Nexus S, Nexus
Prime, Galaxy S II, Galaxy Tab) for ten minutes. Figure 3
shows the average scrolling time ratio and the corresponding
energy consumption ratio of each tested mobile application.
The scrolling time ratio means the proportion of time dur-
ing scrolling operation to the time of each application usage.
It can be seen that for most of the interaction-intensive ap-
plications, the scrolling time ratio is higher than 30% (For
browser, it’s almost 60%).

We also analyze the power consumption caused by scrolling
and all other components and factors. The energy consump-
tion is divided into three major factors Scrolling, Screen
backlight and Others: 1) Scrolling represents the part of
energy consumption caused by scrolling; This part of energy
consumption is measured by separating the increased power
that strongly related to scrolling operation. For example,
the scrolling operation causes power increment as shown in
fig,2, and we classify energy caused in such increments as
Scrolling energy consumption. 2) Screen backlight repre-
sents energy consumption caused by screen light emitting.
It can be measured by employee the mechanisms presented
in [9] ,[16]. We note that during the experiments, we use a
low frequency to sample the screen display, which only re-
sults negligible energy consumption compared to the energy
consumption caused by screen emitting. 3) Others represent
the energy consumption caused by various power consumers
such as loading applications and contents, radio usage, audio
playback, and GPS module. Since we can measure the total
energy consumption by using a power meter (as shown in
Section 5), the energy consumption of the three components
could be obtained.

We find that in most cases, the scrolling energy consump-
tion of the Browser and the Reader could reach up to 59.8%
and 52.3% of the total energy consumption, respectively.
Regardless of the high energy consumption caused by Radio
usage and GPS module, for some applications like Facebook
App and Google Map, scrolling is always the most signif-
icant factor (Google Map gets a 37.2% share of the total
energy consumption) with respect to energy consumption.
The scrolling energy of Youtube and Pandora are not as high
as the others, because few scrollings are needed during their
usage. These results show that scrolling could be the main
contributor of the energy consumption on smartphones.

Also, from Figure 3, it is surprising to see that the energy
consumption ratios of the Others are not very high, which in-
dicates that the network connection and radio transmission
may not play a main role in smartphone energy consumption
for every daily-used applications.

In general, we find that the average scrolling energy con-
sumption could reach up to 46% of the total energy con-
sumption over all the interaction-intensive applications. The
reason that scrolling operations can significantly affect the
energy consumption of smartphones is because, with the lim-
ited size of the smartphone screen, scrolling is indispensable
in human-screen interaction. How to optimize the scrolling
operation in term of power consumption is of great impor-
tance. In this paper, we focus on minimizing the energy
consumption caused by scrolling.

3.2 Impact of Frame Rate Strategy
During the processing of one scrolling, there are three pro-

cedures: catching, processing and event feedback. First, in
the catching procedure, an interrupt is triggered to inform

Figure 4: Illustration of display updates during a
scrolling operation.

the operating system that there is a user input on the touch
screen. Then, the operating system reads arguments of this
input and passes them to the relative application. Second,
during the processing procedure, the application calls the re-
sponse functions and generates a respond of this input event.
After getting the respond, the application sends requests to
the operating system. Finally, in the event feedback pro-
cedure, the operating system receives requests from the ap-
plication, calculates the frame of image to be displayed and
refreshes screen to display it. Figure 4 illustrates the work-
flow of display updates in one scrolling operation. During
each scrolling, the three procedures iterates frequently. Any
of these three procedures is possible to cause the high energy
consumption. Nevertheless, based on the explanation above,
since there is little computation in the catching procedure,
energy consumption caused by the catching should be very
low. Besides, the computation in the processing procedure is
related to the input arguments, i.e. the scrolling speed and
direction. From the results of our experiment in Section
3.1, however, scrolling speed and direction have no impact
on energy consumption. This implies that the energy con-
sumption caused by the processing procedure is low. Based
on the above analysis, in order to realize a smooth screen
display in the event feedback procedure, the screen updating
operation needs to be performed dozens of times per second.
Each time the screen updates, CPU resource is consumed to
build a new image to display. We thus infer that the screen
update in feedback procedure incurs massive CPU resource
and therefore high power consumption.

To verify our analysis, we further set up experiments to
examine the energy consumption caused by screen updating
in the feedback procedure. Here a frame refers to the im-
age displayed on screen after one screen update operation
and a frame rate, denoted as r, refers to the frequency of
screen update operation, measured with the unit of frame
per second (FPS). We first monitor frame rate in real-time
via modifying the source code of Android. Figure 5 plots the
frame rate and power consumption when surfing a webpage
on a Nexus S smartphone. During one scrolling operation,
the operating system uses all the necessary CPU resource
to promote the frame rate until either 60fps (the hardware
and software upper bound of the frame rate) or the CPU
utilization of 100% is reached. The results in Figure 5 show
that the energy consumption has the obvious same chang-
ing trend with the frame rate. We also get the same result

Figure 5: System frame rate
and power consumption during a
scrolling operation.

Figure 6: Relationship between
frame rate and CPU power con-
sumption.

Figure 7: CDF of the satisfied
frame rate in different scrolling
speeds.

on our other test devices. The results confirm our inference
that the energy consumption is highly related to the frame
rate.

To capture the relationship between the frame rate and
the power consumption more accurately, we collect a trace of
frame rate and the corresponding power consumption mea-
surements and analyze the energy cost under different frame
rate. Figure 6 shows the scatter plot of CPU power con-
sumption with frame rate varying from 10fps to 60fps. We
observe that the CPU power consumption is linearly propor-
tional to the frame rate and the power consumption raises
from 150mW to almost 1000mW while frame rate increases
to 60fps. The strong correlation between the frame rate
and the power consumption reveals that the screen update
operation is the major cause that incurs the high power con-
sumption while scrolling.

3.3 Exploring User Experience on Frame Rate
Based on the analysis above, we know that higher frame

rate will lead to larger energy consumption. One straight-
forward solution for energy saving is to simply reduce the
frame rate no matter how a user operates on the screen.
However, blindly carrying this out is not feasible since in-
appropriate low frame rate will make the user feel faltering
when scrolling the screen. To explain this phenomenon, we
define the image difference between two adjacent frames as
IDAF = L(bit(fi−1), bit(fi)), where bit(fi) is the binary
string representation of the ith frame (i.e. the picture that
is displayed on screen) and L(x1, x2) is the Levenshtein Dis-
tance [14] of binary string x1 and x2.

Apparently, a higher IDAF value means bigger image dif-
ference between two adjacent frames, which indicates a more
inconsistent display. More specifically, with frame rate r in
a period T , IDAF is defined as:

IDAF =
1

r × T

r×T−1∑
i=0

L(bit(fi), bit(fi+1)),

≈ 1

r × T L(bit(ft=0), bit(ft=T)), (1)

where L(bit(ft=0), bit(ft=T)) is the display change in T , which
is in proportion of scrolling distance S. Moreover, S can be
expressed as S = s × T . Thus, the relationship between
IDAF , s, r and T is

IDAF ∝ s× T
r × T ∝

s

r
, (2)

when r decreases, the IDAF increases. In other words,

lower frame rate would result in a bigger difference between
two adjacent frames’ images. Therefore, if a low frame rate
is adopted to respond to a scrolling operation, the user
would feel faltering about the display on screen. On the
contrary, when scrolling speed s decreases, the IDAF de-
creases, which implies the user may feel more comfortable
on the screen display. We denote rmin(s) as the minimum
frame rate that the user would not feel the display is faltering
while scrolling at speed s. To guarantee the user experience,
we need to adopt a frame rate r so that r ≥ rmin(s). On the
other hand, we also need to minimize the power consump-
tion caused by scrolling operations. Therefore, the optimal
frame rate with respect to user experience and power con-
sumption is rmin(s).

To determine the rmin(s), we probe the satisfied frame
rate at which the user would not feel faltering of users at
different scrolling speeds by field testing. In our test, given
a scrolling speed, we automatically increase the frame rate
from the lowest value (i.e., 5fps) to the highest value (i.e.,
60fps) to display a scrolling webpage and let a user stop
the process when she/he satisfies with the current frame
rate. We randomly pick 327 volunteers on campus and let
each volunteer do our tests for 5 minutes. Figure 7 plots the
cumulative distribution function (CDF) of satisfied frame
rate at four different scrolling speed, i.e., 45, 200, 420, 1260
pixels per second.

We find that the satisfied frame rate increases as the
scrolling speed rises. For example, at the speed of 45 pixels
per second, 80% volunteers are satisfied with 23fps and the
satisfied frame rate value increases to 59fps at the speed of
1260 pixels per second. It can also be seen that, comparing
with the default frame rate strategy which always uses the
maximum frame rate (e.g., typically 60fps), it is promising
to use the satisfied (if not optimal) frame rate so that power
consumption caused by higher frame rate can be saved while
still satisfying users.

3.4 Modeling the Appropriate Frame Rate
To discover the relationship between the scrolling speed

and the satisfied frame rate, we analyze the trace collected
in our field tests. Figure 8 depicts the scatter plot of the
satisfied frame rate versus the corresponding scrolling speed.
The inset in Figure 8 shows the plot on logarithmic-linear
scale. From the inset, we find the satisfied frame rate is
linear with the scrolling speed, indicating the satisfied frame
rate is some form of logarithmic function of the scrolling
speed.

To further quantify the relationship between the satisfied

(a) No.65 (b) No.109

(c) No.177 (d) No.272

Figure 8: Satisfied frame rate in
different scrolling speeds.

Figure 9: CDF of RSS on Lin-
ear, Sqrt, Inverse and Logarith-
mic formula.

Figure 10: Curve fitting of user-
specific preference with Logarithmic
model on 4 randomly chosen volun-
teers.

frame rate and the scrolling speed, we examine four models,
as listed in Table 1, which could generate similar distribution
by using the least-square regression analysis. In least-square
regression, the estimator of each model is the Residual sum
of squares, which is defined as follows:

RSS =

n∑
i=1

(rmin(si)− f(si))
2, (3)

where rmin(si) is the optimal frame rate at speed si and
f(si) is predicted frame rate given by the model at speed si.
A small RSS indicates a tight fit of the model to the data.

We apply these four models listed in Table 1 to the data
of each individual volunteer. The model parameters are se-
lected to minimize RSS value. We plot the CDF of the
average RSS in Figure 9 and list the average RSS value
of each model in Table 1. We find that the Linear model’s
has a larger RSS value of 32.15 which indicates the average
deviation on each predict point of this model is as high as√

32.15 ≈ 5.67fps.
Both the Logarithmic and the Inversely proportional model

have a much lower average RSS value of 6.14 and 6.61,
respectively. In summary, the Logarithmic model has the
minimum average deviation on each predict point. Thus,
the Logarithmic model is a better description of the rela-
tionship between the scrolling speed and the satisfied frame
rate, i.e.,

rmin(s) = a× log(s+ b) + c. (4)

With the Logarithmic model, a user-specific preference
model of each single user could be achieved. Figure 10 shows
4 sets (randomly chosen from 327 volunteers’ sets) of sample
points and their fitting curve with Logarithmic model, each
set represents the satisfied frame rate on varied scrolling
speed of one volunteer. Despite the diversity of user prefer-
ences, the Logarithmic model fits well with all sample sets.
Thus, the Logarithmic model is compatible with different
users.

Table 1: Possible Formulations

Name Formulation Average RSS
Linear rmin(s) = a× s+ b 32.15

Sqrt rmin(s) = a×
√
s+ b+ c 11.40

Inverse rmin(s) = a
s+b

+ c 6.61

Log rmin(s) = a× log(s+ b) + c 6.14

4. DESIGN OF E3

From the previous investigation, we know that the 60fps
frame rate strategy costs excessive CPU resource, which
leads to the high energy consumption. However, in many
circumstances, a much lower frame rate is proven to be op-
timal (e.g., 24fps in movie and 30fps in TV), which indicates
that it is possible to relieve the stress on both CPU and bat-
tery of smartphones by changing the frame rate strategy and
reducing the frequency of display update. In this section, we
first present the key design goals of E3, then discuss the de-
sign details of our system E3.

4.1 Key Design Goals
Building an energy-efficient system for frame rate adap-

tation on mobile devices involves the following key design
goals.

User Specific Preference Model : As we discussed in Sec-
tion 3.4, although the Logarithmic model precisely describes
user preference on frame rate, different users may have dis-
tinctive model parameters. To make sure the preference
model is optimized for every user, E3 should build a user-
specific preference model for each single user.

Online Optimal Frame Rate Adaptation: Taking over the
control of frame rate may cause delays in screen display,
which goes against the user experience. In order to realize an
instant and accurate respond to human-screen interaction,
E3 should calculate and filter the optimal frame rate in real
time.

Flexible User Options: In case that the user preference
changes over time or the preference model deviates from the
expectation of user, E3 should allow users to send feedback
messages so that it can recalibrate the preference model and
correct the errors.

Low Overhead : The target of the system is to save en-
ergy, thus E3 should be lightweight. In particular, the com-
putational complexity of scrolling speed estimation and the
optimal frame rate calculation should be as low as possible.

Good User Friendliness: In order to provide a good user
friendliness, the preference learning process of E3 should
complete in short time. Besides, operations of user should
not annoy or distract users from their regular activities.

4.2 System Architecture
From the analysis in Section 3.4, we know that the Loga-

rithmic model can precisely describe a user’s preference on
frame rate. Based on the preference model, the frame rate

Figure 11: E3 architecture.

could be reduced for energy saving while leaving the user ex-
perience un-compromised. In this subsection, we present an
overview of E3 design. E3 first takes samples of the satisfied
frame rate on a series of scrolling speeds of a specific user.
Then, it applies the least-squares regression on the sampled
data to calculate parameters of the Logarithmic model in
Equation (4). After that, E3 starts to monitor user actions
performed on the touch-screen and estimates the real-time
scrolling speed. Finally, each time the screen updates, E3

adjusts the frame rate based on the real-time scrolling speed
and the user-specific Logarithmic model. In addition, E3

could also take user feedbacks to evolve the user preference
model over time. The architecture of E3 is shown in Fig-
ure 11. It consists of three stages: the Initiating Stage, the
Reacting Stage and the Evolving Stage.

The purpose of the Initiating Stage is to build a user spe-
cific preference model in a fast and convenient way. During
this stage, the system will first run the Scrolling Speed Dis-
tribution Analyzing procedure to analyze the scrolling speed
distribution of the user. With the knowledge of the scrolling
speed distribution, a highly-efficient sampling on the user
preference curve could be achieved, which releases the fur-
ther burden of preference learning process for users. After
that, in the procedure of User Preference Collecting, a pref-
erence learning program will ascertain the satisfied frame
rate for each sample point. Then, the least-squares regres-
sion is applied on the sampled data to generate the param-
eters of the Logarithmic model within thePreference Model
Training procedure, which establishes a user-specific prefer-
ence model.

In the Reacting Stage, the Scrolling Speed Extraction pro-
cedure works in the background to constantly monitor the
touch screen events and estimate the real-time scrolling speed.
With the User Preference Model established in the Initiat-
ing Stage, the Optimal Frame Rate Calculation procedure
can be used to calculate the optimal frame rate from the
real-time scrolling speed. Finally, in the procedure of Frame
Rate Controlling, the optimal frame rate is applied to the
operating system for energy saving.

In order to keep the pace with the changing of the prefer-
ence of users, we design the Evolving Stage, which allows E3

to dynamically update the preference model based on the
feedback from the user. In particular, the user’s feedback is
first collected in the Feedback Collecting procedure. Then,
E3 adjusts the parameters of preference model in the Model
Parameter Calibration procedure according to the feedback.
Finally, the Preference Model Training procedure is invoked
to regenerate the preference model.

In the rest of this section, we will elaborate the details of
each stage accordingly.

4.3 Initiating Stage
The preference model of a specific user should be estab-

lished by a preference learning program, before any actual
change on the frame rate strategy. In this subsection, we
first present the scrolling speed distribution based user pref-
erence collecting, then discuss the preference model genera-
tion details.

4.3.1 Scrolling Speed Distribution based User Pref-
erence Collecting

We know that the Logarithmic model precisely describes
the user preference on frame rate. To accurately estimate
parameters of the Logarithmic model for a particular user,
ideally, it requires a learning program to sample the satis-
fied frame rates of the user under a large variety of scrolling
speeds for a sufficient long period. However, this will cause
the user to experience a long un-pleasant model-training pe-
riod. It would be more user-friendly to probe the satisfied
frame rate on a small sampling set.

To this end, E3 first calculates the probability distribution
of the user scrolling speed by logging the interactive opera-
tions of the user, as shown in Figure 12. We find that the
highest probability density appears with the scrolling speed
in range 60 ∼ 130 pixels/second. Based on the observation
shown in Figure 12, the probability density of the scrolling
speed approximately obeys the log-normal distribution, i.e.,

P (s|µ, σ2) =
1

s
√

2πσ2
e
− (ln(s)−µ)2

2σ2 . (5)

Then, the maximum-likelihood estimation is applied to es-
timate the value of parameter µ and σ.

With the log-normal distribution, sampling points {x1..n}
are chosen according to the principle that the higher the
probability density, the denser sampling. More specially, all
xi that satisfies ∫ xi

0

P (s|µ, σ2) =
i

n+ 1
(6)

are chosen to be sampling points. Finally, Algorithm 1 is
used to collect {rmin} corresponding to {x1..n}.

The rationale behind this principle is that higher probabil-
ity of a scrolling speed means that the user prefers to scroll
under such speed. Therefore, the model should be trained
more biased towards that speed in order to more accurately
capture the behavior of the user. With this sampling strat-
egy, E3 can efficiently reduce the required number of sam-
pling points and obtain more precise model configurations.

4.3.2 Preference Model Training
With samples on the satisfied frame rate curve from the

User Preference Collecting procedure, E3 conducts the least-
square regression analysis to calculate the preference model

Figure 12: Probability density distribution of
scrolling speeds.

Algorithm 1 Preference Collecting({x1..n})
Require: A sequence of scrolling speeds {x1..n} > 0.
Ensure: The satisfied frame rates {rmin} corresponding to
{x1..n}.

1: for each xi ∈ {x1..n} do
2: Fmax ← 60, Fmin ← 0
3: while Fmax − Fmin > 1 do
4: Fcurr ← (Fmax + Fmin)/2
5: if Acceptable(Fcurr) then
6: Fmax ← Fcurr

7: else
8: Fmin ← Fcurr

9: end if
10: end while
11: rmin(xi)← Fmax

12: end for
13: return rmin

parameters. Getting the preference model, the model pa-
rameters are stored in User Preference Model for further
usage.

In order to maximize energy saving and guarantee user
experience simultaneously, it is necessary to evaluate the
impact of frame rate on both user experience and energy
saving. We thus design a new least-square regression es-
timator, called E2RSS, which can be used to adjust the
trained Logarithmic model.

More specifically, when the predicted satisfied frame rate
from a model is lower than the frame rate that user demands,
there is a user experience loss, which is defined as:

ExpLoss = β × (rmin(si)− f(si)), (7)

where rmin(si) is the user satisfied frame rate at scrolling
speed si and f(si) is the predicted satisfied frame rate at
speed si. Similarly, when the predicted satisfied frame rate
is higher than the frame rate that user demands, the extra
frame rate will be an energy waste, which is defined as:

EngLoss = (1− β)× (f(si)− rmin(si)). (8)

β in Equation (7) and Equation (8) is a weight which repre-
sents the balance factor between energy and user experience,
we will further discuss it in Section 4.5.

Based on Equation (7) and Equation (8), we define Energy-
Experience-Residual (E2R) to evaluate the accuracy and ef-

ficient of a model at one specified scrolling speed. E2R is
defined as:

E2R = αPj(si)×
{
ExpLoss2 if rmin(si) > f(si)
EngLoss2 if rmin(si) < f(si),

(9)

where Pj(si) is the probability density of user j’s scrolling
speed at si, α is an amplification coefficient constant that
used to neutralize the attenuation of Pj(si). A higher P (si)
indicates a user uses si for scrolling more frequently. Thus,
rmin(si) at the scrolling speed that has a higher P (si) is
obviously more significant than the one has a lower P (si).
With P (si), E

2RSS gives estimations that are more precise
on ExpLoss and EngLoss.

Energy-Experience-Residual sum of squares (E2RSS) is
an energy-aware and experience-aware estimator to evaluate
the accuracy and efficiency of regression, which is defined as:

E2RSS =
1

n

n∑
i=1

E2Ri. (10)

E2RSS produces a more precise and user-aware model
than RSS. Therefore, we take E2RSS as E3’s default es-
timator to replace RSS. In order to keep the user experi-
ence un-compromised during frame rate adjustment, E3 only
needs a few samples (usually less than 10) to establish the
user-specific preference model. Each sampling takes about
20 ∼ 30 seconds and the whole process helps to establish the
model precisely, which benefits to both user experience and
energy saving.

4.4 Reacting Stage
After obtained the user preference model, E3 uses it to

generate the optimal frame rate based on the user’s scrolling
speed in real time. Then, the optimal frame rate is used to
replace the default system frame rate for energy saving. In
this subsection, we first present the scrolling speed extrac-
tion, then discuss the frame rate controlling later.

4.4.1 Scrolling Speed Extraction
In order to dynamically adjusting the frame rate in real-

time, E3 needs to monitor the real-time scrolling speed and
calculates the corresponding optimal frame rate constantly.
The real-time finger position on touch screen could be ob-
tained, via the interface provided by the operating system.
Then, we can get the real-time scrolling speed via the dis-
tance of two adjacent finger positions and the time interval.

Due to the sampling errors, the captured scrolling speed
may fluctuate significantly. Using the frame rates calculated
from such unstable scrolling speed samples will cause fluctu-
ations in frame rate. To deal with this problem, the Kalman
Filter [12] is used to smooth the sampled value so that the
current scrolling speed can be estimated more accurately.

Particularly, in order to use the Kalman Filter to esti-
mate the scrolling speed on series of finger position samples,
we model the finger position and scrolling speed using the
framework of the Kalman Filter. Thus the following ma-
trices need to be specified: the state-transition model(Fk),
the observation model(Hk), the covariance of the process
noise(Qk), the covariance of the observation noise(Rk), and
the control-input model (Bk). In our scheme, suppose ek is
the estimation of finger position and scrolling speed at the

kth sample, which can be denoted as

ek =

[
pxk pyk
vxk vyk

]
, (11)

where pxk and pyk are the kth estimated finger position value
on x and y coordinates. Let tk be the time that the kth

sample is taken, vxk and vyk are the kth estimated scrolling
speed on x and y coordinates that are calculated from

4tk = tk − tk−1, (12)

vxk = (pxk − px(k−1))/4 tk, (13)

vyk = (pyk − py(k−1))/4 tk. (14)

Base on the Kalman Filter framework, the true state of time
k can be obtained from the (k − 1)th state with

ek = Fkek−1 +Bkuk + qk, (15)

where Fk is the state-transition model matrix, Bk is the con-
trol input model matrix which is applied to the control vec-
tor uk, qk is the process noise which satisfies qk ∼ N(0, Qk).

With Hk is the observation model matrix and vk is the
observation noise which is assumed to be zero mean Gaus-
sian white noise with covariance Rk i.e. rk ∼ N(0, Rk). The
kth sample value zk can be expressed as

zk = Hkek + rk. (16)

To estimate the position and speed in the kth sample from
the (k − 1)th sample, it is not hard to get an estimation
equation like

ek =

[
px(k−1) py(k−1)

vx(k−1) vy(k−1)

]
+4tk

[
vx(k−1) vy(k−1)

0 0

]
=

[
1 4tk
0 1

]
ek−1. (17)

With Equation (17) and (15), we can get the state tran-
sition matrix

Fk =

[
1 4tk
0 1

]
. (18)

Since there is no certain control-input in estimating scro-
lling speed, so the control-input model (Bk) is a zero matrix.
We also set the observation model(Hk) to a first order iden-
tity matrix, because the finger position and scrolling speed
can be obtained directly by monitoring the touch screen
event. Moreover, the covariance of the process noise(Qk)
and the covariance of the observation noise(Rk) can be ob-
tained from empirical measurements. As a result, the pro-
cedure of the smoothing scrolling speed can be described as
the two following phases:
Predict phase: Using the state estimate from the pre-

vious timestamp to produce an estimate of the state at the
current timestamp, which can be expressed as:

êk|k−1 = Fkêk−1|k−1, (19)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk, (20)

where êk|k−1 is the posteriori state estimate at the kth input

event given observations before and including the kth input
event, Pk|k is the posteriori error covariance matrix, used
to estimate the accuracy of prediction, Equation (19) is the
predicted value of scrolling speed in the kth input event, and
Equation (20) is the predicted estimate covariance in the kth

input event.

Update phase: the current priori prediction is combined
with current observation information to refine the state es-
timation can be expressed as:

ỹk = zk − êk|k−1, (21)

Sk = Pk|k−1k
T +Rk, (22)

Kk = PT
k|k−1S

−1
k , (23)

êk|k = êk|k−1 +Kkỹk, (24)

Pk|k = (I −Kk)Pk|k−1, (25)

where ỹk is the measurement residual, zk is the observation
of finger position and scrolling speed at the kth input event,
Sk is the covariance of residual, I is the identity matrix, and
Kk is the Optimal Kalman Gain. Equation (24)(25) rep-
resent the updating of estimation and estimate covariance.
Finally, we use êk|k as the scrolling speed in our scheme.

Due to the autoregression characteristic of Kalman Filter,
E3 is able to estimate the real scrolling speed more precisely,
and further achieve a smooth frame rate changing and fluent
display animation. Moreover, the complexity of the Kalman
Filter algorithm is O(1) for inputting one scrolling speed, so
the algorithm does not lead to high overhead.

Furthermore, the real-time scrolling speed is used in the
Optimal Frame Rate Calculation procedure to get the op-
timal frame rate in accordance with the User Preference
Model.

4.4.2 Frame Rate Controlling
The Frame Rate Controlling can dynamically adjust the

display frame rate to the optimal frame rate. Generally,
the process of display update is a 3-steps loop, i.e.,Wake
up, Update and Sleep. On each iteration, the control thread
wakes up and then update an image to the screen. After the
display is updated, the control thread sleeps 1/60 seconds to
make sure the frame rate does not exceed the 60fps hardware
limit.

As we discussed in Section 3.2, the frequently executed
image building procedure is the root cause of high energy
consumption during scrolling operations. In order to save
energy, the frequency of image building should be reduced.
Before the control thread falls asleep, E3 calculates the opti-
mal frame rate according to the current scrolling speed and
preference model, then converts the optimal frame rate to a
corresponding time interval and takes it as the sleep time.

More specifically, with E3 employed, a sleep time chang-
ing step is added into the iteration. We take note of the
time consumed by update as τ , then the sleep time in this
iteration should be

Tsleep =
1

rmin
− τ. (26)

Instead of just using the 1
rmin

as sleep time, we introduce

τ to improve the accuracy of frame rate controlling. Addi-
tionally, the changing of frame rate will not exceed 60 times
per second. Thus, considering only simple calculations are
involved here, we could also infer that the overhead of E3 is
negligible.

4.5 Evolving Stage
Although E3 uses an accurate model to describe the user

preference on scrolling speed, the performance can be im-
proved by considering that the preference of users may change
over time. In order to keep the pace with such evolution,

Figure 13: Illustration of E3 evolving mechanism.

E3 should provide corresponding mechanism. In particular,
we add a balance factor β between energy-efficient and user
experience in Equation (7) and (8).

The workflow of E3’s self-evolving is shown in Figure 13.
Once the Initiating Stage is finished, the preference model
that fits the user’s demands is established and E3 starts to
adjust the frame rate refer to the real-time scrolling speed.
However, after a period of usage, the user may feel unsat-
isfied with the current configuration. In that case, the user
can always use an evolving program to adjust parameters
of preference model. All a user has to do is choose more
battery life or more user experience.

The functionality of β in E2RSS is to balance the prefer-
ence between user experience and energy saving. After the
user makes his/her decision, a feedback message (Energy-
Prior or User-Experience-Prior) is sent from the Feedback
Collecting to the Model Parameter Calibration. In the case
that a User-Experience-Prior feedback is received, the Pref-
erence Model Generator will adjust β (initially, set to 0.5)
to give more weight on user experience. E3 then updates
model parameters according to the message context and fi-
nally uses the new estimator E2RSS to regenerate a new
preference model in Preference Model Training. Thus, a bi-
ased model according to the user feedback is obtained. As
time goes by, the user preference model will evolve and even-
tually, a better model fits the specific user can be achieved.

5. PROTOTYPE IMPLEMENTATION
To test the feasibility of E3, we build prototypes using

different types of android-based smartphones and a tablet.
Specifically, we implement E3 on a Nexus One with Android
2.3, a Nexus S with Android 4.1, a Galaxy S II with Android
4.0, a Nexus Prime with Android 4.0 and a Galaxy Tablet
with Android 3.2. We choose Android smartphones/tablet
to implement our prototype because Android is an open-
source operating system which facilitates the research on it.
Our prototypes mainly consist of two parts, i.e., a power
meter and E3 software, as illustrated in Figure 14.

The voltage of smartphones/tablet is measured by an AD
convertor and the current is measured by amplifying and ob-
serving the voltage drop over a 0.018Ω resistor. The sample
rate of the power monitor is set to 1KHz. We compare the
power meter to a high-precision oscilloscope and the result
shows that with a sample rate at 1KHz, the power meter
can capture most slight jitters of the smartphone voltage
and current. We implement E3 via developing applications
and system modules on Android. The source code of E3 and
tools are available at [1].

We first conduct an experiment to measure the power
consumption during browsing a website with and without
E3 using a Nexus S smartphone. The results are shown in

Figure 15, where the curves from 0s to 10s show the en-
ergy consumption caused by loading of the browser and the
webpage, and curves from 10s to 60s show the energy con-
sumption during the surfing with ten scrolling operations.
The bottom area of both curves represents the energy con-
sumption for screen display. Clearly, it can be seen that,
without E3, the energy consumption caused by scrolling is
much higher than that of loading, taking up most of the
overall energy consumption. In contrast, with E3 enabled,
the energy consumption caused by scrolling is significantly
reduced. Further analysis on the data of this plot shows
that E3 saves up to 63.2% of the energy consumed by CPU
and achieves a 36.1% energy-saving in the overall energy
consumption. Moreover, it can be seen that there is a close
match between the two curves during the first 10 seconds,
which indicates there is no difference in the energy consump-
tion with or without E3 enabled during the loading. This
states that the overhead of monitoring the scrolling speed in
E3 is negligible.

Figure 16 shows the results when using different devices.
The energy consumption without E3 on each device is nor-
malized to 100% and the bars with deepest color represent
energy consumed by screen. It is clear that E3 can achieve
considerable overall energy savings on multiple smartphones
(35.8% on Nexus One and 37.5% on Nexus Prime) and gets a
good overall energy saving on the tablet (29% on GALAXY
Tab). The reason that E3 gets higher energy saving ratio on
smartphones than the tablet is because tablets have bigger
screens that consume much more energy.

We then present the energy saving of E3 while surfing on a
series of websites, as shown in Figure 17. The bars represent
the CPU energy consumption with and without E3 while
browsing these websites, we observe that E3 significantly
reduces the CPU power to 55% in average. Furthermore,
the line shows the overall energy saving achieved by E3.
From this line, we observe the overall energy saving is up to
32%. One interesting observation we have is that the energy
saving while browsing Twitter is not as high as the other
websites. Through experiments, we find that the frame rate
while browsing Twitter is extremely low, which leaves little
room for E3 to improve the energy-efficiency. Even though,
E3 still can save 9.8% of the CPU energy consumption while
browsing Twitter.

The results of the above experiments show that E3 signifi-
cantly reduces the power consumption caused by scrolling for
different types of smartphones/tablet. We will thoroughly
evaluate E3 via extensive experiments in the following sec-
tion.

6. PERFORMANCE EVALUATION
In this section, we evaluate the performance of E3 by an-

alyzing real traces collected from 327 volunteers randomly
selected on college campus. During the experiments, each
volunteer received two smartphones with and without E3,
and power meters attached to both phones. We note that
the volunteers are not aware of which smartphone is embed-
ded with E3. Then, each volunteer is asked to use different
applications (around 10 minutes for each App) on the two
smartphones.

We first evaluate the impact on both user experience and
energy efficiency of E3 in various smartphone applications.
After that, we discuss the impact of the E2RSS. Finally,
the overhead of E3 is analyzed.

Figure 14: User interface of E3,
measurement tools and testbeds.

Figure 15: Energy consumption
during one web surfing with and
without E3.

Figure 16: Energy consumption
on multiple devices during a web
surfing with and without E3.

Figure 17: Energy-saving of E3 while surfing on a
series of websites.

6.1 Impact on User Experience of E3

The volunteers are requested to grade the experience dif-
ference of the two smartphones. Our grading system has ten
levels, in which the level ten indicates that there is no user
experience difference between the two kinds of smartphones
and grade level declines as the user experience difference
increases.

From the collected traces, the average grades of user expe-
rience under the different applications and models are shown
in Figure 18. We observe that in each model and application,
E3 with Kalman Filter and E2RSS has the highest user ex-
perience grade. For example, the Browser application with
the Logarithmic model gets 9.3 in average. In contrast, we
notice that the Linear model has a worse user experience,
e.g., the average user experience grade on the Linear model
with Kalman Filter and E2RSS is 7.2 in Browser. This is
because the curve of the Linear model is far from the true
user preference. Besides, the Inverse and the Sqrt model
also have lower user experience grades than the Logarithmic
model, with the same reason as the Linear model. There-
fore, Logarithmic model has the best performance on user
experience among these four models.

We also find that the Logarithmic model with Kalman
Filter and E2RSS has higher grade than the Logarithmic
model without Kalman Filter or E2RSS. The user expe-
rience is distinctively reduced for all the models without

Kalman Filter and E2RSS. Moreover, we observe that, in
browser application, there are huge disparities (almost 6 lev-
els) on experience grades in the Linear model with or with-
out E2RSS. This is due to the convex distribution of user
preference pattern and a mismatching model from the stan-
dard least-squares regression will produce lower predictions
on frame rates than the user demands. On the contrary,
E2RSS introduces the probability distribution of scrolling
speed, thus E3 with E2RSS achieves more accurate pre-
diction on user preferences. Similar results can be found
in other applications, such as Facebook App, Reader and
Google Map, indicating that E3 with E2RSS achieves a
good user experience across different applications.

We next compare the performance of our user-specific
models and the uniform models, which utilizes all users’
samples to calibrate the parameters of a universal model.
We note that both the user-specific and uniform models are
trained with the E2RSS and applied with KF . The results
are shown in Figure 19. From this figure, we observe that
the user-specific models always get higher scores than the
uniform models. This is because the uniform models are
approximate to the “average” of all the user-specific mod-
els, thus nearly half of volunteers may feel that the display
becomes not fluent. As a result, the experience grades of uni-
form models are lower than the user-specific models, which
indicates it is necessary to use the user-specific so as to keep
the user experience un-compromised.

Based on the results and analysis above, we conclude that
E3 can still give consideration to the user experience while
adjusting the frame rate.

6.2 Impact on Frame Rate and Energy-Effi-
ciency of E3

We further evaluate the impact on frame rate and en-
ergy efficiency of E3 over different applications. Note that
without specification, the user preference model is the Log-
arithmic model, the estimator of E3 is E2RSS and Kalman
Filter is enabled.

Figure 20 shows CDF of frame rate while using four pop-
ular applications with E3. For the most scrolling-intensive
application, Browser (according to the results in Figure 3),
E3 successfully reduces the frame rate to 30fps for more than
70% volunteers. For Google Map, frame rates in 80% cases
are reduced to less than 40fps. The results tell us that E3

could reduce 1/3 ∼ 1/2 display updates for most users in
daily-used applications.

(a) Browser (b) Reader (c) Facebook (d) Google Map

Figure 18: Average grades of user experience in different models and applications.

Figure 19: Average grades of user experience in
user-specific and uniform models

Figure 21 plots CCDF (complementary cumulative distri-
bution function) of energy saving in four applications achieved
by E3. In this figure, take Reader for example, E3 can save
more than 45% CPU energy consumption and more than
25% overall energy consumption (CPU, Radio, Screen and
Sensors energy consumption) for 70% volunteers. Also, E3

saved over 30% of CPU energy saving and more than 15%
of overall energy consumption for 70% users. Similarly, E3

achieved significant energy saving in the other applications.
In summary, E3 realize a remarkable energy saving on both
CPU and overall energy consumption across multiple popu-
lar applications.

6.3 Impact of E2RSS
In order to evaluate the impact of E2RSS, we conduct ex-

periments to compare the energy saving of E3 with or with-
out E2RSS in Figure 21. For most of the cases, E3 with
E2RSS can achieve a higher energy saving than E3 with
RSS. For example, 50% volunteers in Browser application,
E3 with E2RSS saves more than 60% CPU energy con-
sumption, in contrast, only about 53% energy saving for E3

with RSS. This indicates that the introduction of E2RSS
improves the energy efficiency of E3.

We use the normalized energy saving here, to compare the
impact of the balance factor β under the same criterion. The
normalization is done by uniformly mapping the energy sav-
ing interval into [0..10], while β changes from 0.1 to 0.9. The
minimum energy saving is mapped to 0 and the maximum
is mapped to 10. The meaning of user experience scores
are the same with the grades in Figure 18. The normal-
ized energy saving and user experience of four applications
are shown in Figure 22. It can be seen that, in all cases,
with β changes from 0.1 to 0.9, the user experience shows
an uptrend while the energy saving shows a downtrend. In

Figure 20: CDF of frame fate in four popular appli-
cations with E3.

E2RSS, a higher β value means that more weight is given
to the user experience and vice versa. We can also see that,
after β exceeded 0.5, the growth of user experience is lim-
ited. In contrast, the energy-efficiency downward trend is
relatively well-distributed with the growth of β. This result
shows that when β = 0.5, we could get an acceptable user
experience while keeping a good energy-saving. Therefore it
is better to set the initial value of β to 0.5.

To further investigate the impact of E2RSS on E3, we col-
lect traces on both energy saving and user experience grades.
Figure 23 illustrates the energy saving on both CPU and
overall energy consumption, as well as the user experience
grades, under four different models with RSS or E2RSS.
In Facebook App, we find that the Logarithmic model with
E2RSS realizes considerable energy saving on both CPU
(56%) and overall (27%) energy consumption while keeping
a high user experience grades (almost level ten) at the same
time. Compared to the Logarithmic model with E2RSS, no
other model can achieve a higher energy saving while keeping
an acceptable user experience. For example, although the
Linear model with RSS achieves a good energy saving, the
user experience is too low to be accepted. Through E2RSS
estimator, the Linear model remarkably improves the user
experience grades, but simultaneously, the energy saving is
declined significantly. Except the Linear model, the other
models with E2RSS can achieve both a higher energy sav-
ing and a better user experience than the same models with
RSS. Also, we get similar results from the other applica-
tions. Therefore, E2RSS is an ideal model estimator for
both energy-efficiency and user experience.

6.4 Overheads Analysis
Although E3 monitors the user input in real-time and

adjusts the frame rate according to the scrolling speed, it

(a) Browser (b) Reader (c) Facebook (d) Google Map

Figure 21: CCDF(complementary cumulative distribution function) of energy saving in CPU and overall in
four popular applications with E3.

Figure 22: Impact of β on energy saving and user
experience in different applications.

causes only negligible overheads. First, when there is no
interaction on touch-screen, E3 causes no computation so
that no energy is consumed by E3. Second, when there
is scrolling operations, the event catching, Kalman Filter
and optimal frame rate calculation have only O(1) compu-
tational complexity, while the CPU energy consumption can
be reduced up to 58% by E3. As a result, E3 is lightweight
and the overhead could be ignored.

7. CONCLUSION & FUTURE WORK
In this paper, by analyzing the real traces, we have found

that scrolling operation consumes a great amount of energy
on smartphones. By further investigation, we have found
that the satisfied frame rate is far less than the system de-
fault frame rate and the Logarithmic model precisely de-
scribes the relationship between the satisfied frame rate and
the scrolling speed. We have proposed a scrolling-speed-
adaptive frame rate controlling system, E3, which signifi-
cantly reduces the power consumption caused by the scrolling
operations while keeping the user experience un-compromised.
We have implemented E3 on several types of smartphones
and a tablet. Extensive experiment results demonstrated
the efficiency of E3 design.

Following the current research, there are two possible di-
rections for future work on E3. First, more real traces can
be collected with E3 App to improve the design and imple-
mentation of E3. Second, a self-constructive user preference
learning can be designed to automatically extract the user
preference model from the daily operations on smartphones.

8. REFERENCES
[1] E3 testbeds and source code. Available: http://www.

cs.sjtu.edu.cn/~jdyu/research/E3/index.html

[2] B. Anand, K. Thirugnanam, J. Sebastian, P. G.
Kannan, A. L. Ananda, M. C. Chan, and R. K. Balan.
Adaptive display power management for mobile
games. In Proceedings of the 9th international
conference on Mobile systems, applications, and
services, MobiSys ’11, pages 57–70, Bethesda,
Maryland, USA, 2011.

[3] P. K. Athivarapu, R. Bhagwan, S. Guha, V. Navda,
R. Ramjee, D. Arora, V. N. Padmanabhan, and
G. Varghese. Radiojockey: mining program execution
to optimize cellular radio usage. In Proceedings of the
18th annual international conference on Mobile
computing and networking, Mobicom ’12, pages
101–112, Istanbul, Turkey, 2012.

[4] N. Balasubramanian, A. Balasubramanian, and
A. Venkataramani. Energy consumption in mobile
phones: a measurement study and implications for
network applications. In Proceedings of the 9th ACM
SIGCOMM conference on Internet measurement
conference, IMC ’09, pages 280–293, Chicago, Illinois,
USA, 2009.

[5] F. Bellosa, A. Weissel, M. Waitz, and S. Kellner.
Event-driven energy accounting for dynamic thermal
management. In Proceedings of COLP’03, New
Orleans, USA, Sept. 27 2003.

[6] K. Choi, R. Soma, and M. Pedram. Fine-grained
dynamic voltage and frequency scaling for precise
energy and performance trade-off based on the ratio of
off-chip access to on-chip computation times. In
Proceedings of the conference on Design, automation
and test in Europe - Volume 1, DATE ’04, pages
10004–, Washington, DC, USA, 2004.

[7] CNN.com. Battery life concerns mobile users.
Available: http://www.cnn.com/2005/TECH/ptech/

09/22/phone.study

[8] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl. Maui: making
smartphones last longer with code offload. In
Proceedings of MobiSys’10, pages 49–62, San
Francisco, USA, 2010.

[9] M. Dong and L. Zhong. Chameleon: a color-adaptive
web browser for mobile oled displays. In Proceedings of
the 9th international conference on Mobile systems,

http://www.cs.sjtu.edu.cn/~jdyu/research/E3/index.html
http://www.cs.sjtu.edu.cn/~jdyu/research/E3/index.html
http://www.cnn.com/2005/TECH/ptech/09/22/phone.study
http://www.cnn.com/2005/TECH/ptech/09/22/phone.study

(a) Browser (b) Reader

(c) Facebook (d) Google Map

Figure 23: Energy saving of CPU and overall, user
experience grades under different models with RSS
or E2RSS in four popular applications.

applications, and services, MobiSys ’11, pages 85–98,
Bethesda, Maryland, USA, 2011.

[10] M. Dong and L. Zhong. Self-constructive high-rate
system energy modeling for battery-powered mobile
systems. In Proceedings of the 9th international
conference on Mobile systems, applications, and
services, MobiSys ’11, pages 335–348, Bethesda,
Maryland, USA, 2011.

[11] X. Fan, W.-D. Weber, and L. A. Barroso. Power
provisioning for a warehouse-sized computer. In
Proceedings of ISCA ’07, pages 13–23, San Diego,
USA, 2007.

[12] J. Hamilton. Time series analysis, volume 2.
Cambridge Univ Press, 1994.

[13] D. Le and H. Wang. An effective feedback-driven
approach for energy saving in battery powered
systems. In Proceedings of Quality of Service
(IWQoS), 2010 18th International Workshop on,
pages 1–9, 2010.

[14] V. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals. Soviet Physics
Doklady, 10(8):707–710.

[15] J. McCarthy, M. Sasse, and D. Miras. Sharp or
smooth?: comparing the effects of quantization vs.
frame rate for streamed video. In Proceedings of the
SIGCHI ’04, pages 535–542, Vienna, Austria, 2004.

[16] R. Mittal, A. Kansal, and R. Chandra. Empowering
developers to estimate app energy consumption. In
Proceedings of the 18th annual international
conference on Mobile computing and networking,
Mobicom ’12, pages 317–328, Istanbul, Turkey, 2012.

[17] MobiThinking.com. Global mobile statistics 2012 part
a: Mobile subscribers; handset market share; mobile
operators. Available: http://mobithinking.com/

mobile-marketing-tools/latest-mobile-stats/

[18] A. Pathak, Y. C. Hu, and M. Zhang. Bootstrapping
energy debugging on smartphones: a first look at
energy bugs in mobile devices. In Proceedings of the
10th ACM Workshop on Hot Topics in Networks,
HotNets-X, pages 5:1–5:6, Cambridge, Massachusetts,
2011.

[19] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M.
Wang. Fine-grained power modeling for smartphones
using system call tracing. In Proceedings of
EuroSys’11, pages 153–168, Salzburg, Austria, 2011.

[20] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff.
What is keeping my phone awake?: characterizing and
detecting no-sleep energy bugs in smartphone apps. In
Proceedings of MobiSys’12, pages 267–280, Low Wood
Bay, Lake District, United Kingdom, 2012.

[21] F. Qian, Z. Wang, Y. Gao, J. Huang, A. Gerber,
Z. Mao, S. Sen, and O. Spatscheck. Periodic transfers
in mobile applications: network-wide origin, impact,
and optimization. In Proceedings of the 21st
international conference on World Wide Web, WWW
’12, pages 51–60, Lyon, France, 2012.

[22] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, and
O. Spatscheck. Top: Tail optimization protocol for
cellular radio resource allocation. In Proceedings of
Network Protocols (ICNP), 2010 18th IEEE
International Conference on, pages 285–294, Kyoto,
Janpan, 2010.

[23] D. Rajan, R. Zuck, and C. Poellabauer.
Workload-aware dual-speed dynamic voltage scaling.
In Proceedings of Embedded and Real-Time Computing
Systems and Applications, pages 251–256, Sydney,
Australia, 2006.

[24] R. Rao, S. Vrudhula, and D. Rakhmatov. Battery
modeling for energy aware system design. Computer,
36(12):77 – 87, Dec. 2003.

[25] A. Schulman, V. Navda, R. Ramjee, N. Spring,
P. Deshpande, C. Grunewald, K. Jain, and V. N.
Padmanabhan. Bartendr: a practical approach to
energy-aware cellular data scheduling. In Proceedings
of the sixteenth annual international conference on
Mobile computing and networking, MobiCom ’10,
pages 85–96, Chicago, Illinois, USA, 2010.

[26] N. Vallina-Rodriguez, P. Hui, J. Crowcroft, and
A. Rice. Exhausting battery statistics: understanding
the energy demands on mobile handsets. In
Proceedings of the second ACM SIGCOMM workshop
on Networking, systems, and applications on mobile
handhelds, MobiHeld ’10, pages 9–14, New Delhi,
India, 2010.

[27] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos.
Profiledroid: multi-layer profiling of android
applications. In Proceedings of the 18th annual
international conference on Mobile computing and
networking, Mobicom ’12, pages 137–148, Istanbul,
Turkey, 2012.

[28] W. Yuan, K. Nahrstedt, S. Adve, D. Jones, and
R. Kravets. Grace-1: cross-layer adaptation for
multimedia quality and battery energy. IEEE
Transactions on Mobile Computing, 5(7):799–815,
2006.

http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats/
http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats/

	Introduction
	Related work
	Empirical Studies & Trace Analysis
	Power Consumption Caused by Scrolling on Screen
	Impact of Frame Rate Strategy
	Exploring User Experience on Frame Rate
	Modeling the Appropriate Frame Rate

	Design of E3
	Key Design Goals
	System Architecture
	Initiating Stage
	Scrolling Speed Distribution based User Preference Collecting
	Preference Model Training

	Reacting Stage
	Scrolling Speed Extraction
	Frame Rate Controlling

	Evolving Stage

	Prototype Implementation
	Performance Evaluation
	Impact on User Experience of E3
	Impact on Frame Rate and Energy-Effi-ciency of E3
	Impact of E2RSS
	Overheads Analysis

	Conclusion & Future work
	References

