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Abstract. As wireless networks become more pervasive, the amount
of the wireless data is rapidly increasing. One of the biggest challenges
is how to store these data. To address this challenge, distributed data
storage in wireless networks has attracted much attention recently, as
it has major advantages over centralized approaches. To support the
widespread adoption of distributed data storage, secure data storage
must be achieved. In this work, we study the frequency-based attack,
a type of attack that is different from previously well-studied ones, that
exploits additional adversary knowledge to crack the encrypted data. To
cope with frequency-based attacks, the straightforward 1-to-1 substitu-
tion encryption functions are not sufficient. We propose a data encryp-
tion strategy based on 1-to-n substitution via dividing and emulating
techniques such that an attacker cannot derive the mapping relationship
between the encrypted data and the original data based on their knowl-
edge of domain values and their occurrence frequency. Our simulation
results show that our data encryption strategy can achieve high security
guarantee with low overhead.

1 Introduction

As the rapid advancement of wireless technologies has led to a future where
wireless networks are becoming a part of our social life, the collected wireless
data provides tremendous opportunities to support various applications ranging
from environmental sensing, to infrastructure monitoring, to mobile social net-
work analysis. However, as the amount of the wireless data is increasing, one of
the biggest challenges in wireless networks is how to store these data. There are
two possible ways: centralized and distributed. The traditional approach is to
store the collected wireless data in a centralized manner. For example, in wire-
less sensor networks (WSNs) the sensing data is collected from each individual
sensor and sent back to a central server for data access. However, the centralized
approaches may result in performance bottlenecks of data access, and a single
point of failure to both server compromise and intentional attacks.

To address these problems, distributed data storage [TL2J3l4.5] in wireless net-
works recently have attracted much attention. For instance, the sensed data can
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be stored by its type at a group of storage nodes in the network to perform
data-centric storage or stored at each individual device that collects the data.
The distributed data storage has major advantages over centralized approaches:
storing the data on the collected wireless devices or in-network storage nodes
decreases the need of constant data forwarding back to centralized places, which
largely reduces the communication in the network and the energy consumption
on individual devices, and consequently eliminates the existence of centralized
storage and enables efficient and resilient data access. Furthermore, as wireless
networks become more pervasive, new-generation wireless devices with signif-
icant memory enhancement and powerful processing capabilities are available
(e.g., smart phones and laptops), making the deployment of distributed data
storage not only feasible but also practical.

However, secure data storage must be achieved before widespread adoption of
distributed data storage. Prior work in wireless network security has been focused
on network communication security such as key management, secure localization,
and intrusion detection [6][7,[8,[0L[10]. None of these works have addressed the
problem of secure distributed data storage. To fulfill the security requirements
raised by the distributed data storage, recent research has started studying dis-
tributed access control, data confidentiality, and data integrity. [I1] introduced a
redundancy-based key distribution scheme that utilizes secret sharing to achieve a
decentralized certificate authority. [I2] studied to perform secure distributed data
storage by developing an adaptive polynomial-based data storage scheme. [13] pre-
sented a dynamic data integrity checking scheme for verifying the consistency of
data shares in a distributed manner, which is constructed based on the principle
of algebraic signatures to ensure the integrity of data shares.

Most of these current research aim to provide data confidentiality, depend-
ability, and integrity from the perspective that the adversaries will make efforts
to access the data by cracking the data encryption mechanisms with little prior
knowledge. None of these studies have investigated the problem of attackers
cracking the data encryption by exploiting additional adversary knowledge. In
particular, today with rapidly evolving adversarial activities, an attacker may
possess prior knowledge about the domain values and even the exact occurrence
frequencies of the data values. For instance, for the distributed data storage
that stores the coordinate values of locations that people visited, the attacker
may know: (1) where are the most popular locations, and (2) the fact that the
frequency of these locations should be higher than that of all the other loca-
tions. Then those encrypted data values of the highest frequency must map to
these popular locations. The problem gets even worse when we consider a more
conservative model that the attacker knows the ezact frequency of some or all
original data values and utilizes such knowledge to crack the data encryption
by matching the encrypted data values with original data values based on their
frequency distribution. We call this kind of attack as frequency-based attack.
Frequency-based attacks are especially harmful in distributed data storage. For
instance, an attacker can derive the specific activities of an important officer if
the attacker knows the frequency of his visited places, or a hunter can wait at
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specific locations of an endangered animal by possessing the knowledge of the
frequency of the animal’s habitation-related movements.

To cope with frequency-based attacks, apparently 1-to-1 substitution encryp-
tion function is not enough. A stronger mechanism is needed to provide more
reliable data protection. However, little work has been explored to cope with
frequency-based attacks. [T4] has developed a secure encryption scheme to mit-
igate frequency-based attacks in centralized database, making it not applicable
to support secure distributed data storage in wireless networks. In this paper, we
propose a data encryption strategy based on 1-to-n substitution to defend against
frequency-based attacks on distributed data storage in wireless networks. Our
data encryption strategy aims to transform the original frequency distribution
of the original data (i.e., plaintext) to a uniform distribution for the encrypted
data (i.e., ciphertext) so that the attacker cannot derive the mapping relation-
ship between the encrypted data and the original data based on their knowledge
of domain values and their occurrence frequency.

In particular, we develop two techniques, dividing and emulating, to achieve
the uniform distribution of encrypted data either on an individual device or
across the network to cope with two types of attackers: global frequency-based
attack, whereby the attacker only has the knowledge of the global occurrence of
the data in the network, and local frequency-based attack, whereby the attacker’s
knowledge is advanced knowing about the specific occurrence frequency of the
data on each individual device.

As the data is encrypted in the network for security purpose, another impor-
tant issue is how to efficiently evaluate queries over these encrypted data. A naive
method is to transfer all encrypted data in the network to the trusted nodes for
decryption and query evaluation, which will incur tremendous communication
overhead. Thus we design an efficient query evaluation procedure based on the
dividing and emulating techniques for both types of point and range queries that
are representative to support real-time data queries in wireless networks. Both
the theoretical analysis and simulation results show that our 1-to-n substitution
data encryption strategy can achieve high security guarantee, low computational
cost, and efficient query processing.

The remainder of the paper is organized as follows. In Section [ we first set
up the network model, describe the attack model, and provide an overview of our
strategy. We then describe our 1-to-n substitution data encryption strategy and
present the details of the query evaluation procedure in Section[Bl In Section @ we
discuss our simulation methodology, evaluation metrics, and results that validate
our approach. Finally, we conclude in Section

2 System Overview

2.1 Network Model

In our system, we consider wireless networks consisting of both static and mobile
nodes, where each node represents a wireless device that can take the form of
sensor, active RFID tag, laptop, or smart phone. We assume the collected data
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will be stored within the network at each node unless it is required to be sent to
a centralized storage space for backup. By uploading data in a lazy fashion (i.e.,
on-demand only), distributed data storage enables real-time query evaluation
and avoids frequent data transfer from the wireless devices to the centralized
storage, and consequently reduces massive battery power consumption and vastly
decreases the communication overhead of the network.

To prevent the misuse of the data and provide the confidentiality of the data,
the data is encrypted in our network. We refer the original unencrypted data
values as plaintext and the encrypted values as ciphertext. When a user queries
the data in the network, all the nodes holding the data that matches the query
will respond to the user by sending back the corresponding ciphertext. The user
is responsible to perform the data decryption.

2.2 Attack Model

In this section, we first provide an example of frequency-based attacks. We then
categorize the knowledge and behavior of the adversaries.

Example. We assume there is a set of data collected by the wireless devices
where it represents the location information of animals usually appearing as
shown in Table[I] (a). The original data contains the animal type and the location
information.

Table 1. Data example: (a) the original data table; (b) after 1-to-1 encryption; and
(c) after 1-to-n substitution encryption via dividing and emulating

Animal Type Location Animal Type Location Animal Type Location

Panda river A 123 river A 123 river A
Panda river A 123 river A 123 river A
deer wood B 128 wood B 128 wood B
Panda wood C 123 wood C 125 wood C
deer wood B 128 wood B 128 wood B
Panda river A 123 river A 125 river A

(a) (b) (c)

As the panda is an endangered species, the information about panda’s activ-
ities is sensitive and should be protected to avoid the access by poachers. The
straightforward way is to use 1-to-1 encryption function to encrypt the animal
type in the data set (as in Table[l (b)). However, if a poacher has the knowledge
of the animals’ occurrence frequency in the dataset, there are 4 panda’s record
entries and 2 deer’s record entries as depicted in Table [] (a), the poacher can
map the occurrence frequency of the encrypted data (e.g., 4 times of 123) to
derive the corresponding animal type (e.g., panda) without decrypting the data,
and consequently access the location information. In this case, the poacher will
gain the sensitive information that the panda often appears at river A.

Based on the knowledge level of the original data’s occurrence frequency that
an adversary has, in this work we categorize the frequency-based attacks into
two types: global and local.
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Global Frequency-based Attack. An adversary only has the knowledge of
the overall distribution of the data in the network. In particular, the adversary
knows the occurrence frequency of a plaintext P71} as f; = Zf\il fj,i, where i =
1,2,---,N and N is the number of nodes in the network. Thus, the occurrence
frequency of all the plaintext freq(PT) in the network can be expressed as:
freq(PT) = Zle fj, with j = 1,2,--- |k and k is the number of distinctive
plaintext values. However, the adversary does not have the knowledge of the
detailed occurrence frequency of the data on each individual wireless device.
Local Frequency-based Attack. An adversary has the advanced knowledge
of the distribution of plaintext values on each individual wireless device. Partic-
ularly, the adversary knows the occurrence frequency of a plaintext PT} as f;;,
with j =1,2,--- Jkand ¢ =1,2,--- , N. k is the number of distinctive plaintext
values and N is the number of nodes in the network. The local frequency-based
attacks are more harmful as the attacker can derive the mapping between the
encrypted data and the original data on each individual device independently.

2.3 Approach Overview

Encrypting Data via Dividing and Emulating. Based on the simple ex-
ample in Table[Il we showed that simply encrypting the original sensitive data
values that we want to protect by using 1-to-1 encryption functions and storing
the ciphertext will result in encrypted values following the same distribution as
the original plaintext values, making it easy to launch frequency-based attacks
and disclosing the sensitive data to adversaries. To cope with frequency-based
attacks, we propose to divide each plaintext value into one or more ciphertext
values in such a way that regardless of the original data distribution, the tar-
get distribution remains close to flat, i.e., uniform. Furthermore, we propose
emulating on the divided data to fit the target distribution to a uniform dis-
tribution, so that the attacker cannot uniquely crack the identity of ciphertext
values, i.e., deriving the corresponding plaintext values, based on his knowledge
of data frequency. Table [Tl (¢) shows that after applying dividing and emulating
techniques, the distribution of the ciphertext values is uniform, i.e., 2 times for
123, 125, and 128 each, highly decreasing the probability for an adversary to
derive the plaintext values by launching a frequency-based attack.

Coping with Attacks. Under global frequency-based attacks, our dividing and
emulating techniques will exploit the global frequency distribution of plaintext
values in the network to achieve uniform frequency distribution of the ciphertext
values in the whole network, i.e., by examining the distribution of the encrypted
values, the frequency of each data value in the network will be nearly uniform
for the attacker. Whereas under local frequency-based attacks, the uniform dis-
tribution of the target ciphertext will be achieved on individual wireless device
independently. Thus, the occurrence frequency of ciphertext on different nodes
may be different.

Answering Data Query. We consider two types of queries on the data: point
queries that return all data values in the network that equal to a given value,
and range queries that return all data values in the network that fit in a range.
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The query processing consists of three phases: (1) query translation at user
side that transforms the original queries containing plaintext values to the ones
with corresponding ciphertext values, (2) query evaluation at nodes in network
that issues the translated queries on the encrypted data. For both point and
range queries, since the ciphertext values are encrypted by order preserving
encryption function, the ciphertext values whose plaintext values matching the
original query will be returned, and (3) query post-processing at user side that
decrypts the returned ciphertext values to plaintext values as the answer of the
original queries.

3 Dividing and Emulating: 1-to-n Substitution
Encryption

In this section, we first describe our dividing and emulating techniques that
are used in 1-to-n Substitution Encryption. We then present our efficient query
processing over encrypted data by using dividing and emulating techniques.

3.1 Dividing

The basic idea of dividing is that, any plaintext value of frequency f is divided
into multiple ciphertext values such that the total frequency of these ciphertext
values equals to f. Intuitively, if £ unique plaintext values are split into m > k
unique ciphertext values that are of the same frequency, none of these ciphertext
values can be explicitly mapped to their corresponding plaintext values by the
frequency-based attack. Indeed, the decipher probability P that these m cipher-
text values can be correctly mapped to k plaintext values by the frequency-based

attack equals
1

P= .. (1)
(v21)
Number of Divided Ciphertext Values. To achieve a threshold o of the
decipher probability, for k£ unique plaintext values that are encrypted into m

unique ciphertext values of the same frequency, they must satisfy P = (ml,l) <o.
k—1

Intuitively, the smaller ¢ is, the more robust the dividing scheme is when against
the frequency-based attack. Our goal is to calculate the appropriate value of m
(i.e., the number of unique ciphertext values), with given o and k. However,

directly deriving m from the constraint (ml,l) < ¢ is computationally hard.
k—1

Thus we consider Stirling’s approximation, i.e., m! ~ m™e~"v/2rm. We thus
have:

p_ T 1 N 1
s I o L (m—1)(m=1) /27 (m—1)
k—1 (k=1)!(m—Fk)! 2= 1)k (m—k)m—) /(b1 (m—)
1 E—1
< (1) =1 /1 =( 1)(’“ D\/2n(k—1). (2)

Var((k=1)*=D (m—1)0m %) \/(k=1)(m—1))
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As it is required that P = (ml,l) < o, from Equation [2 we can infer that
k—1

m > (k—1)( ‘/%((rkfl) ) K110 Tt s straightforward that larger m value implies

the more robustness of the dividing scheme against the frequency-based attack.

However, as we will discuss soon, larger m values will also result in more keys

needed for encryption and decryption. To balance the trade-off between the

robustness of the scheme and the cost for key management, we use

mz(k—l)(\/%(:_l))kil+1 (3)

as the number of divided ciphertext values needed to achieve the required ro-
bustness of the scheme. Based on the valued m, next, we discuss how to split k
unique plaintext values into m unique ciphertext values.

Dividing Factor. We define the dividing factor in our dividing scheme as
following.

Definition 1. Given k unique plaintext values PT;(1 < j < k) that will be en-
crypted as m unique ciphertext values, let f = ijzlfj, where f; is the frequency

of the plaintext value PT;. Then each PTj is encrypted as f{j] unique ciphertext
values, where

d=1"1. (4)

m
We call d the dividing factor.

After dividing, k unique plaintext values are split into m unique ciphertext
values, such that m — [m(fi_fl of them are of the same frequency d. If md = f,
then all m ciphertext values are of the same frequency. Otherwise, out of these
m values, there will be (md;f] of them with frequency of f; — Lfd7j x d, where

f; is the frequency of their corresponding plaintext values.

Dividing Procedure. Next, we describe the details of our dividing procedure
that can achieve the goal mentioned above.

Step I. Sorting: We sort the plaintext values by their frequencies in ascending
order. Let 6 = min(PT;41—PT;)(1 < j < k—1) be the minimal interval between
any two successive frequency values.

Step II. Dividing: For each plaintext value PT};, we choose ¢ distinct random
numbers wy, ..., wi (1 <t < f{j]) as weight values, where f; is the frequency of
PTj;, and d is the dividing factor. We require that w, should be unique among
all the w;s, as it is needed for value decryption (More details are in Section B.3]).
Then we partition f; number of PTj values into ({17 | partitions, each partition
containing d number of PT} values, except the last one that contains f; — L{j | xd

number of PT} values. Then the PTj value in the i-th partition (1 <14 < f{j])
is encrypted to

CT; = enc(PT; + Y w;d),1<i < [{;’1, (5)
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Fig. 1. Dividing and Emulating

where w; is a distinct random number € (0, 1/([{“ +1)) (ie., Yw; < 1), and
enc() is an order-preserving encryption function [I5]. More specifically, the first
partition of occurrence of PT; will be transformed to enc(PT; + w1d); the I-th
partition of occurrences to enc(PTj + >, ., (w;0)). That is to say, the [-th
partition is displaced from PTj; by a fraction of the gap ¢ given by the sum
w1 + ws + -+ - + w;. After dividing, there are P;’ | number of ciphertext values
CTy,...,CT,(1<t< [{ﬂ), with their total frequencies equal to f;.

To illustrate the results of ciphertext values by applying our dividing tech-
nique, we show a simple example as following: Given two plaintext values PT}
and PT, of frequency 12 and 21, f = 12 + 21 = 33. Assume Equation [ has
returned m = 5. Then using Definition [l the dividing factor d is calculated as 7.
Based on the dividing procedure, PT; will be encrypted as 2 unique ciphertext
values, one of frequency 7, and one of frequency 5, by using 2 unique keys; P75
will be encrypted as 3 unique ciphertext values, each of frequency 7.

Due to the use of order-preserving encryption function enc(), a nice property

of the dividing scheme is that the ciphertext corresponding to different plaintext
values will not straddle each other. More precisely, for any two values PT; < PT},
and for any ciphertext values CT;",CT}' (i.e., the m-th and n-th ciphertext
values of PT; and PTj respectively), it is necessary that CT;" < CT}'. This will
enable the efficient query evaluation over the ciphertext values (More details of
query evaluation will be discussed in Section B3]).
Cost of Key Management. For each plaintext value that is divided into r
unique ciphertext values, we need r unique keys. To reduce the total number
of keys that are needed for dividing k£ unique plaintext values in the network,
we allow these plaintext values share keys for dividing. Therefore, the number
of keys r needed for the dividing scheme equals to r = mamlgjgk({j 1, which
largely reduces the total number of unique keys during encryption.

3.2 Emulating

The dividing procedure cannot guarantee that all ciphertext values are of the
same frequency. Figure [I] (a) and (b) depict an example of dividing. The 4
plaintext values 3, 16, 22, and 35 of occurrence frequency 21, 41, 14 and 55
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(Figure[dl (a)) are divided into 10 unique ciphertext values (Figure [l (b)), with
the dividing factor as 15. Figure [l (b) shows some ciphertext values, including
the second ciphertext value of plaintext value 3, the third ciphertext value of
plaintext value 16, the first ciphertext value of plaintext value 22, and the last
ciphertext value of plaintext value 35, that are of different frequency from the
other ciphertext values. These ciphertext values may face the threat that their
encryption can be cracked by the frequency-based attack.

Thus, we apply emulating on these values, so that these ciphertext values are
indistinguishable from the others by their frequencies. In particular, for these
ciphertext values, they are duplicated so that their frequency also equals to d,
the frequency of the other ciphertext values. Figure[Il (¢) shows the results of the
frequencies of these ciphertext values after emulating. Therefore, By performing
emulating, these ciphertext values are indistinguishable by the frequency-based
attack. However, it incurs additional space overhead for the duplicates, which is
called emulating noise. There exists a trade-off between the security guarantee
and the space overhead i.e., higher security guarantee may lead to more space
overhead. This trade-off will be studied in details in Section [l

To cope with both global and local frequency-based attacks, we apply the
dividing and emulating encryption scheme on the plaintext values. For global
frequency-based attacks, we apply the scheme on the global distribution infor-
mation to achieve globally uniform frequency distribution of the ciphertext val-
ues (i.e., all unique ciphertext values in the network are of the same frequency).
While for local frequency-based attacks, we exploit the dividing and emulating
techniques locally on each individual device, so that the ciphertext values on
each device will achieve uniform frequency distribution.

3.3 Efficient Query Processing over Encrypted Data

We assume the users issue their queries that only contain plaintext values. In
this paper, we consider two types of queries: point queries that return all data
values in the network that equal to a given value, and range queries that return
all data values in the network that fit in a range [I,u]. Our goal is to translate
the plaintext queries to ciphertext queries that can be applied directly on the
encrypted data in the network. This mechanism has two advantages: (1) sending
ciphertext queries to the network will protect the queries, especially the plaintext
values in the queries, from the malicious attackers, and (2) it supports efficient
query evaluation, as data decryption in the network, which in general is costly,
is avoided. To achieve the goal, we design the query processing procedure that
consists of three phases: query translation at the user side, query evaluation at
the nodes in the network, and query post-processing at the user side. Next, we
discuss the details of these three phases.

Phase-1: Query translation at user side. We assume a user can access all the
auxiliary information including the weight values w;, the gap values §, and the
order-preserving encryption function enc() that are used in the dividing scheme.
He/she will make use of these information to translate the plaintext queries as
following.
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Point queries: Given a point query @ : V = v, the user will translate it to
Q' by following the same dividing scheme for encrypting data values in the
network. In particular, the plaintext value v will be encrypted to r ciphertext
values CTy,...,CT,. Since these r ciphertext values follow the order that CT; <
CTy--- < CT,, the query @ will be translated to Q' : V € [CTy,CT,], where
CTy = enc(v + wy *6), and CT,, = enc(v + Y ,_, w; *6). Here w; and § are
pre-valued in the dividing scheme (see Section B.T]).
Range queries: Recall that our dividing technique performs order-preserving
encryption. Thus the range query @ : V € [l,u] will be translated to another
range query Q’. In particular, let wé and w;' be the i-th weight values assigned
for dividing ! and w, and d;,d, be the gap values used for dividing [ and u
values, then the query @ will be translated to Q' : V € [CT}{,CTY], where
CT} = enc(l + wh = §;), and CT* = enc(u+ Y_;_, w¥ * §,). In other words, the
plaintext range [l, u] is translated to another range whose lower bound equals to
the smallest divided ciphertext value of [, and upper bound equals to the largest
divided ciphertext value of u.
Phase-2: Query evaluation at nodes in the network. After translation, the
range query Q' : V € [CT;,CT,] (for both point and range plaintext queries),
where CT; and C'T,, are the lower bound and upper bound ciphertext values, will
be sent to the network. Each node will check whether it has any ciphertext value
that satisfies the query Q’, and return these ciphertext values if there is any. To
ensure successful decryption in Phase-3, we require that there are at least two
unique ciphertext values to be returned; if there is only one ciphertext C'T" value
that satisfies @)', the next ciphertext value that is greater than C'T will also be
sent back, even though it may not satisfy Q’.
Phase-3: Query post-processing at user side. After the user receives the
returned ciphertext values CTy,CTy, -+, CT; from the network, he/she will de-
crypt these values and obtain the plaintext values. In particular, with the knowl-
edge of the gap values 4, he/she calculates s; = CT;41 — CT;, the distance of
every two successive ciphertext values (we assume CT; < --- < CTy). If there
exists any s; that equals to ws % d, then the user deciphers CT; as (CT; — wy *9).
The reason that only ws is used for decryption is that if there exists any answer
PT, it must satisfy that for the first and the second divided values CT; and CT5
of PT, CTy = PT + wy x 6§, and CTy = PT + (w; + wz) * J, thus there must
exist s; = CT;41 — CT; that equals to wg * §. If there is no such s; that equals
to wsg * §, then there is no answer to the queries. The success of the Phase-3
decryption is guaranteed by: (1) our design of the dividing scheme that requires
that wsy is unique among all weight values, so that is s; = we % d, and (2) our
Phase-2 query evaluation procedure that requires that at least two ciphertext
values (i.e., at least the first and the second divided values) should be returned.
We illustrate the query post-processing procedure through the following exam-
ple: Given the plaintext values {10,11,13,14,17} with 6 = 0.5, and the weights
{0.1,0,3,0.2,0.1}, the divided ciphertext values will be CT = {10.05, 10.15, 11.05,
11.2,11.3, 13.05, 14.05, 14.2, 14.3, 14.35, 17.05}. Let’s consider a plaintext query
Q : V €[13.45,14.15]. Tt is translated to the ciphertext query Q' : V' € [13.5, 14.5].
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Applying Q" on CT will return {13.05,14.05,14.2,14.3,14.35}. There exists two ci-
phertext values 14.05 and 14.2 whose distance equals to § * we = 0.15. Thus the
value 14.05 is deciphered as 14.05 — wy * 6 = 14.05 — 0.1 % 0.5 = 14.

4 Simulation Evaluation

4.1 Metrics

To evaluate the performance of our proposed 1-to-n encryption strategy for
coping with frequency-based attacks, we developed the following metrics.

Overhead by dividing. We would like to measure the additional number of
ciphertext values that are introduced during the dividing process. For the case
of global frequency-based attack, the overhead by dividing metric is defined as
e k where m and k are the total number of distinct ciphertext and plaintext

values in the network. For the case of local frequency-based attack, the overhead
Ciimi—Y ik
fvzl ki

of distinct ciphertext and plaintext values on node (1 <4 < N). Intuitively, the
more the additional number of ciphertext is introduced during dividing, the more
computational overhead is incurred. We will evaluate the overhead by dividing
under various decipher probability for both global and local frequency-based
attacks.

Overhead by emulating. In addition to evaluating the computational over-
head introduced by dividing, we are interested in quantifying the additional noise
amount for performing emulating in order to achieve uniform distribution of ci-
phertext values. We define the overhead by emulating as © °s S0 where S, and
Se are the sizes of the data memory before and after emulatiﬁg.

by dividing metric is defined as ‘., where m; and k; are the number

4.2 Methodology

We conducted simulation of a wireless network with multiple nodes using Matlab.
Each wireless node collects the data and stores it on itself. We tested on three
network sizes with number of nodes set to N = 20,60 and 100 respectively. For
each simulation setup, we controlled the total number of distinct plaintext values
in the network to be less than or equal to 200. The occurrence frequencies of
plaintext values on each wireless node are positive integer in the range of [0, 100]
that follows a uniform distribution. Our simulation results are the average over
100 runs for each simulation setup.

4.3 Coping with Global Frequency-Based Attacks

When coping with global frequency-based attacks, we first study the effectiveness
of our scheme under various decipher probability. Figure[2 (a) and (b) present the
overhead by both dividing and emulating in the network under various decipher
probability when fixing the distinct plaintext values at 200. The key observation
in Figure [ (a) is that the overhead by dividing is always small (under 10%)
even when the decipher probability goes to around 10~°. This is encouraging as
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Fig. 2. Effectiveness evaluation when coping with global frequency-based attacks: (a)
and (b) overhead by dividing and emulating under various decipher probability when
fixing the distinct plaintext values at 200; (c) overhead by dividing under various
distinct plaintext values when fixing the decipher probability to 0.01 and N = 60

it indicates that our scheme can achieve a robust security guarantee under global
frequency-based attacks with little overhead incurred by the dividing technique.
The other observation is that the curves for different network sizes overlap. This
is because the number of ciphertext values required for dividing does not depend
on the number of nodes in the network.

Additionally, we observed that the overhead by emulating is not sensitive to the
decipher probability. It goes up slightly from 22% to 25% as the decipher proba-
bility increases, which is not significant. We further found that the overhead by
emulating does not change with the network size. These discoveries suggest that
our scheme is robust in terms of the overhead noise produced by the emulating
process when achieving a high security guarantee under various network sizes.

We further investigated the overhead by dividing when varying the number
of distinct plaintext values in the network. Figure 2] (c) depicts the overhead
by dividing as a function of the number of distinct plaintext values when the
decipher probability P = 0.01 and the network size N = 60. We found that
the overhead by dividing is sensitive to the number of distinct plaintext val-
ues in the network. Particularly, the overhead by dividing decreases from 22%
to 8% when the number of distinct plaintext values increases from 40 to 200
in the network. This indicates that the more distinct plaintext values exist in
the network, the less additional computational cost is incurred when using our
encryption scheme.

4.4 Coping with Local Frequency-Based Attacks

Next, we turn to examine the performance of our scheme under local frequency-
based attacks. Figure Bl presents the total overhead introduced in the network by
applying our decryption scheme under local frequency-based attacks when fixing
the total number of distinct plaintext values at 200 (however, the number of dis-
tinct plaintext values on each node is less or equal to 200). As shown in Figure[3]
(a), we observed that the overhead by dividing is comparable to that under global
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Fig. 3. Effectiveness evaluation when coping with local frequency-based attacks: (a)
and (b) overhead by dividing and emulating under various decipher probability when
fixing the distinct plaintext values at 200; (c) overhead by dividing under various
distinct plaintext values when fixing the decipher probability to 0.01 and N = 60

frequency-based attacks. In particular, the overhead by dividing decreases, from
16% to 4%, as the decipher probability increases in a large range from 107> to 1.
Furthermore, the overhead introduced by emulating when varying the decipher
probability is presented in Figure Bl (b). We found that the overhead by emulat-
ing is not sensitive to the changes of decipher probability and having a slightly
increasing trend from 22% to 25% when the decipher probability increases (from
1072 to 1).

These observations are inline with those found in global frequency-based at-
tacks, and indicating that our scheme does not require more overhead when
coping with local frequency-based attacks than that under global frequency-
based attacks. Additionally, we observed that the overhead do not increase as
the network size increases, suggesting that both the additional computational
cost and memory overhead introduced by our scheme are stable and will not
vary with the network sizes.

Finally, we look at the overhead by dividing as a function of the number
of distinct plaintext values in Figure Bl (¢) when P = 0.01 and N = 60. The
observation of the declining trend from 45% to 9% as the number of distinct
plaintext values increases from 40 to 200 in the network indicates that under
local frequency-based attacks, our scheme is sensitive to the number of distinct
plaintext values in the network. Furthermore, the overhead by dividing is larger
than the corresponding ones under global frequency-based attacks. This is based
on our observation that to achieve a given decipher probability, smaller number
of distinct plaintext values will require relatively more distinct ciphertext values.
Since the uniform distribution of ciphertext values is achieved on each individ-
ual node when coping with local frequency-based attacks as opposed to that
achieved in the network level under global frequency-based attacks. The overhead
ratio by dividing of local frequency-based attacks is higher than that of global
frequency-based attacks.
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5 Conclusion

In this paper, we proposed a secure data storage scheme that can effectively
defend against frequency-based attacks in wireless networks. We considered a
sophisticated attack model that the attackers possess the knowledge of frequen-
cies of the original data in the network and utilize such knowledge to deci-
pher the encryption on these data. To cope with such frequency-based attacks,
we designed a novel 1-to-n encryption scheme that utilizes our proposed di-
viding and emulating techniques. We showed that our dividing and emulating
techniques not only provide robust security guarantee against frequency-based
attacks but also support efficient query evaluation over encrypted data. Our
extensive simulation results confirmed the effectiveness and efficiency of our
approach.
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