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Abstract—Jammer can jeopardize the dependability of wireless
networks, and jammer’s position information allows the network
to cope with jamming leveraging varieties of defense strategies.
Thus, in this paper, we address the problem of localizing
jammer. Prior work relies on indirect measurements derived from
jamming effects, which makes it difficult to accurately localize
jammer. We localize jammer by directly using the strength of
jamming signals (JSS). Estimating JSS is challenging as they
may be embedded in other signals. As such, we devise an
estimation scheme based on ambient noise floor and validate
it with real world experiments. To improve localization accu-
racy, we define an evaluation feedback metric to quantify the
estimation errors and formulate jammer localization as a non-
linear optimization problem, whose optimal solution approaches
jammer’s true position. We exploit a heuristic search based
algorithm for approximating the global optimal solution, and
our extensive simulation shows that our error-minimizing-based
algorithm outperforms existing algorithms.
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I. INTRODUCTION

The increasing pervasiveness of wireless technologies, com-
bined with the limited number of unlicensed bands, will
continue to make the radio environment crowded, leading to
unintentional radio interference across devices with different
communication technologies that share the same spectrum,
e.g., cordless phones, Wi-Fi network adapters, Bluetooth head-
sets, microwave ovens, and ZigBee-enabled appliances. Mean-
while, the emerging of software defined radios has enabled
adversaries to build intentional jammers to disrupt network
communication with little effort. Regardless of unintentional
interference or malicious jamming, jammers/interferers may
have detrimental impact on network performance – both can
be referred as jamming. To ensure the successful deployment
of pervasive wireless networks, it is crucial to localize jam-
mers, since the locations of jammers allow a better physical
arrangement of wireless devices that cause unintentional radio
interference, and enable a wide range of defense strategies for
combatting malicious jamming attackers.

In this work, we focus on identifying the location of a jam-
mer. Current jammer-localization approaches mostly rely on
parameters derived from the affected network topology, such
as packet delivery ratios [11], neighbor lists [6], and nodes’

hearing ranges [7]. The use of these indirect measurements
derived from jamming effects makes it difficult to accurately
localize jammer’s position. We seek to localize jammers by
directly using the strength of jamming signals (JSS).

Localizing a jammer utilizing jamming signal strength (JSS)
is appealing but also challenging. First, the jamming signals
are embedded in the regular network traffic. The commonly
used received signal strength (RSS) measurement associated
with a packet does not correspond to JSS. To overcome the
challenges, we devised a scheme that can effectively estimate
JSS utilizing the measurement of the ambient noise floor,
which is readily available from many commodity devices
(e.g., MicaZ motes). Our experiments using MicaZ motes
with multiple sender-receiver pairs confirmed the feasibility
of estimating the strength of jamming signals under various
network traffic conditions.

Second, to improve the accuracy of wireless device localiza-
tion, the existing RSS-based localization algorithms [1], [2]
often rely on obtaining a site survey of radio RSS fingerprints
during the training phase. Obtaining a JSS site survey is
infeasible for jamming, since a jammer does not cooperate
with localization algorithms and the jammer’s transmission
power is unknown. To improve the accuracy of jamming
localization based on JSS, we exploited the random shadowing
phenomena in radio propagation and defined an evaluation
metric that can quantify the accuracy of the estimated loca-
tions. Utilizing such an evaluation metric, we formulated the
jammer localization problem as an error minimizing problem
and used a simulated annealing algorithm for finding the best
solution. Our experiments showed that our error-minimizing-
based algorithm outperforms existing jammer localization ap-
proaches by 71.82%.

We organize the remainder of the paper as follows. We
discuss the related work in Section II and introduce our
threat model in Section III. In Section IV, we formulate
the jammer localization problem as a non-linear optimization
problem. Then, we address the challenge of estimating JSS of
a jammer and present our real world experiment validation in
Section V. In Section VI, we introduce the simulated annealing
algorithm for solving the optimization problem. Finally, we
present the simulation validation of our error-minimizing-
based localization approaches in Section VII and conclude in
Section VIII.



II. RELATED WORK

Countermeasures for coping with jammed regions in wire-
less networks have been widely investigated. The use of
error correcting codes [10] is used to increase the likeli-
hood of decoding corrupted packets. Several other passive
approaches are proposed to resume network communication
without actively eliminating jammers, which include chan-
nel surfing/hopping [4], [9], [17], whereby wireless devices
change their working channel to escape from jamming, spa-
tial retreats [8], whereby wireless devices move out of a
jammed region geographically, and an anti-jamming timing
channel [18], whereby data are communicated via a covert
timing channel that is built on a failed-packet-delivery event.
Instead of trying to survive in the presence of jamming, we
aim at obtaining the locations of jammers to facilitate active
defense strategies.

Wireless localization has been an active area, attracting
much attention. Infrared [14] and ultrasound [12], [15] are
employed for localization, both of which need to deploy
a specialized infrastructure for localization. Received signal
strength (RSS) [1], [2] is an attractive approach because it can
reuse the existing wireless infrastructure. However, aforemen-
tioned RSS-based work [1], [2] focused on localizing regular
wireless devices and are inapplicable to localize jammers. This
is because existing RSS-based methods are built upon the
premise that the RSS of various wireless transmitters can be
easily measured. Obtaining the strength of jamming signals
is a challenging task mainly because jamming signals are
embedded in signals transmitted by regular wireless devices.

Identifying jammers’ locations becomes an important strat-
egy to cope with jamming. Pelechrinis et al. [11] proposed to
localize a jammer by measuring packet delivery ratio (PDR)
and performing gradient descent search. Liu et al. [6] utilized
the network topology changes caused by jamming attacks and
estimated the jammer’s position by introducing the concept
of virtual forces. Sun et al. [13] utilized the minimum circle
covering technique to form an approximate jammed region
for estimating the position of the jammer. However, this work
is based on a region-based jamming model, which may not
be available in real world jamming scenarios. Liu et al. [7]
exploited the changes of a node’s neighbors (i.e., hearing
range changes) caused by jamming attacks to localize a
jammer using least square calculations. All of these studies
utilized indirect measurements derived from jamming effects
to estimate the location of jammers, making it difficult to
accurately localize jammers.

Our work is different from prior work in that we formulate
the jammer localization problem under an error minimizing
framework, aiming to achieve high localization accuracy. Our
work localizes a jammer by utilizing the strength of jamming
signals directly through measuring the readily available ambi-
ent noise floor using commodity wireless devices.

Jammed Node Boundary Node

Unaffected  Node Jammer

Fig. 1. Illustration of the network nodes classification due to jamming: [Left]
prior to jamming and [right] after jamming.

III. THREAT MODEL AND JAMMING EFFECT

We focus on one constant jammer that continually emits
radio signals, regardless of whether the channel is idle or not.
Such a jammer can be unintentional radio interferer that is al-
ways active or malicious jammer that keeps disturbing network
communication. We assume such a jammer is equipped with an
omnidirectional antenna and transmits at the same power level,
so it has a similar jamming range in all directions. Identifying
jammer’s position will be performed after the jamming attack
is detected, and we assume the network is able to identify
jamming attacks, leveraging the existing jamming detection
approaches [16], [19].

We first discuss which nodes can participate in jammer
localization: the ones that can measure and report JSS. To
identify those nodes, we classify the network nodes based on
the level of disturbance caused by the jammer. Essentially,
the communication range changes caused by jamming are
reflected by the changes of neighbors at the network topology
level. Thus, the network nodes could be classified based on
the changes of neighbors caused by jamming. We define that
node B is a neighbor of node A if A can receive messages
from B prior to jamming. The network nodes can be classified
into three categories according to the impact of jamming:
unaffected node, jammed node, and boundary node:
• Unaffected node. A node is unaffected if it can receive

packets from all of its neighbors after jamming is present.
This type of node is barely affected by jamming and may
not yield accurate JSS measurements.

• Jammed node. A node is jammed if it cannot receive
messages from any of the unaffected nodes. We note that
this type of node can measure JSS, but cannot report their
measurements.

• Boundary node. A boundary node can receive packets
from part of its neighbors but not from all of its neigh-
bors. Boundary nodes can not only measure JSS, but
also report their measurements to a designated node for
jamming localization.

Figure 1 illustrates an example of network topology changes
caused by a jammer. Prior to jamming, all the nodes could
receive packets from their neighbors, shown as grey dots. Once
the jammer became active (shown as a star), affected nodes
lost their neighbors partially or completely. The nodes marked
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Fig. 2. The contour of RSS subject to path loss is a circle centered at
the transmitter, and the contour of RSS attenuated by both path loss and
shadowing is an irregular loop fluctuating around the path-loss circle.

as red squares lost all of their neighbors and became jammed
nodes. The nodes depicted in blue circles are boundary nodes.
They lost part of their neighbors but still maintained commu-
nication capability to a few neighbors. Finally, the rest of the
nodes that remained in grey dots are unaffected nodes, and
they can still receive packets from all their neighbors. Note
that jammed nodes are usually those nodes located closest to
the jammer, whereas the boundary nodes reside in between
jammed nodes and unaffected nodes.

In summary, our jammer localization algorithms rely on
boundary nodes for sampling and collecting JSS for jammer
localization.

IV. LOCALIZATION FORMULATION

Essentially, our jammer localization approach works as
follows. Given a set of JSS measurements, for every estimated
location, we are able to provide a quantitative evaluation
feedback indicating how close it is to the true jammer’s
location. Although unable to adjust the estimation directly, it
is possible, from a few candidate locations, to select one that is
the closest to the true jammer’s location with high probability,
making searching for the best estimate feasible. Leveraging
this idea, our jammer localization approach comprises two
steps: (a) Signal-Strength Collection. All boundary nodes
obtain JSS measurements locally. (b) Best-Estimate Searching.
Based on the measured JSS, a designated node will first
obtain a rough estimation of the jammer’s position using prior
work [7]. Then, it refines the estimation by searching for
the jammer’s position that minimizes the evaluation feedback
metric.

There are several challenges associated with this search-
based jammer localization approach leveraging JSS:

1) What metric is appropriate to provide a feedback that
quantifies the accuracy of jammer’s location estima-
tions?

2) How do we obtain strength of jamming signals, which
may be embedded in regular transmission?

3) How do we efficiently search for the best estimate?
We address all aforementioned challenges in this work. In

this section, we formulate the evaluation feedback metric and
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Fig. 3. Illustration of jammer localization basis. When the estimated jammer
location is ed distance away from the true location, the estimated random
attenuation is biased and the corresponding standard deviation is larger than
the real one.

model the jammer localization as an optimization problem,
and discuss JSS measurement schemes and search algorithms
in Section V and Section VI.

A. Radio Propagation Basics

The intuition of the evaluation feedback metric of estimated
localization comes from the basics of radio propagation over
a medium with impedances. To illustrate our jammer localiza-
tion approach, we use the log-normal shadowing model [3],
which captures both path loss and shadowing. Let Pf be the
received signal strength subject to path loss attenuation only,
and let the power of a transmitted signal be Pt. The received
signal power in dBm at a distance of d can be modeled as
the sum of Pf and a variance caused by shadowing and other
random attenuation,

Pr = Pf +Xσ (1)
Pf = Pt +K − 10η log10(d), (2)

where Xσ , caused by shadowing, is a Gaussian zero-mean
random variable with standard deviation σ, K is a unitless
constant which depends on the antenna characteristics and
the average channel attenuation, η is the Path Loss Exponent
(PLE), and d0 is a reference distance. In a free space, η is 2
and Xσ is always 0.

Figure 2 illustrates contours of a constant received strength
and the relationship between shadowing and path loss. The at-
tenuation caused by shadowing at any single location, distance
d away from the transmitter, may exhibit variation (denoted by
dash curves in Figure 2); the average attenuation and average
signal strength (denoted by the solid-line circle centered at the
transmitter) are roughly the same [3].

B. Localization Evaluation Metric

We quantify the evaluation feedback metric ez as the
estimated standard deviation of the random attenuation Xσ ,
as if the jammer was indeed located at the estimated location.

Calculating ez . Assume a jammer J located at (xJ , yJ)
starts to transmit at the power level of PJ , and m nodes located
at {(xi, yi)}i∈[1,m] become boundary nodes. To calculate ez ,
each boundary node will first measure JSS locally (the details
will be discussed in Section V), and we denote the JSS



Algorithm 1 Evaluation feedback metric calculation.
1: procedure EVALUATEMETRIC(ẑ,p)
2: for all i ∈ [1,m] do
3: X̂σi = Pri − Pfi(ẑ)
4: end for
5: ez =

√
1
m

∑m
i=1(X̂σi − ˆ̄Xσ)2

6: end procedure

measured at boundary node i as Pri . Let the current estimation
of the jammer J’s location and the transmission power be

ẑ = [x̂J , ŷJ , P̂J + K̂].

Then, we can estimate Pfi , the JSS subject to path loss only
at boundary node i as

Pfi (d̂i) = P̂J + K̂ − 10η log10(d̂i)

d̂i(ẑ) =
√

(x̂J − xi)2 + (ŷJ − yi)2
(3)

The random attenuation (shadowing) between the jammer J
and boundary node i can be estimated as

X̂σi = Pri − Pfi (d̂i). (4)

The evaluation feedback metric for the estimation ẑ is the
standard deviation of estimated {X̂σi}i∈[1,m],

ez(ẑ,p) =

√√√√ 1

m

m∑
i=1

(X̂σi −
ˆ̄Xσ)2, (5)

where X̄σ is the mean of Xσi . One of the biggest advantages
of this definition is that by subtracting X̄σ , ez is only affected
by (x̂J , ŷJ) and is independent of the estimated jamming
power P̂J + K̂.

The property of ez . The definition of ez has the following
property. When the estimated jammer’s location equals the
true value, ez is the real standard deviation of Xσ . When
there is an estimation error (the estimated location is ed
distance away from the true location), ez will be biased and
will be larger than the real standard deviation of Xσ . The
level of bias is affected by ed: the larger ed is, the bigger
the estimated standard deviation of Xσ will likely be. The
detailed relationship between ez and ed will be discussed in
Section VI-A.

Here, we illustrate the property of ez using the example
depicted in Figure 3, where 3 boundary nodes are {d1, d2, d3}
distance away from the jammer J . Let {Xσ1 , Xσ2 , Xσ3} be the
true shadowing attenuation between the boundary nodes and
J . Applying the true location of J to Eq. (5), ez(z,p) equals
to the true standard deviation of Xσi . If the estimated location
of J is at (x′J , y

′
J), the estimated distances between the three

boundary nodes to J are {d′1, d′2, d′3}. In this example, d′1 >
d1, d′2 > d2, and d′3 < d3; and X ′σ1

> Xσ1 , X ′σ2
> Xσ2 , and

X ′σ3
< Xσ3

. Thus, the ez corresponding to (x′J , y
′
J) is larger

than the one calculated using the true location of J .
We note that the relationship between ez and ed is inde-

pendent to the distribution of Xσ . Thus, in cases where the
log-normal shadowing model does not match with the real

Algorithm 2 Acquiring the Ambient Noise Floor (ANF). ANF
approximates the strength of jamming signals.
1: procedure MEASUREJAMMINGRSS
2: s = {s1, s2, ..., sn} = MeasureRSS()
3: if var(s) < varianceThresh then
4: sa = s
5: else
6: JssThresh = min(s) + α[max(s)− min(s)] . α ∈ [0, 1]
7: sa = {si|si < JssThresh, si ∈ s }
8: end if
9: return mean(sa)

10: end procedure

radio propagation, ez can still provide quantitative feedback
of ed.

Problem formulation. We can thus formulate the jammer
localization problem as an optimization problem,

Problem 1:

minimize
z

ez(z,p)

subject to p = {Pr1 , . . . , Prm};

where z are the unknown variable vector of the jammer,
e.g., z = [xJ , yJ , PJ + K], and {Pri}i∈[1,m] are the JSS
measured at the boundary nodes {1, . . . ,m}. As we will show
in Section VI-A, the estimated location of the jammer at which
ez is minimized, matches the jammer’s true location with small
estimation errors.

V. MEASURING JAMMING SIGNALS

Received signal strength (RSS) is one of the most widely
used measurements in localization. For instance, a WiFi device
can estimate its most likely location by matching the measured
RSS vector of a set of WiFi APs with pre-trained RF fin-
gerprinting maps [1] or with predicted RSS maps constructed
based on RF propagation models [20]. However, obtaining the
signal strength of jammer (JSS) is a challenging task mainly
because jamming signals are embedded in signals transmitted
by regular wireless devices. The situation is complicated
because multiple wireless devices are likely to send packets
at the same time, as jamming disturbs the regular operation
of carrier sensing multiple access (CSMA). For the rest of
this paper, we refer the regular nodes’ concurrent packet
transmissions that could not be decoded as a collision. While
it is difficult, if ever possible, to extract signal components
contributed by jammer or collision source, we discover that it
is feasible to derive the JSS based on periodic ambient noise
measurement. In the following subsections, we first present
basics of ambient noise with regard to jamming signals, and
then introduce our scheme to estimate the JSS. Finally, we
validate our estimation schemes via real world experiments.

A. Basics of Ambient Noise Floor

In theory, ambient noise is the sum of all unwanted signals
that are always present, and the ambient noise floor (ANF)
is the measurement of the ambient noise. In the presence of
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constant jammer, the ambient noise includes thermal noise,
atmospheric noise, and jamming signals. Thus, it is

PN = PJ + PW , (6)

where PJ is the JSS, and PW is the white noise comprising
thermal noise, atmospheric noise, etc. Realizing that at each
boundary node PW is relatively small compared to PJ , the
ambient noise floor can be roughly considered as JSS. Thus,
estimating JSS is equivalent to deriving the ambient noise floor
(ANF) at each boundary node. In this work, we consider the
type of wireless devices that are able to sample ambient noise
regardless of whether the communication channel is idle or
busy, e.g., MicaZ sensor platforms; and derive the ANF based
on ambient noise measurements.

A naive approach of estimating the ANF could be sampling
ambient noise when the wireless radio is idle (e.g., neither
receiving nor transmitting packets). Such a method may not
work in all network scenarios, since it may result in an over-
estimated ANF. For example, in a highly congested network,
collision is likely to occur, and the collided signals may be
treated as part of the ANF at the receiver, resulting in an
inflated ANF. This is exactly the situation we want to avoid.

B. Estimating Strength of Jamming Signals

To derive JSS, our scheme involves sampling ambient
noise values regardless of whether the channel is idle or
busy. In particular, each node will sample n measurements
of ambient noise at a constant rate, and denote them as
s = [s1, s2, . . . , sn]. The measurement set s can be divided
into two subsets (s = sa ∪ sc).

1) sa = {si|si = PJ}: the ambient noise floor set
of ambient noise measurements when only jammer is
active;

2) sc = {si|si = PJ + PC}: the combined ambient noise
set of ambient noise measurements that include both
jamming signals (PJ ) and signals from one or more
senders (PC).

The JSS is approximately the average of ANFs, i.e., mean(sa).
In a special case where no sender has ever transmitted packets
throughout the process of obtaining n measurements, sc = ∅
and sa = s.

Motivated by these observations, we designed an algorithm
(referred as Algorithm 2) to calculate the average of ANFs,
which is considered it as the JSS: A regular node will take

n measurements of the ambient noise measurements. It will
consider the ANF as the average of all measurements if
no sender has transmitted during the period of measuring;
otherwise, the ANF is the average of sa by filtering out sc
from s. The intuition of differentiating those two cases is
that if only jamming signals are present, then the variance
of n measurements will be small; otherwise, the ambient
noise measurements will vary as different senders happen to
transmit.

The correctness of the algorithm is supported by the fact
that sa is not likely to be empty due to carrier sensing, and
the JSS approximately equals to the average of sa. The key
question is how to obtain sa. To do so, we set the upper bound
(i.e., JssThresh) of sc in Algorithm 2 as α percentage of the
amplitude span of ambient noise measurements. We validate
the feasibility of obtaining sa using a filtering bound in next
experimental subsection.

C. Experiment Validation

1) Methodology: To verify our algorithm that derives JSS,
we conducted experiments involving one receiver and eight
senders, implemented on MicaZ nodes. We deployed them on
an outdoor playground, and conducted a set of experiments
to evaluate the performance of Algorithm 2 at different con-
ditions: various numbers of senders, distance to the jammer,
ambient noise sample rates and network traffic.

The deployment layout is illustrated in Figure 4: a receiver
at the origin (0, 0), 8 senders evenly spread out at the border
of circle with the radius of 1.8 meters, and the jammer at
5.5 meters to the receiver. The receiver remained silent, and
each sender broadcast packets of size 120 bytes at constant
rates: {5, 10, 20} packets per second (pps). Throughout the
experiments, both the receiver and senders sample ambient
noise values at constant rates: the receiver samples ambient
noise at a higher rate (90 samples per second) and the sender
at lower rates ({18, 9, 5} samples per second for {5, 10, 20}
pps respectively). Each ambient noise sample is an average
over a period of 8 symbols (1.024 ms) as supported by
MicaZ hardware, and the ANFs are estimated offline using
Algorithm 2 in Matlab. Throughout our experiments, we set
α = 0.4 for filtering the ambient noise floor set sa.

2) Jammer and Traffic Rates: To study how well Algo-
rithm 2 estimates the strength of jamming signals at various
traffic rates, we chose three cases corresponding to different
congestion levels, and used packet delivery ratios (PDRs)1 to
indicate the congestion level. The three cases are a low traffic
case with 100% PDR (5 senders, each transmitting at 5 pps), a
slightly-congested case with about 90% PDR (8 senders, each
transmitting at 10 pps), and a highly-congested case with about
60% PDR (8 senders, each transmitting at 20 pps).

Figure 5 illustrates the time series of the estimated ANF
using Algorithm 2 and the measured PDR. To make the plot
recognizable, we depicted two senders (1 and 5) that are
located at different distances to the jammer, and omitted others

1PDR is the percentage of successfully delivered packets.
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Fig. 5. Time series plots of estimated ANFs when the jammer was turned on in three scenarios: a low traffic case (5 senders, 5 packets per second (pps)
each), a slightly-congested case (8 senders, 10 pps each), and a highly-congested case (8 senders, 20pps each). The estimated average ANFs were stable and
jumped as soon as the jammer was turned on, indicating that Algorithm 2 is effective in estimating JSS.
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Fig. 6. Histogram of periodic RSS measurements in two cases: a low and a
high traffic load.

that showed the same trend. The estimated ANFs of all nodes
jumped once the jammer became active at the 15th second,
which shows that Algorithm 2 is able to adaptively calculate
the ANF. Encouragingly, prior to jamming, even in the highly
congested case where the average PDRs are less than 50%
as shown in Figure 5(c), the receivers were able to derive
a stable ANF. Sender 5 did miss a few estimation, because
of its extreme low ambient noise sampling rate (5 samples
per second). We note that prior to jamming the estimated
ANF for the senders and receivers are different because the
devices were not calibrated. After the jammer became active,
the differences in ANFs for senders 1, 5, and the receiver were
caused by their different distances to the jammer.

To better understand the distribution of ambient noise mea-
surements, we showed the periodic ambient noise measure-
ment histograms of the low traffic and highly-congested cases
in Figure 6. In both cases, as the jammer was being turned
on, the ANF increased from around −96 dBm to −85 dBm.
Compared between those two cases, the percentage of ambient
noise measurements when both the jammer and senders were
transmitting (> −80 dBm) was larger in the highly congested
cases, suggesting the increasing difficulty of deriving ANFs
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Fig. 7. An illustration of the estimated ambient noise floor with an increasing
number of senders.

with the increase of traffic rates.
3) The Number of Senders: In order to study the impact

of the number of colliding sources and the network traffic,
we increased the number of senders sequentially from 0 to
8, and summarized the estimated ANFs in two scenarios
(in Figure 7): jammer off and jammer on. In general, the
increase of the senders does not have much influence on the
correctiveness of ambient noise floor estimation in all cases.
Sender 1 transmitting at 20 packets per second did show
a higher variance of estimation. That is caused by its low
ambient noise sampling rate.

In summary, all of our experiments in real world scenarios
have shown encouraging results and suggest the JSS can be
estimated using Algorithm 2.

VI. FINDING THE BEST ESTIMATION

The jammer localization problem can be modeled as a
non-linear optimization problem (defined in Problem 1), and
finding a good estimation of jammer’s location is equivalent
to seeking the solution that minimizes the evaluation feedback
metric ez . In this section, we illustrate the relationship between



(a) min(ez) = 1.9dB (b) min(ez) = 1.5dB

Fig. 8. An illustration of error contours for ez in a network of 200 nodes.
ez reaches its minimum at a location close to the jammer’s true position.

ez and ed (the distance between the true jammer’s location
and the estimated one), which suggests that greedy algorithms
that search for successively better solutions are unable to find
the global optimal value. Instead, we use heuristic search
algorithms that rely on guided random processes to approach
the global optimum without converging to a local minimum.

A. Error Analysis

The evaluation feedback metric ez is a nonlinear function
of the estimated location of the jammer and the measured
RSS values. To understand ez , we performed a numerical
simulation and derived the numerical values of ez on a grid
of points in a 300-by-300 meter square, within which 200
nodes were randomly deployed with a transmission power of
−45 dBm. Additionally, the jammer transmitted at a power
level of −38 dBm, and affected about 20 boundary nodes. To
examine the impact of an inaccurate estimation of PJ , we set
the estimated jamming power P̂j to −25 dBm, much larger
than the true jamming power. To get enough resolution, we
set the grid step to 0.5m and in total calculated 360, 000 data
points for each network topology. We chose two representa-
tive network topologies and depicted their error contours in
Figure 8, from which we drew the following observations:

1) Despite the inaccurate estimation of jamming power,
the global minimum of ez is close to the true location
of the jammer, suggesting the estimated location that
minimizes ez is an accurate estimation of a jammer’s
position.

2) At each boundary node (marked by blue circles in Fig-
ure 8), ez reaches its local maximum. This is because
that at boundary node i, d̂i is close to 0, which causes
σi to be an outlier, raising the variance of ez .

3) Interestingly, ez is not strictly proportional to ed. When
the estimated location is in the close vicinity of the true
value, the smaller ed is, the smaller ez becomes; when
the estimated location increases to more than 100m, the
larger ed, the smaller ez .

The combination of the 2nd and 3rd observations makes
greedy algorithms impractical. For instance, the gradient de-
scent, which moves towards the steepest decreasing direction
of ez , will not be able to climb the ‘hill’ of the global
maximum at a boundary node, nor will it be guaranteed

(a) Smart, 200 nodes (b) Simple, 200 nodes

Fig. 9. Illustration of two deployments: (a) Smart deployment, (b) Simple
deployment.

to search towards the global minimum solution. Thus, we
examine heuristic searching algorithms to find the global
minimum.

B. Searching Algorithm Description.
To search for the best estimation, we propose to use a

simulated annealing algorithm (SA) [5]. Simulate annealing
algorithms search for the optimal solutions by modeling the
physical process of heating a material and then carefully
lowering the temperature to decrease defects. At each itera-
tion, the simulated annealing algorithm compares the current
solution with a randomly-generated new solution. The new
solution is generated according to a probability distribution
with a scale proportional to the temperature, and it will
replace the current solution based on a probability governed
by both the new object function value and the temperature.
By accepting ‘worse’ solutions occasionally, the algorithm
avoids being trapped in local minima, and is able to explore
solutions globally. As the temperature decreases, the annealing
algorithm reduces its search scale so that it converges to a
global minimum with high probability.

C. Reducing Searching Space
Simulated annealing algorithm is search-based, and its effi-

ciency depends on the searching space. To improve the search
efficiency, we first limited the range of each variable. For
example, the coordinate of jammer (xJ , yJ) should reside
inside the jammed area, which can be estimated by examining
the positions of both jammed nodes and boundary nodes2. We
also restricted the jammer’s transmission power to the range
of [−50, 0] dBm. Note that this restriction is less important in
terms of minimizing localization accuracy, since our objective
function ez does not depend on it. For the initial estimated
position of jammer, we set the initial value to an estimation
obtained by Adaptive LSQ methods proposed by Liu et al. [7].

VII. PERFORMANCE VALIDATION

A. Evaluation Methodology
In this section, we evaluated the performance of our jammer

localization approach that utilizes the error minimizing frame-

2Even if in rare cases that the jammer is outside the deployed area, the
layout of jammed nodes and boundary nodes (e.g. at the boundary of the
network) will indicate the jamming regions.
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Fig. 10. Impact of node density on median localization errors, where
{200, 300, 400} nodes are distributed in 300-by-300 meter field following
(a) a smart deployment, and (b) a simple deployment.

work. We studied our heuristic search algorithm–simulated
annealing algorithm (SA)–for finding the best estimate of
jammer’s position; and compared SA to the prior work by
Liu et al. [7], i.e. the Adaptive LSQ algorithm. We developed
a simulator in Matlab. We simulated the underlying radio
propagation according to the log-normal shadowing model,
and used the Simulated Annealing function provided in the
Global Optimization Toolbox in Matlab. To make a fair
comparison, we set the parameters of the shadowing model
to the same values as the ones used in the prior work by
Liu et al. [7] (e.g., the path loss component η = 2.11)
except for the standard deviation of the random attenuation
σ, where we set σ = 2.0 rather than σ = 1.0 in order to
examine the robustness of our algorithms in a highly irregular
radio environment. Additionally, we also studied two types
of network deployment: the smart deployment with nodes
following a uniform coverage and the simple deployment with
a random coverage, as shown in Figure 9.

We studied our SA algorithm with regard to a variety of
factors, including node densities and jammer’s transmission
power. To capture the statistical performance, for each node
density setup, we randomly generated 1000 network topologies
for both the smart and simple deployment, respectively. For the
rest of this paper, unless specified, the jammer’s transmission
power was set to −38 dBm and the transmission power of
regular nodes was set to −45 dBm3, resulting in a jamming
range approximately twice of the communication range of a
regular node.

Performance Metrics. To evaluate the accuracy of local-
izing the jammer, we defined the localization error ed as the
Euclidean distance between the estimated jammer’s location
and the true jammer’s location, and we presented both the
medians and the Cumulative Distribution Functions(CDF) of
ed to show the statistical characteristics.

B. Evaluation Results

Impact of Node Density. We first investigated the impact
of node density on the accuracy of localizing one jammer
by deploying {200, 300, 400} nodes in our 300-by-300 meter
network and fixing the jammer at the center (0, 0).

3For instance, to set the transmission power of a MicaZ node to −45 dBm,
one can select the power level of −25 dBm and attach a −20 dB attenuator.
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Fig. 11. Cumulative Distribution Function(CDF) of the localization errors
in a 200-node network.

We depicted the median localization errors for the simulated
annealing algorithm (SA) and Adaptive LSQ algorithm in
Figure 10. Firstly, we observed that SA consistently outper-
formed Adaptive LSQ algorithm in all the node densities and
deployment setups. The median errors for SA that ranges from
1.6 to 3.3 meters, are much smaller than the errors of Adaptive
LSQ that range from 7 to 11 meters.

Secondly, as the network node density increases, the accu-
racy of all algorithms improves: median errors reduced from
2.7 to 1.6 meters for SA in a smart deployment and from 7.2
to 11 meters for Adaptive-LSQ in a smart deployment. This
is because, given a jammer, a higher node density results in a
larger number of boundary nodes, which in turn improve the
accuracy of our algorithm.

Finally, we noticed that SA performed slightly better in
a smart deployment than a simple deployment. In a smart
deployment, nodes were evenly distributed and thus the esti-
mated strength of jamming signals were uniformly distributed
in space, which is likely leading to a better estimation of
random attenuation, compared to a simple deployment where
the estimated strength of jamming signals may be clustered
together in space and result in biased random attenuation
estimation.

Figure 11 shows the Cumulative Distribution Function
(CDF) curves for all algorithms under both deployments in
a 200-node network. Again, we observed that SA consistently
outperformed the Adaptive LSQ algorithm. In particular, under
a smart deployment, 90% of the time, SA can estimate
jammer’s location with an error less than 5.3 meters, while
Adaptive LSQ can only reach an error less than 26.8 meters
90% of the time, resulting in a 5-fold improvement of the
estimation accuracy. Similarly, in a simple deployment, 90% of
the time, all of our localization algorithms can gain 2.6 times
improvement compared to the Adaptive LSQ: an estimation
errors less than 6.9 meters for our algorithms versus 18.1
meters for Adaptive LSQ.

Impact of the Jamming Power. To study the effects of
various transmission power of jammer to the localization
performance, we examined networks with 200 nodes in a 300-
by-300 meter field and set the jammer’s transmission power
to {−42,−40,−38,−36} dBm, respectively. The results are
plotted in Figure 12, which shows that SA greatly outper-
formed the Adaptive LSQ algorithm by over 63% for all
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Fig. 12. Impact of jammer’s transmission power on median lo-
calization errors, where the jammer’s transmission power was set to
{−42,−40,−38,−36} dBm, respectively.

the jamming power levels. The localization errors of SA was
slightly affected by the jamming power: an increment of 0.9
meters for the smart deployment and 0.4 meters for the simple
deployment when the jamming power increased from −42dBm
to −36dBm. This can be explained as the following. Two main
factors that influence the accuracy of our error-minimizing-
based approach are the spatial density of the estimated strength
of jamming signals and the search space for the heuristic
search algorithm. For a given node density, as the jamming
power increases, the search space for jammer’s position grows.
As a result, the probability of finding an accurate location
estimation reduces, and the average estimation error increases.

VIII. CONCLUDING REMARKS

We studied the problem of minimizing errors when local-
izing a jammer in wireless networks. The jammer could be
some wireless device causing unintentional radio interference
or malicious jammer disturbing the network. Most of the
existing jammer-localization schemes rely on the indirect
measurements of network parameters affected by jammer, such
as packet delivery ratios, neighbor lists and nodes’ hearing
ranges, which makes it difficult to accurately localize jammer.
In this work, we localized jammer by exploiting directly the
strength of jamming signals (JSS). Estimating the JSS is con-
sidered challenging since they are usually embedded in other
signals. Our estimation scheme derives ambient noise floors
as the JSS leveraging the available signal strength measuring
capability in wireless devices. The scheme samples signal
strength regardless of whether the channel is busy or idle,
and estimates the ambient noise floor by filtering out regular
transmission (if any) to obtain the JSS. Our experiments
utilizing MicaZ motes show that the derived ambient noise
floor maps to the JSS even in scenarios with high traffic and
heavy congestion.

To reduce the estimation errors, we further designed an
error-minimizing-based framework to localize jammer. In par-
ticular, we defined an evaluation feedback metric that quan-
tifies the estimation errors of jammer’s position, and treated
this metric as the objective function for minimizing. We ana-
lyzed the relationship between the evaluation feedback metric
and estimation errors, and the results show that the location

that minimizes the feedback metric approaches jammer’s true
locations and greedy algorithms are not guaranteed to find
this location. As such, we examined simulated annealing (SA)
algorithms to find the best location estimation. We compared
our SA-based jammer localization algorithm with existing
localization algorithms under various network conditions: node
densities and jammer’s transmission power. Our extensive
simulation results have confirmed that our error-minimizing-
based search algorithm outperforms the existing algorithms.
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