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Abstract— Wireless sensor networks monitor phe-
nomena that vary over the spatial region the sen-
sor network covers. The sensor readings may also
be dual-used for additional purposes. In this paper
we propose to use the inherent spatial variability
in physical phenomena to support localization and
position verification. We first present the problem of
localization using general spatial information fields,
and then propose a theory for exploiting this spa-
tial variability for localization. Our Spatio-Correlation
Weighting Mechanism (SCWM) uses spatial relation-
ships of measured physical phenomena to determine
an appropriate subset of environmental parameters
for better location accuracy. We next present the
Flex − EP algorithm, which supports our theoretical
model for performing localization. Finally, we provide
an experimental evaluation of our approach by using
a collection of physical phenomena measured across
one hundred locations inside a building. Our results
provide strong evidence of the viability of using general
sensor readings for location applications.

I. INTRODUCTION

The rapid advancements in sensor technologies
are leading to a future where sensors will become
pervasively deployed. Although the data associated
with such sensor readings might be intended to
drive specific applications, e.g. the remote monitor-
ing of temperature, this wealth of data may also
be dual-used for additional purposes. In particular,
since the purpose of a sensor network is to provide
sampling of a physical phenomena across a wide
geographic/spatial distance, the close link between
sensor data and location may assist applications in-
volving localization and position verification. In this
paper, we propose the use of spatially varying envi-
ronmental properties to support localization, without
requiring the deployment of a localization infrastruc-
ture and additional access points (or landmarks).
Specifically, we examine the use of physical prop-
erties, such as temperature and ambient acoustic/RF
energy, and whether their inherent spatial variability

may be used to localize the position of a mobile
entity.

Each physical parameter has unique spatial char-
acteristics relative to the environment. For computa-
tional cost savings, it is desirable to find the most effi-
cient subset of environmental properties that captures
spatial variability. We propose a scheme, Spatio-
Correlation Weighting Mechanism (SCWM), which
can guide parameter selection for localization. Using
SCWM, we can compare any subset of parameters
and determine the parameter combination with the
strongest discriminative characteristics needed for lo-
calization. We further developed an algorithm, called
Flex − EP , which utilizes the parameter subset
obtained from SCWM to determine a user’s position
based on it’s environmental readings.

To validate our techniques, we collected an array
of environmental parameters at one hundred locations
in a real building environment. Using these data, we
found that SCWM is highly effective in evaluating
and selecting the parameter subset with the highest
discriminative power. Further, we observed that the
environmental parameters have localizing capability.
Moreover, by using environmental readings plus the
Received Signal Strength (RSS) from one access
point, we can achieve qualitatively the same perfor-
mance as traditional localization schemes employing
RSS with at least four access points or landmarks [1].
Further, under the assistance of additional environ-
mental parameters, the localization performance can
be refined and improved over traditional approaches.

The remainder of this paper is organized as follows.
In Section II, we provide an overview of our problem.
We then formulate the theoretical model of exploiting
environmental properties for localization and propose
SCWM in Section III. In Section IV we present our
Flex − EP algorithm and its variations. Section
V shows our experimental methodology and our
evaluation results. We then move onto placing our
work in the context of related research in Section
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Fig. 1. Using environmental properties for spatial determination

VI. Finally, we conclude the paper in Section VII.

II. PROBLEM OVERVIEW

Our proposed model for using environmental read-
ings for localization and position verification is
built upon an existing wireless sensor networks, as
shown in Figure 1. In the area of interest, sensors
are deployed to perform environmental monitoring.
Sensors periodically report environmental readings
back to Base Stations. For instance, temperature,
humidity, and ambient acoustic energy are common
environmental parameters under constant monitoring.
The reported environmental information is stored in
a database in real time for retrieval by the upper
level applications. A management entity containing
data processing and analysis capabilities, namely the
Analysis Manager(AM), calculates a user’s location.
The AM can be combined with the base station or
operate alone in a centralized manner or running
with multiple distributed instances when under per-
formance demand. If the AM is operating by itself,
the AM should be able to access the environmental
readings stored in the database shown in Figure 1.

A user, when it wants to get its position, first sends
a query to AM. After receiving the request, AM asks
the user to provide environmental readings observed
at that time by the user. By running localization
algorithms using environmental properties, AM then
compares the user’s readings to the environmental
data (provided by sensors) stored in the database and
estimates the user’s location.

The traditional approach for localization involves
deploying enough landmarks with known positions
to assist in localization. However, we note that
sometimes there may not sufficient landmarks in
the area of interest, e.g. due to cost limitations
or environmental constraints (e.g. insufficient power
outlets). Further, for certain applications, such as
position verification in Spatial Access Control [2],
[3], very high accuracy of location results is not
needed, so additional landmarks would be wasteful.
Thus it is desirable to find alternative strategies that

Fig. 2. Theoretical model: physical domain vs. environmental
properties domain

can use available information, such as environmental
properties from sensor networks supporting pervasive
computing applications, to augment location services
without requiring the infrastructure of additional
landmarks.

III. THEORETICAL APPROACH

In this section, we present the theoretical under-
pinnings behind using environmental properties for
localization. We first propose a generalized mea-
surement model, and then provide rules to evaluate
each parameter’s localizing capability. Finally, we
present mechanisms for parameter selection to assist
in localization and position verification.

A. A Generalized Measurement Model

In order to quantify the effectiveness of using
physical phenomena for localization and position
verification, we need to derive the theoretical formu-
lation of this problem.

Let E = (e1, e2, ..., en) denote the vector of
environmental properties that are monitored by the
sensors, where ei is the value of the ith environmental
parameter. These parameters have the property that
they are recorded in the spatio-temporal domain,
which means that they may vary with location and
time. Thus the value of the parameter vector at
position p and time t can be expressed as:
Ep,t =

[
e1(p, t), e2(p, t), . . . , en(p, t)

]
. (1)

Here p is a spatial position, which can be one-, two-,
or three-dimensional. In this study, we focus on p in
a two-dimensional space. More generally speaking,
p can represent a point (x, y) or a region. Let Ω =
P × T be the spatio-temporal region [2] that we are
interested in, and E be the domain of environmental
parameter values, then there exists a mapping f :
Ω −→ E that takes the physical position p and
maps it to an environmental parameter reading Ep,t

as presented in Figure 2. f(p, t) = Ep,t represents
the environmental readings recorded at the spatio-
temporal location (p, t). The inverse mapping from
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Fig. 3. Function f induces a probability density function ρ in
measurement domain E.

E to Ω enables localization and position verification
from environmental properties.

At a fixed time t, the function ft(x, y) = f(x, y, t)
induces a probability density function ρ on E. We
further define the function ρ(E; ε) to be the probabil-
ity of having value ft(x, y) ∈ (E; ε) as presented in
Figure 3, when a position (x, y) is chosen randomly
from an uniform distribution from X×Y . Here (E; ε)
denotes the ε-ball around E. Note that ρ(E; ε) is the
integral of the probability density function over the
region (E; ε).

Given an environment measurement reading E, in
order to find out the corresponding physical position,
we want to find the region p ⊂ Ω such that (E; ε) ⊆
E is mapped back to p. In other words, we want to
find the inverse mapping p = f−1

t (E; ε) = {(x, y) :
f(x, y) ∈ (E; ε)}.

Usually Ω has finite area, and we can normalize it

to have Area(Ω)
�
= 1. Then we can get the following

claim:
Claim:Area(p) = ρ(E; ε).
Proof:

ρ(E; ε) =
∫

(x,y):f(x,y)∈(E;ε)

1
Area(Ω)

· dxdy

=
Area(p)
Area(Ω)

= Area(p).

Further, we note that, in order to localize a user
in a two-dimensional space, simply using a single
environmental parameter is generally not sufficient.
Note that a position p in a two-dimensional space
belongs to R

2, while a single environmental para-
meter ei belongs to R. Generally, using multiple
environmental parameters is desirable for localization
and position verification. However, using all the
available environmental parameters for localization
may result in high computational complexity. We
would like to choose subsets of parameters that
consist of enough parameters to provide reasonable
localization accuracy.

Fig. 4. An illustration of a "bad" environmental parameter that
does not contribute to localization.

B. Parameter Evaluation

Different parameters have different characteristics
in describing the environment in terms of value
changes across various physical locations and differ-
ent time periods. For certain parameters, the values
may vary largely across different locations. The phys-
ical phenomena reported by these kind of parameters
can be utilized to distinguish location differences. We
define such parameters to have large discriminative
power. On the other hand, the values of some pa-
rameters may vary little within the area of interest.
Figure 4 is an illustration of a parameter H belonging
to this category. It has the same value h0 throughout
the physical region, thus, in the parameter space E,
ρ(h0) = 1. These kind of parameters do not have the
capability to distinguish physical variability and thus
cannot contribute to better localization accuracy.

Further, it is important to choose a parameter subset
so that the combination of the parameters in the
subset have enough discriminative power to support
localization. Carelessly choosing a parameter subset
may even result in localization errors as shown in
Figure 3, where two far-away regions p2 and p3

in the physical space have the same environmental
readings (E2; ε). The inverse mapping would result
in f−1

t (E2; ε) = p2
⋃

p3. This indicates that the
subset of parameters in this case is not sufficient in
describing the physical variability and causes failure
in localization.

C. Parameter Selection

Next, we will develop a series of approaches to
help select environmental parameters, that when com-
bined, have greater capability for localization and
position verification.

1) Parameter dispersion: Conceptually, for an en-
vironmental parameter ei, the more disperse the
values are, the better the discriminative power is for
this parameter. In statistics, there are several ways
to measure dispersion of a parameter, such as range,
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variance, standard deviation and average absolute
deviation.

However, none of these measurements are com-
plete, since no matter which above statistical disper-
sion methods we use, they only look at the data itself
and neglect the spatial relationships between the data
and the physical environment. For example, if the
data readings from two different environmental para-
meters have the same distribution, their dispersions
are about the same. However they may result in very
different accuracy if used for localization. Suppose
both of them have a subset of readings with the same
value, but for one parameter, the same-value readings
are clustered, while for the other parameter, the same-
value readings are scattered among the region. The
latter parameter will generate larger errors when
applied in localization than the former parameter,
according to our analysis in Section III-B.

Further, we found that the cross-parameter relation-
ship, e.g. covariance, does not heavily contribute to
localizing capability. Instead, the spatial relationship
dominates localization accuracy. This leads us to
look for metrics that take into consideration of the
spatial correlation when evaluating an environmental
parameter, in addition to the parameter dispersion.

2) Data Normalization: Different from the tradi-
tional localization methods [1], [4], the data sources
in our problem are from different kinds of environ-
mental parameters, such as temperature, humidity,
ambient acoustic energy, and etc. Different environ-
mental parameters have different units and different
range of values. For example, in our experiments
the temperature readings range from 65.2F to 77.3F,
whereas Received Signal Strength values range from
-59.8dBm to -99dBm. In order to choose a subset
of environmental parameters working together for lo-
calization purpose, we need to compare and calculate
the contribution of each parameter directly. Currently
we take an un-biased approach, i.e., we normalize the
data using the classical statistical approach, enorm

i =
(ei − µi)/σi, where µi and σi are the mean and
standard deviation of the parameter ei. We then work
with the normalized data enorm

i for the rest of our
study.

3) Spatio-Correlation Weighting Mechanism
(SCWM): The important factor that we need to
take into consideration when performing parameter
selection is to analyze how far away two positions
can be in the physical domain P, given a distance in
the environmental-parameter domain E. The SCWM
calculates a sum W (K) of pairwise weighted

distances in P, which gives larger weight to similar
parameter readings in E and smaller weight to
more different parameter readings. If we define K
to represent a set of parameter indices chosen to
form the parameter subset, the W (K) is defined as
follows:

W (K) =
∑

pi,pj , i�=j

wi,j · di,j

=
∑

pi,pj , i�=j

wi,j · ‖pi − pj‖2 (2)

with wi,j =
1

1 + τ · ‖ek∈K(pi) − ek∈K(pj)‖2

where τ is a scaling factor. We call wi,j the parameter
weight, which takes values from (0, 1]. The computa-
tional complexity does not dramatically increase with
the number of parameters in a parameter subset when
using SCWM for parameter selection.

Figure 5 illustrates how SCWM helps to choose
the parameter subset with the highest discriminative
power. We describe three typical scenarios during
SCWM calculation. The first scenario is shown with
position pair p2 and p3. The two positions are close to
each other and they have similar parameter readings.
The contribution of the parameter weight w2,3 is
large, close to 1. But the resulting (w2,3 · d2,3) is
small because d2,3 is very small. Next, position pair
p1 and p4 is farther away from each other and their
parameter readings are very different. In this case, the
contribution of the w1,4 is very small and much less
than 1. The above two scenarios satisfy the theory
requirements of better location accuracy described in
Section III-B. Finally, we look at a poor scenario with
position pairs {p1, p3}, and {p1, p2}. Their parameter
readings are the same or very similar, but they are
farther away from each other. The contribution of the
parameter weight is large, especially for w1,3 which
reaches its maximum, equaling to 1. Both (w1,3 ·d1,3)
and (w1,2·d1,2) are also large because of the distances
are farther away.

For a fixed number of parameters, SCWM calcu-
lates all the pairwise weighted distances over all the
possible combination of parameters. The parameter
subset with most of its readings following the pat-
terns described in the first two scenarios will result
in the final value of W (K) to be small. While the
parameter subset having most of readings similar
to the third scenario we presented, the calculated
value of W (K) will be large. The parameter subset
that results in the minimum value of W (K) is
the optimal parameter combination that contains the
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Fig. 5. Three scenarios under SCWM calculation: (1) position
pair {p2, p3}; (2) position pair {p1, p4}; (3) position pairs
{p1, p3} and {p1, p2}. The relationship is: (w1,3 · d1,3) >
(w1,2 · d1,2) >> (w1,4 · d1,4) and (w2,3 · d2,3).

highest discriminative power for performing local-
ization. SCWM can sort all the possible combination
of parameters under a fixed size parameter subset in
the descending order from the highest discriminative
power to the lowest discriminative power for local-
ization. In Section V, we present experimental results
utilizing SCWM.

IV. ALGORITHM MODEL

A. Basic Approach

To evaluate the viability of using environmental
parameters for localization and position verification,
especially the effectiveness of SCWM for parameter
subset evaluation and selection, we developed the
Flexibly choosing Environmental Parameter (Flex−
EP ) algorithm. Flex − EP finds the minimum
distance between the user and the sensor network
in the domain of environmental parameters based
on the observed readings Eobs reported by the user
and the information recorded by the sensor network,
which is stored in the database, as shown in Figure 1.
Flex−EP reports the position of the closest sensor
as the location estimate of the user. Figure 6 presents
the pseudo-code that implements Flex − EP .

B. Algorithm Variations

In addition, we developed variants of FLEX−EP
algorithm. FLEX − EP − Avg chooses the top k
closest sensors to the user and returns the centroid of
k locations, with k > 1. Another variant of FLEX−
EP is to build an Interpolated Map Grid (IMG)
over the region of interest. Building an environmental
IMG is similar to surface fitting and derives more
environmental parameter readings across the area of
interest that would be similar to the reported ones.
Thus the FLEX − EP − Grid algorithm uses the
interpolated sensor readings and determines either the

—————————————————————————–
input Eobs

subset(p, t)
output
min dist in the parameter domain
closest sensor position in the physical domain
initialize
minDist = maxNum
sensorPosition = empty

loop through information reported by sensors
for each set of information from a sensor begin
dist = ‖Eobs

subset(p, t) − Esensor
subset (p, t)‖

if dist < minDist
then minDist = dist and sensorPosition = sensor

end for
end loop
return minDist, sensorPosition

—————————————————————————–

Fig. 6. The Flex-EP algorithm
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Fig. 7. Layout of the experimental floor

closest sensor or the "interpolated" sensor to the user.

V. EXPERIMENTAL EVALUATION

In this section we present our experimental eval-
uation results. We first describe our experimental
methodology. We then examine the dispersion of
individual parameters and the process of choosing
parameter subsets utilizing SCWM. We next evaluate
the effectiveness of our approach in using environ-
mental properties for location estimation and verifica-
tion. Finally, we show that our mechanism can refine
results from conventional localization schemes.

A. Experimental Setup

In order to study the effectiveness of using en-
vironmental properties for localization and position
verification, we have conducted experiments on the
3rd floor of the Computer Science building at Rut-
gers University, as shown in Figure 7. For over
one hundred locations on the floor, shown as small
blue dots, we collected environmental readings at
these locations over a one-week period of time. This
simulated the setup of a sensor network with over
one hundred sensors deployed.
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Fig. 8. Sample data maps of individual environmental parameters

The environmental parameters that we studied are
temperature, humidity, ambient noise, spectrum en-
ergy, and Received Signal Strength (RSS) from an
802.15.4 (ZigBee) network with four Access Points
(AP) deployed across the floor. The access points
are implemented using Telosb motes. To simulate a
scenario where only one base station is available in
the area of interest, we will choose only one RSS
reading (in dBm) when forming the parameter subset.
Further, we used a Wi-Spy spectrum analyzer [5]
to record the spectrum energy at each location. It
records the signal amplitude (in dBm) versus the
frequency from 2.400GHz to 2.485GHz. At each test-
ing location, we picked two frequencies 2.435GHz
and 2.465GHz and calculated their maximum and
average amplitude respectively over the recording
period. Note that the RSS is the received signal
from a beacon packet, while the spectrum energy is
the ambient RF energy corresponding to a specific
frequency range.

For ambient noise, our intuition is that the behavior
of the parameter can vary largely during daytime and
night time. Thus we collected readings of ambient
noise (in dB) for both day and night. Moreover, we
measured the humidity (in percentage) using a digital
hygrometer and temperature (in Fahrenheit) using a
thermometer respectively at each location. Table I is
a summary of the parameters and the devices that we
used to conduct experiments.

B. Evaluation of Individual Parameters

We first study the dispersion of individual envi-
ronmental parameters through parameter variance.
Table II presents the results of the variance for each
individual parameter. We found that the maximum
value of the spectrum energy and the RSS have
larger variance across the area of interest, while the
average value of the spectrum energy, temperature,
humidity, and ambient noise do not vary much across
the experimental floor. Both daytime and night time

Parameter Index Measuring Device

Temperature 1 Thermometer
Humidity 2 Digital hygrometer

Ambient Noise
Daytime 3 Microphone
Night time 4 and Dell laptop

Spectrum Energy

2.435GHz Max 5
2.465GHz Max 6 Wi-Spy Spectrum
2.435GHz Avg 7 Analyzer
2.465GHz Avg 8
AP 1 9

Received Signal AP 2 10 Telosb motes
Strength (RSS) AP 3 11 and Dell laptop

AP 4 12

TABLE I

SUMMARY OF ENVIRONMENTAL PARAMETER

MEASUREMENT

Parameters and Their Variance
Temperature Humidity Ambient noise Ambient noise

daytime night time
4.15 9.3 0.01 0.0012

Spectrum energy
2.435GHz 2.465GHz 2.435GHz 2.465GHz

Max Max Avg Avg
84.36 88.21 2.09 0.08

Received Signal Strength (RSS)
AP1 AP2 AP3 AP4

211.63 136.65 123.31 127.27

TABLE II

RESULTS OF SINGLE-PARAMETER DISPERSION

readings of ambient noise have smaller variance
compared to other environmental parameters. For the
rest of the paper, we will use the ambient noise data
collected at night time. The sample maps of spectrum
energy at 2.435GHz, RSS from AP2, and ambient
noise are shown in Figure 8. The irregular shape
of signal maps is due to the limitation of our data
collection. We can see that the sample readings of
ambient noise do not change much in the whole floor,
while both the maximum values of spectrum samples
at 2.435GHz and the RSS readings from AP2 present
large variance indicating high discriminative power to
describe the uniqueness of each location in the floor.
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Fig. 9. Comparison of localization errors using Cumulative Distribution Function (CDF)

C. Effectiveness of Parameter Selection

In this section, we present the results of parameter
selection using SCWM. We then evaluate the effec-
tiveness of SCWM by comparing the Cumulative
Distribution Function (CDF) of localization errors
under different sizes of parameter subsets with tradi-
tional localization methods.

Table III presents the results of W (K) calculated
from SCWM with the size of K equal to 1, 2, 3, 4,
and 5 respectively. We have shown a representative
subset of parameters in Table III with "good" and
"bad" indicating that the value of W (K) is smaller or
larger. As we described in Section III-C, the smaller
the value of W (K) for a parameter subset, the higher
the discriminative power the parameter subset has.
From our experimental results, we found that the
parameter subset containing all the RSS parameters
will result in the minimum value of W (K). This
is because the parameters of RSS readings have the
largest variance, according to the results in Section V-
B, plus also have high spatial correlation based on
signal propagation to distance [6], and thus can
uniquely describe the physical variability across the
experimental floor. However, in this study we focus
on situations where there is no localization infrastruc-
ture available and we need to rely on the additional
environmental properties to assist in localization and
position verification. Thus, the parameter subsets dis-
played in Table III only involved one RSS parameter
in the subset at the most.

# of Parameters Evaluation Parameters: SCWM
in a subset in index calculation

1
Good: 12 20641548.6
Bad: 8 370356046.8

2
Good: 4, 12 595033.7
Bad: 2, 7 23284151.1

3
Good: 4, 6, 12 140758.4
Bad: 1, 2, 8 940833.1

4
Good: 1, 4, 6, 10 72365.1
Bad: 1, 2, 4, 7 201856.6

5
Good: 1, 4, 5, 8, 12 55198.0
Bad: 1, 2, 4, 7, 8 112585.6

TABLE III

EVALUATION OF SCWM WITH DIFFERENT SIZE OF

PARAMETER SUBSETS

Based on the parameter selection results obtained
from SCWM, we further conducted localization with
these parameter subsets utilizing the Flex − EP
algorithm and its variants. In order to compare the
performance of our approach, we need to compare
with the performance benchmark in the current lo-
calization research. The traditional RADAR algo-
rithm [1] and its corresponding variants are used
for our comparison, which utilize the RSS readings
collected from four APs in our ZigBee network.

Figure 9 presents the CDFs of localization errors
for FLEX − EP with the size of the parameter
subset set to 2, 3, and 4 respectively. The localization
results using RADAR are presented in each figure
as a comparison. Figures 9(a) and 9(d) are the
results using two parameters in the parameter subset.
The localization results when using RSS from AP4
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and ambient sound are better than using humidity
and 2.435GHz Avg. This is because the parameter,
RSS from AP4, has large variance and better spatial
correlation across the experimental floor. Thus, the
parameter subset, {RSS from AP4, ambient sound},
has smaller SCWM value than the set of {humidity,
2.435GHz Avg}. The performance of Flex−EP us-
ing two parameters is not as good as the performance
of RADAR.

Next, Figures 9(b) and 9(e) show the error CDFs
when using three parameters in the parameter subset.
We added one more parameter with high discrimi-
native power, 2.465GHz Max, into the "good" para-
meter set of two parameters shown in Figure 9(a).
Figure 9(b) presents the results of using {ambient
sound, 2.465GHz Max, RSS from AP4}. Surprisingly,
we found that when using two environmental para-
meters with high discriminative power (2.465GHz
Max and RSS from AP4) and one parameter with
low discriminative power (ambient sound), the per-
formance of Flex−EP is qualitatively similar to the
performance of using traditional RADAR algorithms,
which utilizes four RSS parameters. In Figure 9(e)
each parameter in the parameter subset {ambient
sound, humidity, 2.465GHz Avg} has low discrimi-
native power and results in a larger SCWM value as
shown in Table III. Hence, the performance of our
localization is not improved much.

Further, we examined the localization error CDFs
when using four environmental parameters as pre-
sented in Figures 9(c) and 9(f). In Figure 9(c), we still
use two environmental parameters containing high
discriminative power, 2.465GHz Max and RSS from
AP4, while ambient sound and temperature do not
vary much across the experimental site. Again, we
observed the performance of Flex − EP is about
the same as the RADAR and its variants. Moreover,
under the assistance of two environmental parameters
with low discriminative power, the performance is
slightly improved over the three-parameter subset
case as shown in Figure 9(b).

These results demonstrate that our SCWM consis-
tently predicts the performance of parameter subsets,
and further indicate that choosing two environmental
parameters containing high discriminative power is
enough to produce comparable performance to the
traditional localization approaches employing RSS
with at least four access points. On the other hand, as
shown in Figure 9(f), simply adding environmental
parameters with low discriminative power into a
parameter subset does not significantly improve the

localization performance. Since when using RSS for
localization, the performance across a broad spectrum
of algorithms was found to be about the same [4], we
conclude that our approach of utilizing SCWM for
parameter selection and Flex − EP for localization
can achieve similar performance to a broad array of
traditional localization algorithms. The similar per-
formance is very encouraging as it indicates utilizing
environmental properties can effectively determine
the position of a user and can further assist in appli-
cations involving location and position verification.

D. Refining Localization

In a four-parameter subset, we further increased
the number of parameters with high discriminative
power to three by adding one more RSS parameter
into the parameter subset. Figure 10(a) presents the
corresponding error CDFs. We found that by utilizing
three parameters with high discriminative power in a
four-parameter subset, the localization performance
is further refined and is almost exactly the same as
the performance of RADAR algorithms.

Further, we explored the parameter subset with
five parameters. Figures 10(b) and 10(c) show the
localization error CDFs utilizing five parameters.
The parameter subset in Figure 10(b) still contains
only two parameters with high discriminative power
(2.435GHz Max and RSS from AP4), the same as
the four-parameter case in Figure 9(c), and three
other parameters with low discriminative power (tem-
perature, ambient noise, and 2.465GHz Avg). We
observed that the localization capability is about the
same as in Figure 9(c) for the four-parameter case.
This is in line with our previous observation, adding
more environmental parameters with low discrimi-
native power does not help much in improving the
localization performance.

Turning to examine Figure 10(c), which has three
parameters (2.435GHz Max, RSS from AP2, and
RSS from AP3) with high discriminative power in
a five-parameter subset, interestingly, the localization
performance using Flex−EP methods has achieved
up to 20% improvement compared to the traditional
RADAR algorithms. In this case, only two RSS
parameters are used, which means that under the
assistance of other environmental parameters, only
two access points are needed to achieve a better
localization performance than the traditional local-
ization algorithms employing RSS using at least four
access points. This provides strong evidence that
utilizing environmental properties for localization can
both achieve similar performance to the traditional
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Fig. 10. Using environmental properties to refine localization results.

approaches, as well as refine the conventional local-
ization results.

VI. RELATED WORK

In this section, we first discuss research efforts in
using spatio-temporal information in Wireless Sensor
Networks (WSN). Then we overview the active re-
search in wireless localization and describe the work
that are mostly related to ours.

By utilizing the radio on sensor nodes, it is possible
to invert the role of sensor networks, and allow sensor
nodes to actuate the environment. [2] utilized sensor
networks in an inverted fashion to facilitate new
forms of access control that are based on whether
a user is located at the right place at the right time.
Moreover, [7] pointed out that sensor observations
are highly correlated in the space domain. They pro-
posed a theoretical framework to capture the spatial
and temporal correlations in WSN and enable the
development of efficient communication protocols
in WSN utilizing these information. In this work,
we explore the possibility of utilizing the physical
phenomena monitored by WSN to assist in wireless
localization and position verification.

Localization of nodes in WSN has become in-
creasingly important because the location of sensors
is a critical input to many high-level applications.
The localization techniques can be categorized along
several dimensions. Based on localization infrastruc-
ture, [8] used infrared methods and [9], [10] em-
ployed ultrasound to perform localization. Both of
them need to deploy specialized infrastructure for
localization. On the other hand, using RSS [1], [4],
[11] is an attractive approach because it can reuse
the existing wireless infrastructure. Dealing with
ranging methodology, range-based algorithms involve
distance estimation to landmarks using the measure-
ment of various physical properties like RSS [1], [4],
Time Of Arrival (TOA) [12] and Time Difference
Of Arrival (TDOA) [9]. Range-free algorithms [13],

[14] use coarser metrics to place bounds on candidate
positions. Examining the strategy used to map a
node to a location, lateration approaches [12], [14]–
[16], use distances to landmarks, while angulation
uses the angles from landmarks. Scene matching (or
fingerprint matching) strategies [1], [4], [17], [18]
use a function that maps observed radio properties to
locations on a pre-constructed radio map or database.
Finally, another dimension of classification extends to
aggregate [13], [19] or singular algorithms.

The same type of physical properties is required
to be used within each of the above methods to
ensure the appropriate functioning of the mechanism.
They have to be either infrared, ultrasound, RSS,
angle, time, or hop count. Our work is unique in that
we have proposed a generic localization approach
by not restricting ourselves to only examine a sin-
gle type of physical property. Instead, our method
can incorporate all kinds of physical phenomena.
The closest works to this paper are [1], [20]. [1]
developed a localization mechanism measuring the
minimum euclidean distance in the signal space, and
only deals with the physical property of RSS. [20]
proposed a GSM signal strength fingerprinting-based
localization system to determine the current floor of
a user. It addressed the problem that certain physical
sources may not contribute to localization accuracy
by developing a set of feature selection techniques.
However, these feature selection techniques did not
tract the performance of each possible combination in
parameter subsets and might contain "bad" physical
sources to start with. Also, [20] only deals with one
type of physical property, the signal strength. By
handling all kinds of physical properties, our work is
broader than [1], [20], and our SCWM for parameter
selection is more general than the feature selection
approaches in [20]. In addition, our method is novel
in that we utilize the existing deployment of sensor
networks to assist in localization, rather than requir-
ing the deployment of a localization infrastructure or
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additional access points (or landmarks) in the area of
interest.

VII. CONCLUSION

In this work, we proposed to use the inherent
spatial variability in physical phenomena recorded
by sensor networks to support wireless localization
and position verification. We formulated a theoretical
measurement model for quantifying the localizing
capability of environmental properties. We proposed
a scheme to evaluate the environmental parameters’
ability to capture the physical variability, the Spatio-
Correlation Weighting Method (SCWM), which can
find the optimal parameter subset with the highest
discriminative power for localization for a given size
of the parameter subset. Moreover, we developed
the Flex − EP algorithm to perform localization
and position verification utilizing parameter subsets
obtained from SCWM.

We evaluated our methods through experiments
conducted in an office building where we collected
various environmental parameters including temper-
ature, humidity, ambient noise, spectrum energy, and
RSS. We found that choosing two environmental
parameters containing high discriminative power is
enough to produce comparable performance to the
traditional localization approaches employing RSS
with at least four access points. By increasing the
number of parameters with high discriminative power
in a subset, we can further refine the localization
accuracy and obtain better performance than con-
ventional localization results. Thus, our experimental
results provide strong evidence of the feasibility of
utilizing environmental properties to assist in local-
ization and the effectiveness of our approach by using
SCWM and Flex − EP algorithms.
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