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Wireless sensor networks are usually deployed to monitor environmental fields. In this
work, we take a different viewpoint by dual-using the wireless sensor networks beyond their
original purpose and exploit the general spatial information fields associated with wire-
less networks to assist position verification and refine conventional localization results. We
developed the Flex−EP algorithm. And further our experimental evaluation results pro-
vide strong evidence that our approach can achieve the similar performance as traditional
localization algorithms, without requiring the deployment of a localization infrastructure.

I. Introduction

The rapid advancements in sensor technologies, both

in terms of the sensor itself as well as the networking

technology used to convey sensor readings, is leading

to a future where sensors will become pervasively de-

ployed. Although the data associated with such sensor

readings might be intended to drive specific applica-

tions, e.g. the remote monitoring of temperature and

humidity, this wealth of data may also be dual-used

for additional purposes. In particular, since the pur-

pose of a sensor network is to provide sampling of a

physical phenomena across a wide geographic/spatial

distance, the close link between sensor data and lo-

cation may be used to assist in applications involving

location and position verification [1].

In this paper, we propose the use of spatially vary-

ing environmental properties to support localization,

without requiring the deployment of a localization

infrastructure and additional access points (or land-

marks). We present the problem of localization using

general spatial information fields. We examine the use

of physical properties, such as temperature and ambi-

ent acoustic/RF energy, and explore whether the in-

herent spatial variability may be used to localize the

position of a mobile entity. In our model, an array of

sensors has been initially deployed for environmental

monitoring. The data collected by this sensor network

is used as a baseline database, and a claimant reports

the physical readings at its location. We deploy an al-

gorithm called Flex−EP algorithm to determine the

claimant’s location based on it’s readings. Through

our experiments on various parameters, we observed

that the environmental parameters monitored by sen-

Figure 1: Theoretical model for utilizing environmen-
tal properties for wireless localization

sor networks have localizing capability. Moreover,

by using environmental readings plus received sig-

nal strength (RSS) from one access point, we found

that utilizing the additional environmental parameters

for localization provides qualitatively the same perfor-

mance as traditional localization schemes employing

RSS with at least four access points or landmarks.

In summary, our contribution include: (1) A novel

localizing mechanism that makes use of the existing

sensor network readings and do not need to setup ad-

ditional localization infrastructure. (2) Assisting con-

ventional localization infrastructure: using these addi-

tional readings to refine the conventional localization

results. (3) A location-verification method that can be

used in location related applications such as location-

based access control.

II. Algorithmic Approach

We start with a generalized localization model and

then present our algorithm.

Generally speaking, each sensor node in the phys-
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Figure 2: Position verification for spatio-temporal ac-
cess control

ical domain continuously monitors the environment

by periodically reporting the values of environ-

mental parameters, such as temperature, humid-

ity, and ambient acoustic energy. Assuming zi is

for the environmental parameter i and Z(p, t) =

{z1(p, t), z2(p, t), ..., zn(p, t)} is the vector of envi-

ronmental parameters that are monitored by the sen-

sors. These parameters have the property that they are

recorded across space and time.

We define an n-dimensional parameter space, where

each vector Z(p, t) corresponds to a point in the pa-

rameter space as shown in Figure 1. To explain fur-

ther, we consider an access-control application as pre-

sented in Figure 2 where sensors periodically report

data back to the access points (or base stations), while

a centralized entity, the Control Manager(CM), is re-

sponsible to control a claimant’s access to the ob-

jects and services based on its spatio-temporal loca-

tion. When a claimant wants to access an object or

a service, the claimant needs to send the observed in-

formation of its environment Z
obs

(p, t) to CM . CM

performs localization and verification based on the en-

vironmental monitoring information reported by the

sensor network, which is stored in the database in real

time.

It is desirable to choose a subset of parameters that,

when used together, has optimal discriminative power

to describe the uniqueness of the environment. We

found that choosing parameters with large variance

across the environment helps to improve localization

capability. On the other hand, the correlation between

parameters does not play a critical role in localizing

capability.

Our algorithm, which we have called Flex − EP

(Flexible Environmental Parameter), performs local-

ization utilizing environmental properties:

p̂ = arg min

p
‖Zobs

(p, t)− Z
sens

(p, t)‖ (1)

where Z
sens

(p, t) is the collection of environmen-
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Figure 3: Layout of the experimental floor

tal parameters at position p and time t. Similarly

Z
obs

(p, t) is the claimant reported environments. This

corresponds to the mapping from the parameter space

back to the spatio-temporal space shown in Figure 1.

We have also developed variants of this algorithm that

returns the average of k closest positions of sensors,

FLEX − EP − Avg, and one that uses an interpo-

lated environmental grid, FLEX − EP −Grid.

III. Experimental Evaluation

We conducted experiments in the 3rd floor of the

Computer Science Department at Rutgers University

as shown in Figure 3. We collected environmental in-

formation at over one hundred locations on the floor,

shown as blue dots, including temperature, humid-

ity, acoustic noise, spectrum usage, and RSS from an

802.15.4 (ZigBee) network with four access points.

Examining the individual environmental parame-

ters, Figure 4 shows sample maps of acoustic noise

and spectrum energy at 2.435GHz across the floor.

We can see that the acoustic noise does not vary much

across the experimental floor, while the spectrum sam-

ples at 2.435GHz presents large variance indicating

strong discriminative power to describe the unique-

ness of each location in the floor.

Different environmental properties have different

units and different range of values. In order to cal-

culate the contribution of each parameter without bias,

we normalize the data using the classical statistical ap-

proach:

z
norm

i =

zi − μi

σi

(2)

where μi and σi are the average and standard deviation

of the parameter zi.

Using the example of the access-control applica-

tion, when a claimant requests access to some ob-
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Figure 5: Performance comparison of using environmental properties for localization to traditional RADAR
algorithm, (a) parameter set: spectrum usage at 2.465GHz, RSS from AP4, acoustic noise, and temperature (b)
parameter set: spectrum usage at 2.435GHz, RSS from AP1, acoustic noise, and humidity.

jects/services, we verify the position of the claimant

using the Flex − EP algorithm. When selecting a

parameter subset, by including only one RSS read-

ing (from an access point) we simulated the scenario

that there is only one access point available in the area

of interest. We found that choosing two environmen-

tal parameters containing high discriminative power is

enough to produce comparable performance to the tra-

ditional localization approaches employing RSS with

at least four access points. Figure 5 presents the local-

ization error CDF when using four environmental pa-

rameters, including spectrum usage and RSS (which

have large variance across the floor), while acoustic

noise, temperature, and humidity do not vary much

across the experimental site. The performance us-

ing Flex − EP is qualitatively similar to the perfor-

mance of using the traditional RADAR algorithm [2].

The similar performance is very encouraging as it in-

dicates utilizing environmental properties can effec-

tively determine the location of a claimant and further

to assist in applications involving location and posi-

tion verification.
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Figure 4: Sampled data maps of individual environ-
mental parameters.
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