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Abstract The wireless data collected in mobile environ-

ments provides tremendous opportunities to build new

applications in various domains such as Vehicular Ad Hoc

Networks and mobile social networks. Storing the data

decentralized in wireless devices brings major advantages

over centralized ones. In this work, to facilitate effective

access control of the wireless data in the distributed data

storage, we propose a fully decentralized key management

framework by utilizing a cryptography-based secret sharing

method. The secret sharing method splits the keys into

multiple shares and distributes them to multiple nodes.

However, due to node mobility, these key shares may not

be available in the neighborhood when they are needed for

key reconstruction. To address this challenge, we propose

the Transitive Prediction (TRAP) protocol that distributes

key shares among devices that are traveling together. We

develop three key distribution schemes that utilize the

correlation relationship embedded among devices that are

traveling together. Our key distribution schemes maximize

the chance of successful key reconstruction and minimize

the communication overhead. We provide theoretical

analysis of the robustness and security of TRAP. Our

simulation results, by using the generated data from city

environment and NS-2 simulator, demonstrate the effi-

ciency and effectiveness of our key distribution schemes.

Keywords Decentralized key management �
Mobile wireless networks � Neighborhood prediction �
Secret sharing � Distributed storage

1 Introduction

The rapid advancement of wireless technologies has led to

a future where wireless networks will be pervasively

deployed. As a matter of fact, with the increasing pro-

grammability of wireless devices and the continuously

reducing cost of communication radios, mobile wireless

networks are becoming a part of our social life. For

instance, vehicles are equipped with wireless communica-

tion devices to form Vehicular Ad Hoc Networks (VA-

NETs), in which vehicles have the sensing capability to

collect data regarding to road conditions and traffic sce-

narios [36]. Another example is that data collection and

real-time multimedia blogs [3, 27] enabled by various

sensing capabilities on mobile phones, such as cameras,

GPS, and accelerometers, provide geo-related information

that supports effective mobile social collaboration. Thus,

the wireless data collected in the mobile environments

provide abundant information to build pervasive applica-

tions in our social life.

Most of the existing work [34] requires the data to be

sent back to centralized storage nodes continuously and

only considers stable network topology. However, this may
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incur high communication overhead and excessive energy

consumption among wireless devices by continuously

forwarding the data to storage nodes. To address these

issues, distributed data storage [13, 14, 29, 33, 34] in

wireless networks has attracted much attention. The dis-

tributed data storage has major advantages over centralized

approaches: storing the data on the wireless device or in-

network storage nodes decreases the need of constant data

forwarding back to centralized places, which largely

reduces the communication in the network and the energy

consumption on individual devices, and consequently

eliminates the existence of centralized storage and enables

efficient and resilient data access. Furthermore, as wireless

networks become more pervasive, new-generation wireless

devices with significant memory and powerful processing

capabilities are available (i.e., smart phone), making the

deployment of distributed data storage not only feasible but

also practical.

In this work, the collected data will be stored in each

collector node, i.e., the mobile device that collects the data.

In many cases, the data collected by mobile wireless net-

works contains sensitive information. For instance, an

adversary can analyze the video clips embedded in the

multimedia blogs to derive users’ lifestyles. Such vulner-

abilities are significantly threatening the deployment of

applications that utilize the large-scale data sets collected

by wireless mobile networks. Therefore, while the wireless

data provides abundant opportunities for developing new

applications, it could also be dangerous if not handled

appropriately and misused by adversaries. Thus, secure

data storage must be achieved before widespread adoption

of distributed data storage. One of the main challenges in

utilizing the distributed wireless data is to develop effective

mechanisms that control the access of data so that the

right information is shared with the right party at the right

time.

Traditional encryption-based access control approaches

employ an individual or a group of centralized certification

authorities for key management [1, 39]. However, these

approaches face the difficulty of scaling with the increasing

size and the mobility of devices in wireless networks. Even

worse, the centralized authorities in these approaches can

become a single point of failure. In this paper, we propose a

fully decentralized key management framework by utiliz-

ing the cryptography-based secret sharing method. The

secret sharing approach has been very useful in developing

decentralized security protocols [19, 23]. In our decen-

tralized framework, the data is encrypted and the decryp-

tion key is divided and shared among mobile devices in the

network.

However, the mobility of devices introduces environ-

mental dynamics and makes it hard to reconstruct the key.

To cope with mobility, we propose to distribute the key

shares among devices that travel together with the col-

lector node through neighborhood prediction. Indeed, in

our daily life, people usually travel together to common

destinations or areas [16, 26], e.g., by taking the same

train/bus/ferry or car pooling in urban transport. This co-

movement phenomenon makes our neighborhood predic-

tion feasible. We further develop the Transitive Prediction

(TRAP) protocol that helps to maximize the chances of

successful key share reconstruction and minimize the

communication overhead, and in the meanwhile avoiding

the degradation of the security guarantee of data access.

Further, we theoretically analyze the communication

overhead of key distribution and key reconstruction

involved in the TRAP protocol.

Inside TRAP, we design three key distribution schemes.

These three key distribution schemes can be classified into

two categories, the one that does not respect the relation-

ships between moving patterns of different devices, and the

one that does. For the first type, we develop a scheme

named random selection, while for the second type, we

develop two schemes, namely association-probability-

based, and association-rule-based. In addition, we derive

the theoretical analysis of the robustness and security of

our mechanism, and provide discussions on our analytical

results.

To evaluate the feasibility of our framework, we use

simulated mobile wireless networks in a city environment

[7] with different moving speeds: walking speed and

vehicular traveling speed. We also conduct simulations

through NS-2 simulator with Reference Point Group

Mobility (RPGM) model [17] and time-variant community

mobility model [18] to validate our analysis on commu-

nication overhead, and evaluate the effectiveness of key

distribution schemes. These two mobility models represent

different node stability when moving together in group-

oriented environments. Our results show that our key dis-

tribution schemes are both effective and efficient to achieve

successful key reconstruction in mobile and decentralized

environments. These results provide strong evidence of the

feasibility of applying our decentralized key management

scheme in mobile wireless networks.

The remainder of the paper is organized as follows. We

first present our decentralized key management framework

for mobile wireless networks, and analyze the incurred

communication overhead in Sect. 2. We provide the

robustness and security analysis of our approach in Sect. 3.

In Sect. 4, we describe our key distribution schemes for

efficient key reconstruction. We present our simulation

methodology and results using various data sets generated

from simulated mobile wireless networks and NS-2 simu-

lator in Sect. 5. We then put our work into the broader

context of the current research in Sect. 6. Finally, we

conclude our work in Sect. 7.
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2 Decentralized key management

We present the framework of our decentralized key man-

agement approach in this section. We first describe the

network model and adversary model. Second, we present

our approach of decentralized key management protocol.

Next, we analyze the communication overhead involved in

our proposed protocol.

2.1 Network model

We consider mobile wireless networks, which contain a

large number of wireless devices (e.g., mobile phones,

laptops, or on board sensing units on vehicles). Each device

has a unique ID and may perform different functionalities

in the network. For subsequent discussions, we use the term

device and node interchangeably. Nodes may freely roam

in the network, and the number of nodes in a network may

be dynamically changing due to its capability of mobility,

i.e., mobile nodes may join, leave, or fail over time. In this

work, we target our solutions to a category of mobile

wireless networks with the following characteristics.

Node placement. We make the assumption that the

wireless nodes are randomly deployed in the network, with

the node distribution following a homogeneous Poisson

point process with a density of q nodes per unit area [5,

30]. This assumption is reasonable and has been widely

used in analyzing multi-hop mobile wireless networks [6,

20, 28].

Mobility. Each node moves randomly or follows some

patterns in a large well-defined area.We assume that the

nodes are not aware of their moving patterns, if there is

any. We assume there exists a co-movement pattern within

nodes, i.e., group of nodes may travel together to common

destinations. For example, a group of tourists in New York

City may travel to visit the Metropolitan Museum together

and each of them can use their mobile phones to take

pictures, shoot videos, and write multimedia blogs on the

way.

Neighbor-Aware. Each node has a communication range

and can communicate only with nodes within its trans-

mission range. We call the nodes in the transmission range

the neighbors. Mobility of nodes may result in the change

of the neighborhood. However, we assume that for every

node, it has a comparatively stable neighborhood within a

period of time.

Location-Aware. Each node knows their physical loca-

tions at all time points during moving. This is a reasonable

assumption as most of wireless devices (e.g., mobile

phones or vehicles) are equipped with GPS or some other

approximate but less burdensome localization algorithms

[22]. In many cases the location of the collected data is

important. For example, knowing that a traffic accident

occurred, which requires to inform the neighboring nodes,

but without knowing where it occurred is useless.

Distributed data storage. Each node stores the data it

has collected. The data will be stored within the network at

each collector node (e.g., mobile phones or vehicles) unless

it is required to be sent to a centralized storage space for

backup. By uploading data in a lazy fashion (i.e., on-

demand only), distributed data storage enables real-time

query evaluation and avoids frequent data transfer from the

wireless devices to the centralized storage, and conse-

quently reduces battery power consumption and decreases

the communication overhead of the network.

2.2 Adversary model

In this work, we consider the semi-honest adversary who

has access to the wireless devices in the networks to obtain

the key shares. The semi-honest adversary can compromise

the storage of the devices (by read access) and conse-

quently obtain the key shares in the storage. However, the

adversary can neither decrypt the data stored on the com-

promised node nor control the compromised device to act

as a legitimate node. There may exist multiple adversaries

in the network. However, those adversaries will not collude

with each other for the collection of key shares and re-

generation of keys. Clearly, an adversary has to compro-

mise up to m nodes in order to reconstruct the key to

decrypt the data on the compromised node. Furthermore,

the adversary adheres to the prescribed protocols to answer

and process queries.

In this paper, we focus on defending against such non-

collusive adversary that only has the read access to the

compromised storage. We will show that it is challenging

to design robust encryption schemes against such adver-

sary. It is interesting to investigate the security schemes

against the adversary with more attack power, e.g., with

write access to the compromised storage and/or complete

control of the compromised node. We will explore it by our

future work.

2.3 Distributed key management model

2.3.1 Node authentication

There has been sufficient work [19, 23, 39] that we can

employ to perform node authentication. Zhou and Haas

[39] proposed a partially distributed certificate authority

scheme that supports authority services to be shared by

multiple servers. Luo and Lu [23] proposed a distributed

cryptography-based authentication solution that distributes

a certificate key to each node. Joshi et al. [19] extended

Luo and Lu [23] by providing a redundancy-based solution

for node authentication. Thus, we can adopt the node
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authentication techniques in these existing works to our

work and mainly focus on studying decentralized key

management for secure data access. In our work, whenever

a node enters the network, it has to pass the authentication

procedure. When a node in the network tries to access data,

the node needs to collect m key pieces. Thus, an attacker

node has to compromise up to m nodes, which means that it

has to succeed for m trials to hack the system with complex

overhead. This highly increases the security level of our

system compared with the system that uses a centralized

authority for data access, so that the attacker node only has

to hack one node, that is, the centralized authority node.

2.3.2 Secret sharing based key management

To prevent the misuse of the data and protect the privacy of

mobile users, the data is encrypted in our framework.

Further, we propose to use the secret sharing scheme to

achieve decentralized key management in dynamic wire-

less environments.

Secret sharing, also named threshold secret sharing, is

originated from [32]. Specifically, in a (m, n) secret sharing

scheme, a secret is distributed among n participants; only

by collecting m(1 \ m B n) secret shares can re-construct

the secret. The decision of values for m and n controls the

strength of the system.

Key distribution. We develop the secret sharing method

in a fully distributed manner: Each collector node acts as

the dealer node as defined in the secret sharing scheme [32]

and is responsible to distribute the decryption key of its

own data. Furthermore, since each collector node can

encrypt its data at different time periods, there can be

multiple keys associated with each node in our network.

Thus, in order to identify the key shares that belong to the

same key, the collector node will generate a unique key ID

to append to each key share. The unique key ID will help to

identify the key shares that belong to the same decryption

key. The collector node will destruct the decryption key

after it distributed the key shares.

Key reconstruction. At a later time, the secret key can be

reconstructed by using Lagrange interpolation. Any subsets

of m key shares could reconstruct the decryption key and

each wireless device is unaware of others’ shares. Further,

only the legitimate user, i.e., the authorized node by the

authentication protocol (e.g., [23]), which owns the cer-

tificate key, can reconstruct secret key. Note that the col-

lector node is not responsible for key reconstruction; it

collects data not key pieces.

Key updating. Given sufficiently long time, an adversary

could compromise m nodes and reconstruct the decryption

key of the data. To make our secret sharing based key

management more robust, the key shares will be updated

periodically. We apply proactive secret sharing [35] in

which the key shares will be expired after a specified time

period controlled by the collector node. The collector node

will re-distribute a set of key shares once the key shares in

the previous distribution have expired. Periodically, the

collector node will distribute the n newly generated key

shares to n wireless devices. The old keys are expired and

thus are discarded.

2.3.3 Handling mobility via neighborhood prediction

In a mobile wireless network, the devices carrying key

shares may move farther away, causing much communi-

cation overhead during key reconstruction and even

reconstruction failure (e.g., unreachable devices). Thus, it

is desirable to distribute key shares to devices that are

moving together with the collector node, and consequently

increasing the success rate of key reconstruction in

dynamic network environments and reducing the commu-

nication overhead and energy consumption during the

reconstruction process. However, this brings in a new

challenge of how to determine the devices that are travel-

ing together with the collector node. To address this issue,

we propose to use neighborhood prediction. In particular,

we developed an array of key distribution schemes, which

explore correlations embedded in the moving patterns of

wireless devices, to predict devices that are traveling

together for efficient key distribution. The detailed schemes

will be presented in Sect. 4. During the key distribution

phase, the collector node utilizes these schemes to pick the

top n wireless devices that are most likely traveling toge-

ther with it, and distributes the n key shares to these

devices.

Further, as stated in our network model each mobile

wireless device only keeps the information of its 1-hop

neighbors (i.e., devices within its transmission range).

During the key distribution phase, it is possible that there

are not enough devices within the 1-hop range to share the

key, i.e., the devices within the 1-hop range of the collector

node are less than n. To address this problem, there are two

possible solutions:

Solution 1 The collector could request its 1-hop neigh-

bors to send the information of their respective 1-hop

neighbors back to it as candidates. Under the scenario that

the returned number of candidates is still less than n, the

collector will make iterative requests to the neighbors of

neighbors to collect more candidate devices, until it col-

lects at least n candidates. Then it will run the key distri-

bution scheme on these candidates and choose the top

n devices from the results as the key share holders. It does

not consider the co-movement among nodes.

Solution 2 Unlike Solution 1 that does not consider node

co-movement, Solution 2 respects the node co-movement
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for key distribution. The key idea of Solution 2 is that the

co-movement is transitive in practice. For instance, if a

mobile user A is traveling together with user B, meanwhile

B is traveling together with C, it is highly likely that A is

also traveling together with C. Thus, the collector node can

utilize this property and distribute the prediction respon-

sibility of key distribution to its neighbors for further

prediction of the devices traveling together when there are

less than n devices within the 1-hop neighborhood for key

share distribution. The prediction of key distribution (i.e,

the key distribution scheme) can be successively invoked

by the neighbors of the neighbors until enough candidates

are found. The predicted results at each neighboring

node during each round of invocation will be sent back to

the collector node as candidates for choosing the top

n devices.

Transitive prediction (TRAP) protocol. We note that

Solution 1 may incur high computational and communi-

cation cost at the collector node. Thus, in this work, we

take Solution 2 and develop a fully distributed prediction

protocol called Transitive Prediction (TRAP) that builds on

top of our key distribution schemes. We utilize a layered

approach (i.e., we call 1-hop neighbors of a node as one

layer) to successively find enough devices that are traveling

together with the collector node for resilient key distribu-

tion in multi-hop mobile environments. In TRAP, the k-hop

neighbors of the collector node is defined as the 1-hop

neighbors of the (k - 1)-hop neighbors of the collector

node with k [ 1. Figure 1 depicts how TRAP finds 9

devices that travel together with the collector node in a

2-hop scenario, when (4, 9) secret sharing scheme is

applied. More specifically, when 9 key pieces need to be

distributed to the neighbors of node S, however, there are

only 3 neighbor nodes A, D, and E, who are moving

together with node S in Fig. 1(a). Thus, in Fig. 1(b), the

nodes A, D, and E refer to their 1-hop neighbors and

distribute the rest 6 key pieces to those, who are moving

together with them (i.e., nodes B, C, G, H, F, and I) in

the 2-hop.

At every round of TRAP, each involved neighboring

node will run the key distribution scheme to predict top x

devices from its 1-hop neighbors and send the prediction

results as candidates back to the collector node. To ensure

returning the sufficient number of candidates, we choose

x = n in TRAP. The collector node will then choose the

top n devices from the returned candidates based on the

prediction criteria (e.g., the association rule in Association-

rule-based scheme in Sect. 4) in our key distribution

schemes to share the key. Thus, in TRAP the computation

of successive prediction is distributed at the neighbors that

are traveling together, and consequently the computational

and communication cost at the collector nodes is signifi-

cantly reduced.

2.4 Communication overhead

Key distribution. We first examine the communication

overhead of the key distribution phase in the TRAP pro-

tocol in terms of number of transmitted packets. The

overhead during this phase consists of two parts: (1) the

overhead incurred by a collector node collecting the tra-

jectory information from its neighborhood, and (2) the

overhead incurred by the collector node distributing n key

pieces to its neighbors. Next, we discuss how to measure

these two types of overhead.

Let L be the length of a transmission packet. We assume

that one record of trajectory at one time point consists of a

pair of (x, y) coordinates and its corresponding time stamp.

Let R be the size of one trajectory record (e.g., R = 12

bytes when the (x, y) coordinates and the time stamp are of

float type). Assume each device records its trajectories

every t time units. Then the trajectory data of the time

window of t0 units can be stored in dt0t � R
Le packets.

Assume that each node has a transmission range r; thus

it covers an area A = pr2. Since the number of nodes N in

the area A follows a Poisson distribution [6, 20, 28], the

probability that a node has i nodes in its 1-hop neighbor-

hood is PrðN ¼ iÞ ¼ ci

i! e�c, where the expected node

(a) (b)

Fig. 1 Illustration of TRAP in a

2-hop scenario when 9 key

pieces need to be distributed

from the collector node S. Node

A, D, and E are the nodes

moving together with collector

at 1-hop communication range,

node B, C, D, F, G, H, and I
are the nodes moving together

with collector at 2-hop

communication range.

ki; i ¼ 1. . .9;are the key pieces

distributed to neighbors
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degree at k-hop is c = qpk2r2 (c = qpr2, when k = 1), with

the intensity q ¼ N
A. Then for a particular collector node, it

has qp(kr)2 - qp{r(k - 1)}2 = qpr2(2k - 1) new nodes

that appear in k-hop but not in (k - 1)-hop transmission.

Figure 2 illustrates the packet transmission of collecting

the trajectories from a collector node S’s neighborhood and

distributing key pieces to its neighborhood in a 3-hop

scenario. The shaded circular area shows the neighbors of

S when k = 2 hops. The s in Fig. 2(a) indicates packets

containing trajectory information from k-hop neighborhood

returning back to S, while j in Fig. 2(b) indicates packets

containing key pieces distributed from S to its neighbor-

hood. Figure 2(a) depicts the scenario that the number of

nodes in 1-hop (node A) and 2-hop neighborhood (node

B and C) are less than the n value of a (m, n) secret sharing

scheme, thus the 3-hop neighborhood (node J and K)

also need to send trajectory information back to S.

Figure 2(b) shows the scenario that multiple key shares are

distributed by S to its multi-hop neighborhood.

First, we discuss the overhead incurred by a collector

node collecting the trajectory information from its neigh-

borhood. The collector first sends request messages to its

neighborhood asking for trajectory information. We

assume the request message can fit into one packet. The

overhead Hreq incurred by transmitting packets of request

messages can be represented by the number of request

packets transmitted within k-hop:

HreqðhÞ ¼
Xh

k¼1

kqpr2ð2k � 1Þ ¼ qpr2 h3 � h2

2
þ h

2

� �
; ð1Þ

where h is the number of hops. Then, the packets

containing trajectory information from the k-hop nodes

need to be transmitted via its (k - 1)-hop neighbors back

to the collector node, which means the qpr2 � ð2k � 1Þ

nodes, in the circular area between k-hop and (k - 1)-hop,

will transmit its trajectory information back to the collector

node. We assume that
P

k=1
h qpr2(2k - 1) [ n, i.e., there

are more than n nodes that send the trajectory information

back to the collector node (otherwise, the secret sharing

protocol may fail as it cannot find sufficient number of

nodes for key distribution). The overhead Htraj incurred by

sending the trajectories information can be bounded by the

number of transmitted packets containing the trajectory

collection:

HtrajðhÞ ¼
Xh

k¼1

kqpr2ð2k � 1Þ � t0
t
� R

L

� �

¼ qpr2 h3 � h2

2
þ h

2

� �
� t0

t
� R

L

� � ð2Þ

Next, we discuss the overhead incurred by the collector

node distributing n key pieces to its neighbors. The col-

lector node applies our key distribution schemes to predict

the top n (n \ N) neighbors as key distributees within the

network. Recall that each key piece can fit into one packet.

Thus the collector node sends n packets, each containing a

key piece. The overhead Hkey of number of packets trans-

mitted for distributing key pieces is HkeyðhÞ ¼ h � n.

Therefore, the total number of packets transmitted for

key distribution within h-hop transmission is

HdistðhÞ ¼ HreqðhÞ þ HtrajðhÞ þ HkeyðhÞ

¼ qpr2 h3 � h2

2
þ h

2

� �
� t0

t
� R

L

� �
þ 1

� �
þ h � n:

ð3Þ

From Eq. 3, we found that the communication overhead of

the key distribution is cubically proportional to the number

of hops. When h = 1, it is the one-hop communication

overhead scenario.

Key reconstruction. We next study the communication

overhead during the key reconstruction phase, which is

made of two parts: (1) the overhead by a legitimate user

sending the key piece request messages to its neighbor-

hood, and (2) the overhead by transferring key pieces back

from nodes containing the information in the neighbor-

hood. In a (m, n) secret sharing scheme, in order to

reconstruct the key, the user needs to collect at least m key

pieces, where m \ n.

We first discuss the overhead by a legitimate user

sending the key piece request messages to its neighbor-

hood. Within one-hop transmission, the user first sends the

request messages to its neighbors. We assume the request

message can fit into one packet. The key piece holder, who

is within the communication range, sends the key pieces to

the user upon receiving the request message. Therefore, the

transmitted packets are qpr2 ? l, where qpr2 is the

(a) (b)

Fig. 2 Illustration of packets transmission in a 3-hop scenario. Node

A is the 1-hop neighbor node, node B and C are 2-hop neighbor nodes,

and J and K are 3-hop neighbor nodes. si is the packet containing

trajectory information, and ki is the distributed key piece
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expected node degree at 1-hop, and l is the collected key

pieces in total. If m B l B n, the key reconstruction is

successful; if not, the collector may send requests to its

multi-hop neighbors. For the k-hop transmission, it is

similar to the key distribution phase that the packets need

to be transmitted via the (k - 1)-hop neighbors. Thus, the

overhead Hrecon in terms of the number of packets trans-

mitted during key reconstruction is,

HreconðhÞ ¼
Xh

k¼1

kqpr2ð2k � 1Þ þ h � l

¼ qpr2 h3 � h2

2
þ h

2

� �
þ h � l:

ð4Þ

From Eq. 4, we found that the communication overhead

during the key reconstruction is also cubically proportional

to the number of hops, which has the similar trend to the

key distribution phase. In Sect. 5.3, we provide our simu-

lation results via NS-2 simulator to verify our analysis of

communication overhead incurred during key distribution

and reconstruction.

3 Robustness and security analysis

In this section, we formally analyze the robustness and

security of our TRAP protocol in mobile wireless

networks.

3.1 Robustness analysis

The (m, n) secret sharing scheme splits the decryption

key into n shares and distributes the n shares to n

devices. However, due to the mobility of the network, it

is possible that these key shares may not be accompa-

nied together while time goes. Thus in the following,

we analyze the robustness of the protocol via the prob-

ability that legitimate users can successfully reconstruct

the key.

One-hop scenario. This scenario considers the case that

there are sufficient m key shares available in the 1-hop

neighborhood of the node for key re-construction.

As the assumption and discussion we made in Sects. 2.1

and 2.4, we define p1, the percentage of nodes in the 1-hop

neighborhood of the collector node that hold key shares,

where 0 \ p1 \ 1, and we assume that there exists at least

one key share within its neighborhood. Let i1 be the total

number of nodes in the 1-hop neighborhood. Since each

legitimate user possesses a key share already, it needs to

collect another m - 1 key shares to reconstruct the key. It

is straightforward that i1p1 must be at least m - 1. Thus we

have:

Prði1p1�m�1Þ¼1�Pr i1\
m�1

p1

� �

¼1�
X

m�1
p1

j k
�1

j¼1

PrðN¼ jÞ¼1�
X

m�1
p1

j k
�1

j¼1

cj

j!
e�c;

ð5Þ

where c = qpr2.

Multi-hop scenario. This scenario considers the case

that there are less than m - 1 key shares available in the

(k - 1)-hop (k C 2) neighborhood, but at least m - 1 key

shares in the k-hop neighborhood of the collector node for

key re-construction. The (k - 1)-hop neighborhood covers

an area Ak-1 = p((k - 1)r)2, while the k-hop neighborhood

of a node (with transmission range r) covers an area

Ak = p(kr)2. Let ik-1 and ik be the number of neighbors in

the (k - 1)-hop and k-hop neighborhood.

Similar to the 1-hop scenario, we define pk as the per-

centage of nodes in k-hop neighborhood that carry key

shares, where 0 \ pk \ 1. Since the legitimate user

(holding a key share already) can collect t 2 ½m� 1; n� 1�
key shares from the k-hop neighborhood but less than m - 1

neighbors from the (k - 1)-hop neighborhood, we have:

Prðm� 1� ikpk � n� 1jik�1pk�1\m� 1Þ

¼ 1�
Pr ik\ m�1

pk

� �

Pr ik�1\ m�1
pk�1

� � ¼ 1�
P m�1

pk

j k
�1

j¼1
c j

j! e�c

P m�1
pk�1

j k
�1

j¼1
c0j

j! e�c0

;
ð6Þ

where the expected node degree c0 = qp(k - 1)2r2 and

c = qpk2r2.

Discussion. Based on the theoretical analysis, we choose

different parameter setup to measure the probability of

robustness in our approach.

We fix the value of c (e.g., c = 15), the expected

number of nodes in 1-hop neighborhood, and vary the

value of p1, the ratio of the nodes in the 1-hop neighbor-

hood that holds key shares. Figure 3(a) presents the

robustness probability of key reconstruction in the 1-hop

neighborhood with n = 15 and m = 4, 6, 8 and 10 for the

setup of the (m, n) secret sharing scheme. We observed that

for all the m values, the robustness probability increases

with increasing p1. This is straightforward as the more key

shares moving together, they make better chance for key

reconstruction. Figure 3(b) shows the results when we

change to n = 50 and m = 10, 15, 20, 25 and 30 for the

setup of the (m, n) secret sharing scheme. It has a similar

trend as Fig. 3(a). Furthermore, we concluded that the

smaller m value is, the smaller p1 is needed to achieve a

robustness probability threshold, since fewer number of

key shares are needed for key reconstruction.
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Figure 3(c) presents the robustness probability in a 2-

hop scenario with the (10, 15) secret sharing method.

Similar to the 1-hop neighborhood scenario, we vary the

value of p2, the ratio of the nodes holding key shares in the

2-hop neighborhood. Meanwhile, we set the value of p1,

the percentage of nodes holding key shares in the 1-hop

neighborhood, as 0.1, 0.3 and 0.5 respectively. In general,

the analytical robustness probability is as high as near to 1

for most of the cases. This indicates the feasibility of

applying TRAP using the secret sharing method to mobile

wireless networks. To ensure the robustness, we can choose

appropriate m, n and c values to ensure that the robustness

probability is no less than a user-defined threshold.

3.2 Security analysis

To possess the decryption key, an adversary will try to

compromise at least m nodes to obtain their key shares for

key reconstruction. Next, we compare the probability that a

legitimate user and an attacker can successfully reconstruct

the keys from the k-hop neighborhood. Note here we do not

have to consider the (k - 1)-hop neighborhood, since the

security analysis only reasons on whether the legitimate

users (and the attacker) can collect sufficient number of key

pieces from the k-hop neighborhood.

Legitimate user. We use the same notations as in Sect.

3.1, where k (k C 1) is the number of hops, ik is the number

of nodes in the k-hop neighborhood, and pk is the per-

centage of nodes in the k-hop neighborhood that carry key

shares. The probability that the legitimate user can suc-

cessfully reconstruct the key is:

Prðm� 1� ikpk � n� 1Þ ¼ Pr
m� 1

pk
� ik �

n� 1

pk

� �

¼
Xd

n�1
pk
e�1

j¼bm�1
pk
cþ1

Prðn ¼ jÞ ¼
Xd

n�1
pk
e�1

j¼bm�1
pk
cþ1

c j

j!
e�c;

ð7Þ

where c = pqk2r2.

Attacker. The only difference between the legitimate

users and the attacker is that the legitimate users only

need to collect at least m - 1 key shares (and at most

n - 1 key shares), while the attacker needs to collect at

least m key shares (and at most n key shares). Thus the

probability that the attacker can successfully reconstruct

the key is:

Prðm� ikpk � nÞ ¼ Pr
m

pk
� ik�

n

pk

� �

¼
Xd
n

pk
e�1

j¼bm
pk
cþ1

Prðn ¼ jÞ ¼
Xd
n

pk
e�1

j¼bm
pk
cþ1

c j

j!
e�c;

ð8Þ

where c = pqk2r2.

The comparison of Eqs. 7 and 8 leads to an important

observation:

Definition 1 In the k-hop neighborhood, a legitimate user

has the advantage probability of
Pj¼bm

pk
c

j¼bm�1
pk
cþ1

c j

j! e�c �
Pj¼d n

pk
e�1

j¼dn�1
pk
e

c j

j! e�c for key reconstruction than an attacker,

where c = pqk2r2.

Following Definition 1, with fixed n and c, we can

control the amount of legitimate users’ advantage over the

attacker by choosing appropriate m values. Intuitively, the

longer the key length is, the more communication overhead

is required, and the harder the adversary can compromise

the system. Note that we can also incorporate additional

techniques such as authentication in [23] to our approach to

increase the difficulty that the attacker can obtain all m key

shares, which will as well increase the advantage of suc-

cessful key reconstruction of the legitimate users over the

attacker.

Then, we analyze how the advantage probability is

affected by the secret sharing scheme with respect to the

varying m, and fixed the other parameters. Let’s consider,
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Fig. 3 Robustness probability for 1-hop scenario with a m = 4, 6, 8, and 10, b m = 10, 15, 20, 25, and 30 in the secret sharing method, and for

2-hop scenario with c (10, 15) secret sharing scheme
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Xj¼b
m
pk
c

j¼bm�1
pk
cþ1

c j

j!
e�c �

Xj¼d n
pk
e�1

j¼dn�1
pk
e

c j

j!
e�c [ a; ð9Þ

wherea is a given threshold of the advantage probability. From

the sterling approximation j! �
ffiffiffiffiffiffiffi
2pj
p

ðjeÞ
j
, we can approximate

Eq. 9. Then, we further replace the j in ce
j and

ffiffiffiffiffiffiffi
2pj
p

by

bm�1
pk
c þ 1, which is the lower region of j. Thus, we can have,

Xj¼b
m
pk
c

j¼bm�1
pk
cþ1

c j

j!
�

Xj¼b
m
pk
c

j¼bm�1
pk
cþ1

ce

j

� �j

ð2pjÞ�
1
2

\
Xj¼b

m
pk
c

j¼bm�1
pk
cþ1

ce

bm�1
pk
c þ 1

 !j

2p
m� 1

pk

	 

þ 1

� �� ��1
2

:

ð10Þ

Then, we can rewrite Eq. 9 by inserting Eq. 10 as,

Xj¼b
m
pk
c

j¼bm�1
pk
cþ1

ce

bm�1
pk
c þ 1

 !j

2p
m� 1

pk

	 

þ 1

� �� ��1
2

[
Xj¼d n

pk
e�1

j¼dn�1
pk
e

c j

j!
þ a

e�c
:

ð11Þ

Let M ¼ ce
bm�1

pk
cþ1

, the constant C ¼
Pj¼d n

pk
e�1

j¼dn�1
pk
e

c j

j! þ a
e�c, and

replace it in Eq. 11. Then we have,

Xj¼b
m
pk
c

j¼bm�1
pk
cþ1

ðMÞj 2pce

M

� ��1
2

[ C: ð12Þ

If M = 1, we then have,

Xj¼b
m
pk
c

j¼bm�1
pk
cþ1

ðMÞj 2pce

M

� ��1
2

¼ ð2pceÞ�
1
2

m

pk

	 

� m� 1

pk

	 
� �
[ C;

ð13Þ

where bm�1
pk
c ¼ ce� 1. In this case, we can determine m

from the known parameters c, e, and pk. Thus, the

threshold of advantage probability a in C should follow

a\e�cð2pceÞ�
1
2ðbm

pk
c � bm�1

pk
cÞ � e�c

Pj¼d n
pk
e�1

j¼dn�1
pk
e

c j

j! . If M = 1,

we then have,

Xj¼b
m
pk
c

j¼bm�1
pk
cþ1

ðMÞj 2pce

M

� ��1
2

¼ ð2pceÞ�
1
2
M
ðbm

pk
cþ3

2
Þ �M

ðbm�1
pk
cþ3

2
Þ

M � 1
[ C:

ð14Þ

We note, from Eqs. 13 and 14, that the parameters c and

pk have already been determined by network topology,

whereas m and n are determined by secret sharing scheme.

Therefore, our framework allows us to make appropriate

selection and adjustment of (m, n) secret sharing scheme to

satisfy the a-advantage probability constraint. More

specifically, from Eq. 14, M
ðbm

pk
cþ3

2
Þ

in the numerator is

fixed. Thus, if the threshold of advantage probability a in

C increases, the value of m needs to decrease accordingly

when other parameters (c, e, pk, and n) are fixed.

Discussion. In Fig. 4(a) and (b), we measure the proba-

bility of successful key reconstruction of legitimate users and

the attacker for both (6, 40) and (10, 40) secret sharing

schemes. The value of c is set to 15. We observed an

increasing trend of successful key reconstruction probability

for both legitimate users and the attacker when pk increases.

However, the attacker always has worse chance to success-

fully reconstruct the key than the legitimate users.

We then vary the value of q, the node density per unit

area, and measure the probability of successful key

reconstruction of legitimate users and the attacker again.

The results in Fig. 4(c) and (d) indicate that larger q values

bring larger key reconstruction probability for both legiti-

mate users and the attacker. We also observe that larger q
values, the node density per unit area, bring larger key

reconstruction probability for both legitimate users and the

attacker, as there will be more nodes in the neighborhood

for key reconstruction with the increasing values of q. The

reason is similar to the discussion of increasing pk above.

Figure 4 provides insights about the probability of suc-

cessful key reconstruction of a legitimate user and an

attacker separately. We next present the advantage proba-

bility of a legitimate user in Table 1 by examining the

increasing values of pk and m while fixing the parameters

of q = 0.5, c = 15, and n = 40. We found that the

advantage probability sustains a high value above 0.84

when pk is less than 0.9. The advantage probability

decreases to 0.56 when pk increases to 0.9 with m = 11.

This is because when the percentage of nodes carrying key

shares pk increases, the attacker’s probability of obtaining

the key shares from neighborhood increases accordingly.

Based on these observations, we can control the security

guarantee of our framework by carefully choosing param-

eters in our scheme.

4 Key distribution schemes

Careless key distribution will result in key shares scattered

across the whole network and thus degrade the perfor-

mance of key reconstruction. Therefore, how the key

shares are distributed is of utmost importance. Based on

our theoretical analysis in Sect. 3, ideally the key shares

should be distributed to the nodes that move together in the
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network. In this section, we investigate three schemes to

decide which nodes should be assigned the key shares in

the TRAP protocol. The three key distribution schemes can

be classified into two types, the one that does not respect

the relationships between moving patterns of different

nodes (i.e., correlation-blind scheme), and the one that does

(i.e., correlation-aware schemes). For the first type, we

design a scheme named random selection, while for the

second type, we design two schemes, namely association-

probability-based, and association-rule-based. As it is

possible that there are less than n nodes in the 1-hop

neighborhood of the current node, these schemes aim at

choosing x B n nodes, where x is either the number of

available nodes in the current 1-hop neighborhood (when

there are less than n such nodes), or n, when there are

sufficient n nodes in the 1-hop neighborhood.

4.1 Correlation-blind scheme

We design the random selection scheme that picks x nodes

without considering the moving patterns of these nodes.

The idea is straightforward: the x nodes are randomly

picked from the 1-hop neighborhood, without taking the

moving patterns of these nodes into consideration. This is a

naive approach to distribute the key shares. It is obvious

that this scheme may be suffered from inefficient key

reconstruction, as the x nodes that hold key shares are

likely to move apart in the future and consequently the

collection of x key shares from these x nodes will be costly

in terms of communication overhead. Unfortunately, most

existing schemes [19, 23, 31] use this random-selection

strategy to do the key distribution.

4.2 Correlation-aware schemes

The key to improve the performance of key reconstruction

procedure is to distribute the key shares to the nodes that
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Fig. 4 a and b are the

probability of successful key

reconstruction versus

percentage of nodes in the k-hop

neighborhood that carry key

shares pk with a (6,40) scheme,

b (10,40) scheme; c and d are

probability of successful key

reconstruction versus node

density per unit area q with

c (6,40) scheme, d (10,40)

scheme

Table 1 Advantage probability of the corresponding m value with

q = 0.5, c = 15, n = 40, and various pk = 0.2*0.9

q pk m Advantage

probability

0.5 0.2 3 0.9483

0.5 0.3 4 0.8459

0.5 0.4 6 0.9483

0.5 0.5 7 0.8459

0.5 0.6 8 0.8459

0.5 0.7 10 0.9483

0.5 0.8 11 0.8459

0.5 0.9 11 0.5674
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are moving together, i.e., the nodes that have strong cor-

relations between their moving trajectories. To achieve this

goal, we design two schemes, namely association-prob-

ability-based, and association-rule-based, to determine the

x nodes for key distribution by considering the correlations

between their moving patterns. For these two schemes, we

use different mechanisms to measure the correlations/

associations between different moving trajectories.

4.2.1 Association-probability-based scheme

In this scheme, we measure the correlation/association

between different moving trajectories as probability. In

particular, given a current node c and a candidate node c0,
let T and T 0 be the trajectories of c and c0 within the time

window W, then the association probability Pra between c

and c0 is computed as Pra = C/|W|, where C is the number

of time points in W that c0 is in the 1-hop neighborhood of

c. We rank the probability Pra in descending order and pick

the top-x nodes in the sorted list as the key distributees.

4.2.2 Association-rule-based scheme

Association rule technique is a well-known machine

learning mechanism that can effectively discover hidden

associations in the collection of data. In general, an asso-

ciation rule is defined as an expression X) Y, where X and

Y are value set, with support s%. It indicates the fact that X

tends to be associated with Y, with the evidence that s% of

tuples contain both X and Y. We adapt it to our problem for

finding x nodes that have associated moving patterns. To be

more specific, we try to find the rule X) Y from D of the

highest support s%, where X = {c}, the current node that is

looking for candidates from its current 1-hop neighbor-

hood, and Y is a set of x nodes fc1; . . .; cxg, i.e. an x-node

set. The rule indicates the fact that node c is moving

together with nodes c1; . . .; cx. The support s% equals to the

number of time points at which both {c} and fc1; . . .; cxg
locate in the 1-hop neighborhood.

There has been active research on efficient association

rule mining algorithms. However, we cannot directly apply

these algorithms to our problem, as they return the asso-

ciation rules whose supports are no less than a given

threshold, while in our case, we look for the x-node asso-

ciation rule of the highest support, which is unknown

before mining. If we set the threshold as 0, it will result in

computing all possible
t
x

� �
(t: number of candidate

nodes) combinations of associations, which will be very

expensive. Therefore, our goal is to efficiently discover the

x-node association rule that is of the highest support from

the trajectory data. If there are multiple such rules, we pick

the one of the largest support, and choose the x nodes in the

Y side of the rule. The general principle of most of asso-

ciation rule mining algorithms for efficient mining is to

make use of the monotone property of the association rules,

which refers to the fact that any subset of a frequent itemset

(i.e., of large support) must be frequent [2]. Thus gener-

ating the candidate itemsets in each pass only needs to use

the frequent itemsets found in the previous pass. We utilize

this property and design the following algorithm. First,

given the current node c that is looking for candidates from

its current 1-hop neighborhood, for each candidate node c0,
we compute the support of 1-node association fcg ) fc0g;
and rank these supports in descending order. Following the

monotone property of association rules, the target x-node

association of the top-1 support must be chosen from the 1-

node associations of the top-x support (i.e., the support of

the top x-th item in the sorted item list). Therefore, we pick

the 1-node associations of the top-x support. If there are

exactly x such nodes, they are the x key distributee nodes

that we look for. Otherwise, out of the x0[ x nodes, we

compute the support for all possible x-node associations,

and output the one of the largest support.

Our algorithm only needs at most
x0

x

� �
passes to find x

key distributee nodes. Compared with checking all possible

t
x

� �
ðt [ x0Þ choices, where t is the set of all possible

candidate nodes, our algorithm is much more efficient. We

use an example to illustrate our algorithm. Consider a

collector node c0 whose neighborhood at various time

points is shown in Table 2a. Assume x = 3. We first cal-

culate the support of all 1-node association, with the result

shown in Table 2b. There are four nodes c1, c2, c3 and c5

that are of top-3 support 0.75. Then we calculate the sup-

port of
4

3

� �
¼ 4 possible 3-node sets. Table 2c shows that

out of these four candidates, {c1, c2, c5} and {c2, c3, c5}

both have the same highest support value. We pick one and

return it as the final result.

5 Simulation evaluation

In this section, we describe our simulation methodology

and present the results that evaluate the effectiveness of our

schemes.

5.1 Methodology

Data sets generation from city environment. We would like

to evaluate the feasibility of applying our approaches in

real world scenarios (e.g. traffic monitoring in VANETs)
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using mobile wireless networks. Thus, we conducted sim-

ulations based on mobile devices generated from a city

environment and its vicinity in Germany [7] as shown in

Fig. 5. The size of the area is 25,000 m 9 25,000 m. We

generated 1,000 nodes and placed them randomly inside

the city as a real-world network. To further simulate real-

world scenarios, during the simulation period some new

nodes may move into the city environment and some

existing nodes may move out the city environment. We

studied two different scenarios with respect to the traveling

speed of the node: walking speed (5 ft/s) and vehicular

traveling speed (50 ft/s) by randomly choosing multiple

subsets of nodes. The scenario using the regular walking

speed simulates data collection through mobile phones

carried by people, while the scenario with the vehicular

traveling speed intends to study the applications enabled by

the data collected through VANETs. There are no pre-

defined trajectories for each node. However, group of

nodes may travel together to common destinations (e.g.

shopping malls or museums in the city).

NS-2 simulation. In order to verify our analysis of

communication overhead incurred due to key distribution

and key reconstruction (Sect. 2.4), we conducted simula-

tion through the network simulator NS-2. The mobility

model is applied by using Reference Point Group Mobility

[17]. We used the IEEE 802.11 b with RTS/CTS with

packet size setting to 512 bytes. The average number of

packets for key distribution and reconstruction is measured

over 50 simulation runs. We examined both 1-hop and

2-hop scenarios. In the 1-hop scenario, we set the average

number of neighbors as 20, while in the 2-hop scenario the

average number of neighbors is set to 10.

We then evaluate the effectiveness of our key distribu-

tion schemes by controlling the multi-hop wireless net-

works using NS-2 network simulator. We simulated the

environment by applying our proposed TRAP protocol and

three key distribution schemes. We utilized two mobility

models: Reference Point Group Mobility (RPGM) model

[17] and time-variant community mobility model [18].

These two models represent different node stabilities when

traveling together in group or community-oriented

environments.

In Reference Point Group Mobility (RPGM) [17] model,

each node belongs to a group where every node moves

together with a group leader node that determines the group

mobility behavior. 10 groups of nodes are simulated in our

simulation with a total of 100 nodes. Individual nodes

within a group move slightly different, but their move-

ments are constrained within the group. The group mem-

bers are stable during the simulation time.

In addition to the RPGM model with a stable co-

movement pattern during the period of simulation time, we

also evaluate the effectiveness of our key distribution

schemes by using time-variant community mobility model

[18]. The co-movement pattern of this model is not as

stable as the RPGM model, because it utilizes a probabi-

listic approach to decide whether a node stay within the

community or move to the next community. We set 10

communities in the network with a total of 100 nodes. Each

node has its own community inside which it moves with

the other community members for the majority of time.

The users decide their destinations by using probabilities

too. The community members can change during the

simulation, and each node can have multiple communities

as well as different destinations.

Fig. 5 The simulation data sets are generated based on the city and

its vicinity in Germany

Table 2 Illustration of the Association-rule-based scheme

Time point Neighbor ID

(a) The neighborhood of c0

T1 c1, c3, c4

T2 c2, c3, c5

T3 c1, c2, c3, c5

T4 c1, c2, c5

Neighbor set Support

(b) The support of 1-node set

{c1} 0.75

{c2} 0.75

{c3} 0.75

{c4} 0.25

{c5} 0.75

(c) The support of 3-node set

{c1, c2, c3} 0.25

{c1, c2, c5} 0.5

{c2, c3, c5} 0.5

{c1, c3, c5} 0.25
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We studied two different scenarios: 1-hop and 2-hop

scenario. For the RPGM model, in the 1-hop scenario, the

average number of neighbors is 20, and there are enough

neighbors to distribute key shares. Whereas in the 2-hop

scenario, the average number of neighbors is 10, and

there are fewer neighbors for key distribution. For the

time-variant community mobility model, in the 1-hop

scenario, the average community size is 20, while in the

2-hop scenario, the average community size is 10. For the

community members, we set their average probability of

stay within one community as 0.92. Therefore, each node

is highly likely to travel together with its community. In

our simulation, we configured the transmission range of

each node as well as the community size in time-variant

community mobility model as 50 m, and the simulation

area as 500 by 500 m. Thus, the nodes within one

community are 1-hop neighbors. We applied the secret

sharing scheme with n = 15, m = 4, 6, 8, and 10,

respectively.

5.2 Metrics

We utilize the following metrics to evaluate the effec-

tiveness of our key distribution schemes using neighbor-

hood prediction:

Prediction accuracy. We measure the effectiveness of

the key distribution through neighborhood prediction. We

split our simulation study time into two periods: past and

future. The data in the past is used to perform prediction,

whereas the data in the future is used to validate the pre-

diction accuracy. For a given collector node, we define the

prediction accuracy as the percentage of the intersection of

the predicted devices that will travel together in the future

({Npredict}) and the devices that are indeed traveling toge-

ther in the future ðfNfuturegÞ :
jfNpredictg\fNfuturegj

jfNpredictgj . We will

evaluate the effectiveness of our key distribution schemes

by studying the statistical characteristics of the prediction

accuracy through calculating its Cumulative Distribution

Function (CDF) and averaged prediction error.

Time performance. By measuring the time that each

scheme needs to perform neighborhood prediction for

key distribution, we evaluate the efficiency across dif-

ferent schemes. This metric helps to benchmark our

schemes in the simulation environment and further

indicates the feasibility of implementing them in real

wireless devices.

Percentage of successful key reconstruction. We mea-

sure the percentage of successful key reconstruction to

evaluate the effectiveness of key distribution. The per-

centage of successful key reconstruction is defined as the
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Fig. 6 CDF of prediction

accuracy under different

traveling speed when n = 50

based on the data set generated

from city environment
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number of times that the keys can be re-constructed suc-

cessfully over the total number of simulation runs.

5.3 Results

5.3.1 Results of data sets generated from city environment

Cumulative distribution function (CDF) measurement:

1-hop Scenario. We are interested in studying what is the

probability of different key distribution schemes that can

perform neighborhood prediction with 100th, 75th, 50th,

and 25th percentile accuracy. Figure 7 presents the CDF of

prediction accuracy with respect to different m and n in the

secret sharing method under the walking speed. In Fig. 7,

n is set to 15 and 50 respectively and m is set to 10 and 20

respectively. In this simulation setup, n is the network size

and all the nodes are within the transmission range of the

collector node. We observed that Association-rule-based

scheme tops out the performance, whereas Random

Selection has the worst prediction performance. In general,

Correlation-aware schemes outperform the Correlation-

blind scheme. This is because the association-probability-

based scheme is a relatively coarse method that measures

the correlation between moving trajectories, while the

association-rule-based scheme is a more fine-grained

method that captures the co-movement patterns. Therefore,

the association-rule-based scheme outperforms the asso-

ciation-probability-based scheme.

Further, we found that under a fixed m, the larger the n is

the higher the prediction accuracy can be achieved. Because

under a larger n, there are more nodes that are holding key

shares travel together with the collector node, and thus the

probability of a successful key reconstruction is increased.

On the other hand, under a fixed n, the smaller the m is

the higher the prediction accuracy can be achieved.

Because under a smaller m, it requires fewer nodes that are

holding key shares travel together in order to achieve

successful key reconstruction.

Figure 6 presents the comparison of the Prediction

Accuracy CDFs under different traveling speed, walking

speed and vehicular speed, with different setups of the secret

sharing method, i.e.,(4, 50) and (10, 50). We observed the

similar performance trend as in Fig. 7: Correlation-aware

schemes outperform the Correlation-blind scheme. Further,

the performance of our key distribution schemes under the

vehicular speed is qualitatively the same as the performance

under the walking speed. This indicates that our approach

applies to devices of different traveling speeds.

Averaged prediction error: 1-hop scenario. Fig-

ure 8(a) and (b) present the percentage of the prediction error

versus different (m, n) setups in the secret sharing method

across our key distribution schemes under the walking speed.

We observed that Correlation-aware schemes incur smaller

prediction errors (less than 36%) and the Association-rule-

based scheme presents the smallest prediction errors in

all cases. Further, under a fixed n, the prediction error

increases with the increasing number of m. Overall,

the results of averaged prediction errors are inline with

the observations of prediction accuracy in Fig. 7. This is

encouraging as it indicates that our key distribution

schemes are highly effective in distributing the key

shares to those devices that are traveling together with

the collector node.

TRAP: 2-hop Scenario. We then present the results

when there are not enough devices within the transmission

range of the collector node and the key distribution will be

performed in the multi-hop range of the collector node.

Figure 9 presents the CDF of the prediction accuracy for a

(20, 50) secret sharing method in a 2-hop scenario. During

key reconstruction, there are not enough key shares within

the transmission range of the collector node that are trav-

eling together with it, e.g., m1 = 4 and 6 in this simulation.

The rest of the key shares will be collected through the

second hop of the collector node using TRAP. We found

that the key distribution schemes have better performance

when m1 = 10 as shown in Fig. 9(b) than those when
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Fig. 7 Cumulative Distribution Function(CDF) of prediction accuracy under the walking speed based on the data set generated from city

environment
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m1 = 4 (Fig. 9a). This is because when there are more key

shares can be found in the 1-hop range, there will be less

nodes carrying key shares need to be found in the 2-hop

range, and consequently the prediction accuracy increases.

Further, when there are more key shares need to be col-

lected in the 2-hop range, i.e., m1 = 4, the Association-

rule-based scheme can still reach the probability of 84% to

achieve the prediction accuracy of 80% or higher. Addi-

tionally, the results of the averaged prediction error shown

in Fig. 8(c) are consistent with our prediction accuracy.

Thus, these results provide strong evidence of the effec-

tiveness of TRAP.

Time performance. We study the time efficiency of our

key distribution schemes. Table 3 presents the time mea-

surements of our schemes when using various setups of

m and n in the secret sharing method. We observed that the

time to perform key distribution through neighborhood

prediction is in the order of milliseconds for all the schemes

by using a DELL desktop with Intel Core2 Q6600 2.4 GHz

processor. Further, we found that the schemes, e.g., Associ-

ation-rule-based scheme, which provide higher prediction

accuracy run slower. Thus, there exists a tradeoff between

the prediction accuracy and the computation time. Our

results will provide a guidance for choosing different

schemes based on application needs in practice.

5.3.2 Results of NS-2 simulator

Communication overhead of TRAP protocol. Figure 10

presents the comparison of communication overhead in

terms of number of packets between the analytical and

simulated results of the whole network. We found that the

average transmitted packets of each node in the network

incurred by our protocol are small, and all less than 8

packets in average. We also found that our analytical and

simulated results are quantitatively the same. The small

difference is caused by the varying number of neighbors

due to the mobile environments in our simulation, while in

our theoretical analysis the number of neighbors is fixed.

Effectiveness of key distribution schemes. Finally, we

evaluate the effectiveness on the key distribution schemes

in terms of the successful key reconstruction by using the

NS-2 simulator with RPGM mobility model and time-

variant community mobility model. Figure 11 measures the

percentage of successful key reconstruction over different

m values in the (m, n) secret sharing scheme by using

RPGM mobility model. We observed that we can obtain

high key reconstruction ratio over 0.85 in both 1-hop

(average number of neighbors are 20) and 2-hop (average

number of neighbors are 10) scenarios for our proposed

Association-rule-based and Association-probability-based

methods. We note that in the 2-hop scenario, our frame-

work requests information from 2-hop neighbors to dis-

tribute key shares and reconstruct keys. Our methods

obviously outperform the Random Selection method. More

specifically, we found that both Association-rule-based and

Association-probability-based scheme can obtain similarly

high percentage of successful key reconstruction. This is

consistent with the trend we found from our results of the

prediction accuracy in Sect. 5.3, which is obtained based

on the generated data sets from a city environment.

Figure 12 presents the result by using the time-variant

community mobility model [18]. For the 1-hop scenario,

the average community size is 20, while for the 2-hop

scenario, the average community size is 10. We observed

that the ratio of successful key reconstruction is high; it is

over 0.85 in both 1-hop and 2-hop scenarios for our pro-

posed association-rule-based and association-probability-

based methods. The performance is comparatively similar

to the results by using the RPGM mobility model. We also

observed that the RPGM mobility model slightly outper-

forms the time-variant community mobility model. This is

because the co-moving pattern is more stable in the RPGM

model than the time-variant community mobility model

since in the time-variant community mobility model, each

node uses a probability to decide whether it stays within the

current community or moves to another one. In our simulation,

we set the average probability to be 0.92. Therefore, each node
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Fig. 8 Averaged prediction error using TRAP under the walking speed based on the data set generated from city environment
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has high probability to stay with its community. Consequently

there exist co-moving patterns among nodes and thus it

achieves high ratio of successful key reconstruction.

6 Related work

Key management is a key component of encryption-based

access control system. Recent work has focused on

eliminating the need of centralized authentication man-

agement in wireless networks. In particular, to address

mobility, [4, 37] make use of privileged side channels

when mobile users are in the vicinity of each other. The

secure side channel is used to set up security associations

between nodes by exchanging cryptographic materials.

However, the availability of the privileged side channels is

not guaranteed.

On the other hand, the secret sharing method has been

actively studied in the field of cryptography [8–12, 15, 32,

35, 39]. The advantage of using the secret sharing method

is that the possibility of a single point of failure is signif-

icantly reduced [15]. Canetti et al. [8, 9, 32] develop

threshold secret sharing to solve the certification service

distribution and periodical proactive updates in theory.

Frankel et al. [11] and Stanis et al. [35] propose the concept

of proactive secret sharing by renewing the key shares

periodically. Frankel et al. [10] employs verifiable secret

sharing to avoid invalid shares provided by any shareholder.

Further, [21, 24, 25, 31, 40] propose to apply secret

sharing in mobile environment that allows the group
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Fig. 10 Communication overhead comparison between analytical

and simulated results with (6, 15) scheme in the whole network.

Average number of neighbors are 20 in the 1-hop scenario, and

average number of neighbors are 10 in the 2-hop scenario based on

RPGM mobility model
Table 3 Time performance (in millisecond) across different key

distribution schemes

Scheme setting (4, 15) (6, 15) (10, 15)

Random selection 10.2 10.48 11.06

Association-probability-based 27.8 31.4 44.6

Association-rule-based 29.2 33.0 46.2

Scheme setting (4, 50) (6, 50) (10, 50)

Random selection 13.6 14.08 14.6

Association-probability-based 42.2 41.4 48.6

Association-rule-based 44.3 45.8 49.7
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Fig. 9 CDF of prediction accuracy under different traveling speed

when n = 50 based on the data set generated from city environment
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members to change. Zhou et al. [40] is the first work to

propose proactive secret sharing for asynchronous system.

It design optimal protocols relying upon asynchronous

Byzantine agreement. Matsunaka et al. [25] proposes a

lightweight approach for mobile data protection to achieve

an efficient data reading process. Matsunaka et al. [24]

introduces an approach to share the group’s private key

among the group members and the network server, and

share a data encryption key securely among the members.

Schultz et al. [31] provides a more efficient and secure

protocol for asynchronous system when the group of nodes

holding the shares of secret can change. Furthermore, the

secret sharing scheme has been applied to cloud computing

to ensure a secure environment for cloud services [21].

Compared with these papers, our work proposed novel

approaches to find key share distributees in mobile envi-

ronments by utilizing the transitive co-movement property

to enable effective and efficient key management for

mobile wireless networks.

Moreover, the secret sharing method has been applied in

mobile ad hoc networks [19, 23, 39]. Zhou and Haas [39]

proposes a distributed public-key management scheme

based on threshold secret sharing in which the certificate

authority (CA) services are divided into a certain number

of specialized servers. The drawback is that it assumes

some nodes must behave as servers. When moving towards

fully distributed infrastructure, a decentralized authentica-

tion protocol is developed to distribute the authentication

of a CA by utilizing secret sharing [23]. However, it does

not consider the mobility of nodes, and thus making it

inapplicable to mobile environments.

The work that is most closely related to ours is [19]. By

taking into the consideration of mobility, [19] introduces a

redundancy-based key distribution scheme in secret sharing

to achieve a decentralized CA. Basically, more than one

key share are distributed to each node in order to increase

the probability of successful key reconstruction in mobile

networks. However, the security level of the system can be

degraded due to having multiple redundant key shares on

nodes. Our work is novel in that our proposed decentralized

key management framework employing secret sharing

maintains the security guarantee of the data access through

neighborhood prediction and distributes key shares only to

those nodes that travel together.
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Fig. 12 Percentage of successful key reconstruction versus different

settings of m in (n, m) using time-variant community mobility model

m=4 m=6 m=8 m=10
0

0.2

0.4

0.6

0.8

1

P
er

ce
n

ta
g

e 
o

f 
su

cc
es

sf
u

l 
ke

y 
re

co
n

st
ru

ct
io

n

Association−rule−based
Association−probability−based
Random Selection

(a)

m=4 m=6 m=8 m=10
0

0.2

0.4

0.6

0.8

1

P
er

ce
n

ta
g

e 
o

f 
su

cc
es

sf
u

l
ke

y 
re

co
n

st
ru

ct
io

n

Association−rule−based
Association−probability−based
Random Selection

(b)

Fig. 11 Percentage of successful key reconstruction versus different

settings of m in (n, m) using RPGM mobility model
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7 Conclusion

In this work, we proposed a fully decentralized key man-

agement framework to facilitate secure data access in

mobile wireless networks, where cryptographic keys are

split into multiple shares and distributed to multiple nodes

in the network. The data is cached in the collecting mobile

devices within the network to reduce the high communi-

cation overhead and excessive energy consumption among

wireless devices if continuously forwarding the data to

centralized storage nodes. To support mobile devices, we

developed the Transitive Prediction (TRAP) protocol that

distributes the key shares to the devices that are moving

together through neighborhood prediction for effective key

reconstruction in mobile environments. We discussed the

communication overhead incurred by our proposed TRAP

protocol through theoretical analysis and simulation.

In addition, as a part of TRAP, we designed three key

distribution schemes to choose the distributee nodes that

have co-moving patterns by analyzing the correlation

relationship embedded in the trajectories of co-moving

devices. We further derived the theoretical analysis of the

robustness and security of our approach. Our simulation

results based on data sets generated from a simulated

mobile wireless network in city environment and the NS-2

simulator demonstrated that our key distribution schemes

are highly effective for key reconstruction. Both of our

theoretical analysis and simulation results provide strong

evidence of the feasibility and effectiveness of applying the

decentralized key management framework to achieve

resilient data confidentiality in distributed mobile

environments.
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