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ABSTRACT
User authentication is the critical first step to detect identity-
based attacks and prevent subsequent malicious attacks. How-
ever, the increasingly dynamic mobile environments make
it harder to always apply the cryptographic-based methods
for user authentication due to their infrastructural and key
management overhead. Exploiting non-cryptographic based
techniques grounded on physical layer properties to perform
user authentication appears promising. In this work, we ex-
plore to use channel state information (CSI), which is avail-
able from off-the-shelf WiFi devices, to conduct fine-grained
user authentication. We propose an user-authentication frame-
work that has the capability to build the user profile re-
silient to the presence of the spoofer. Our machine learn-
ing based user-authentication techniques can distinguish two
users even when they possess similar signal fingerprints and
detect the existence of the spoofer. Our experiments in
both office building and apartment environments show that
our framework can filter out the signal outliers and achieve
higher authentication accuracy compared with existing ap-
proaches using received signal strength (RSS).

Categories and Subject Descriptors
C.2 [COMPUTER-COMMUNICATION NETWORKS]:
General—Security and protection

General Terms
Design, Experimentation, Measurement, Performance

http://dx.doi.org/10.1145/2590296.2590321.

Keywords
Channel state information, user authentication, wireless net-
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1. INTRODUCTION
The rapid advancement of wireless technologies are mak-

ing the wireless networks ubiquitous and people can access
network services at anytime and anywhere. However, se-
curing wireless networks is challenging due to the shared
nature of wireless medium as adversaries can eavesdrop or
intercept any wireless transmission [16]. For example, an
adversary can passively monitor wireless networks to obtain
valid device identities and further launch identity-based at-
tacks, which serves as a basis for launching a variety of mali-
cious attacks across multiple network layers [6]. Indeed, such
identity-based attacks are easy to launch in WiFi networks,
where the Access Points (AP) can be spoofed, resulting in
Denial of Service (i.e., rogue AP attack) [30]. Although ex-
isting cryptographic based authentication techniques (such
as WiFi Protected Access and 802.11i) can protect data
frames, an attacker can still spoof the 802.11 management
frames [22]. In addition, the increasingly dynamic mobile
environments make it harder to utilize cryptographic-based
authentication, due to its infrastructural and key manage-
ment overhead [2, 5, 7].

Recently authentication based on non-cryptographic meth-
ods are proposed to compliment and enhance the existing
cryptography based schemes [6, 9, 3]. For example, the chan-
nel based authentication schemes use the Received Signal
Strength (RSS) of wireless packets or the Channel Impulse
Response (CIR) of a single frequency to generate fingerprints
of the wireless channel to perform user authentication [6,
21]. The rational behind these schemes is that both RSS
and CIR present unique spatial properties due to path loss
and multi-path effects. An adversary, resided at a different
location from the legitimate user, will incur different RSS or
CIR profiles. However, the RSS and CIR extracted from a
single frequency only provide coarse-grained information of
the wireless channel and thus the effectiveness of user au-
thentication is largely limited. For example, the RSS-based
authentication can hardly distinguish two users with similar
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signal signatures even though they may be located far away
from each other [6].

In this paper, we exploit the fine-grained physical layer in-
formation made available from orthogonal frequency-division
multiplexing (OFDM) to perform user authentication. The
channel response from multiple subcarriers of OFDM pro-
vides detailed Channel Sate Information (CSI) [10], which
could become an ideal candidate for achieving accurate user
authentication. Specifically, we show that CSI can be uti-
lized to accurately authenticate users with similar signal fin-
gerprints and discriminate the legitimate user from a spoof-
ing attacker. The detailed channel information has the power
to enable user authentication at per packet level, making it
a promising utility to achieve user authentication at a much
higher granularity (in both spatial and temporal domains)
than existing channel-based (i.e., RSS and CIR) approaches.
In this work, we conduct user authentication by associating
each individual user with his own wireless device, which is
not accessible by other users. Each wireless device repre-
sents a distinct user in the network. Thus user authenti-
cation could be performed by examining the channel state
information of the associated wireless device.

CSITE [14] applies a sliding-window based technique to
CSI measurements to build the user profile for authenti-
cation purpose. They assume the CSI collection is benign
(without the presence of an identity-based attacker) when
building the user profile. However, in practice the iden-
tity based attacker could be present at any time. Thus,
the CSI measurements could be a mixture of readings from
both the legitimate user and the spoofer, leading to a mis-
classification of the user profile and falsely authenticate the
spoofer. To tackle such challenges raised from real-world sce-
narios, we study how to construct the user profile even when
a spoofer is present and perform robust user authentication
under various adversarial scenarios, e.g., when the legitimate
user is not present but the spoofer is active. In particu-
lar, we propose a framework consisting of two main compo-
nents: Attack-resilient Profile Builder and Profile Matching
Authenticator. The Attack-resilient Profile Builder has the
capability to accurately construct the user profile of the le-
gitimate user even when the spoofing attacker is present. We
further develop a Profile Matching Authenticator grounded
on machine-learning based techniques to perform robust per-
packet user authentication in real-time based on CSI mea-
surements. In addition, we are among the first to study the
effect of different modulation and coding scheme rates to
CSI to achieve accurate user authentication.

We summarize the main contributions of our work as fol-
lows:

• We show that it is feasible to perform user authen-
tication by utilizing CSI from OFDM even when the
users possess similar signal fingerprints, making the
fine-grained user authentication achievable in practice.

• We develop an user authentication framework that has
the capability to build the user profile under the pres-
ence of the spoofing attack and achieves higher au-
thentication accuracy compared with existing channel
based (e.g., RSS-based) methods.

• We validate the framework by conducting real exper-
iments in both office and apartment environments us-
ing off-the-shelf WiFi devices. Experimental results
confirm that our framework is highly robust and ef-
fective in user authentication under various attacking

scenarios without requiring any additional overhead on
wireless devices.

The rest of the paper is organized as follows. In Section 2,
we put our work in the context of the related studies. The
attack model and our framework overview are described in
Section 3, and the feasibility of using CSI to perform user
authentication is presented in Section 4. In Section 5, we
detail the proposed Attack-resilient Profile Builder based
on clustering analysis. The Profile Matching Authentica-
tor grounded on machine learning techniques is described in
Section 6. We discuss the experimental setup and methodol-
ogy, and further present the performance evaluation results
of our proposed CSI-based authentication framework in both
office and apartment environments in Section 7. Finally, we
conclude our work in Section 8.

2. RELATED WORK
The traditional approach to provide user authentication

is to use cryptographic-based authentication. For exam-
ple, Wu et al. [28] have introduced a secure and efficient
key management (SEKM) framework. SEKM builds a Pub-
lic Key Infrastructure (PKI) by applying a secret sharing
scheme and an underlying multicast server group. Wool [27]
implements a key management mechanism with periodic key
refresh and host revocation to prevent the compromise of au-
thentication keys. The application of cryptographic authen-
tication requires reliable key distribution, management, and
maintenance mechanisms, which reduce its usability in a dy-
namic mobile wireless environment (i.e., lacks of a fixed key
management infrastructure) or resource-constrained wireless
networks (i.e., limited resources on wireless devices).

Recently non-cryptographic based authentication has dra-
wn considerable attention [31]. In general, non-cryptographic
solutions can be categorized into four groups: software based,
hardware based, biometric and physical-trait based, and cha-
nnel-signature based. Software based authentication basi-
cally relies on the unique characteristics of the software pro-
grams or protocols running on the devices [25, 9], whereas
hardware based authentication leverages the unique hard-
ware traits such as channel-invariant radiometric [3, 23] and
clock skews [18, 13] to identify users. Biometric and physical-
trait based authentication relies on the behavioral modalities
including on-screen touch and finger movement patterns [8,
20]. And channel-signature based authentication schemes
are proposed to use either Received Signal Strength (RSS)
[29, 6, 30, 32, 15] or Channel Impulse Response (CIR) [26,
21] to identify users. The major advantage of using channel
signatures is that it exploits the naturally available random
and location-distinct characteristics of the wireless channel,
which is very hard to falsify, for user authentication.

For the channel based user authentication using RSS, a
series of approaches [29, 6, 30] have been proposed to detect
identity-based attacks, determine the number of attackers
when multiple adversaries masquerading as the same node
identity, and localize the adversaries. Reciprocal Channel
Variation-based Identification (RCVI) [32] exploits the reci-
procity of RSS variance to decide if all packets come from
a single or more than one sender. Ensemble [15] leverages
a user’s growing collection of trusted devices that analyze
variations in RSS to determine whether the pairing devices
are in physical proximity to each other. It is important to
note that although RSS is available on the current wireless
devices, RSS is known to be sensitive to the multipath ef-
fects and affected by the transmission power level. As a
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result, a legitimate user may be mistakenly regarded as the
malicious user due to the inherent RSS variance. Different
from RSS which is readily available in the existing wireless
infrastructure, CIR is usually extracted from the specialized
devices such as Field-Programmable Gate Array (FPGA)
[26] and Universal Software Radio Peripheral (USRP) [21],
which limit its practical usage in real-world scenarios.

Different from the previous work, we propose to use Chan-
nel State Information (CSI), a readily available fine-grained
channel information from the current commercial hardware
(i.e., 802.11 a/g/n devices), which represents both amplitude
and phrase for each subcarrier on the 802.11 a/g/n OFDM
system. Exploiting CSI has the potential to achieve much
higher granularity (in both spatial and temporal) for user au-
thentication than applying existing channel based (i.e., RSS
and CIR) authentication methods. The most related work
to us is CSITE [14], which utilizes CSI magnitude measure-
ments averaged over time to generate profiles for legitimate
users. They assume the CSI collected over time is benign
and there is no identity-based spoofing attack present when
building the profile. However, in practice the spoofing at-
tack could present at any time. Thus, the profiles built un-
der such attacks cannot represent legitimate users and may
lead to authenticate malicious users falsely. In our work,
we develop an Attack-resilient Profile Builder, which has
the ability to detect the presence of spoofing attacks when
building profiles for legitimate users. Furthermore, we study
the effect of different modulation and coding scheme rates
to CSI to achieve a higher accuracy of user authentication
under both single antenna and multiple antenna cases.

3. ATTACK MODEL AND SYSTEM
OVERVIEW

In this section we first introduce the attack model we con-
sider in this work. We then present the flow of our proposed
CSI-based user-authentication framework.

3.1 Attack Model
User authentication is a technique of confirming the iden-

tity of a user. Based on the user authentication result, a
system can determine whether a user is allowed to access
certain restricted services, such as restricted access of cer-
tain web sites and enterprise data retrieval [24]. User au-
thentication is particularly challenging in wireless networks
as it is very hard, if not impossible, to physically confirm
the truth of a user’s identity due to the open nature of the
wireless medium. In our user-authentication framework, we
focus on the identity-based attack, in which an adversary
can collect a legitimate user’s identity and then masquer-
ades as the legitimate user to pass the user authentication
process [6]. The identity-based attack is very harmful as
once passing the user authentication, the adversary can gain
certain access privileges and further launch a variety of mali-
cious attacks. For example, an adversary could easily obtain
the Media Access Control (MAC) address of a legitimate
WiFi device by passively monitoring the wireless traffic and
then impersonate as the legitimate device by changing its
MAC address. Another example is that by masquerading as
an authorized wireless access point (AP) or an authorized
client, an attacker could launch a variety of attacks including
session hijacking, denial-of-service (DoS) attacks, or falsely
advertise services to wireless clients [30].

In this work, we consider the identity-based attack can
be present at any time. That is, different from the pre-

vious work, which only considers the presence of such an
attack during the authentication phase, we take the view
point that the identity-based attacks could be present at
any time in real-world scenarios even when building pro-
files for legitimate users. Once such an attack is present in
the network, the adversary spoofs the legitimate user’s de-
vice identity (e.g., WiFi device’s MAC address) to send out
packets. Once the attacker obtains the legitimate user’s de-
vice identity, it can access the network with or without the
presence of the legitimate user. Furthermore, the spoofer
can be either static or mobile, whereas the legitimate device
is mostly placed at a fixed position but could be moved from
one location to another (e.g., the user walks from one office
room to a meeting room). The movement of the device can
be detected using the existing techniques [19, 17, 4] (e.g.,
examining the variance of the wireless signal). In addition,
we assume the attacker does not have the capability to cap-
ture and replay the CSI, thus the attacker cannot alter or
jam the signals.

3.2 System Overview
Our basic idea is to profile the user by exploiting the

readily available fine-grained CSI extracted from orthogonal
frequency-division multiplexing (OFDM) based wireless net-
works, such as 802.11 a/g/n networks. CSI reveals the wire-
less channel response depicting the amplitudes and phases
of every OFDM subcarrier. In general, CSI measurements
from each user present a unique pattern corresponding to
the wireless communication channel. Such CSI patterns can
be extracted and utilized to uniquely identify each user. If
the observed wireless packet (from a wireless device identity)
contains a different CSI pattern from the legitimate profile,
the network will raise an alert indicating possible identity-
based attack and fails the user authentication on the specific
device identity.

Our proposed user authentication framework, as depicted
in Figure 1, consists of two main components: Attack-resilient
Profile Builder and Profile Matching Authenticator. The
network implementing this framework will keep monitoring
the wireless traffic and examining CSI measurements from
each packet based on the device’s identity.

Attack-Resilient Profile Builder: The novelty of our
profile builder is that it has the capability to build the actual
user profile under the presence of the spoofer when building
the user profile. When building the user profile for a spe-
cific user identity (ID), the presence of the spoofer will cause
the CSI measurements collected from this ID containing the
mixture signal information from both the legitimate user and
spoofer. As a result, the profile built under such a scenario
is thus undermined by the spoofer, leading to mistakenly au-
thenticate the spoofer or deny the legitimate user’s access.
Our profile builder employing clustering analysis can sepa-
rate the CSI measurements (from the legitimate user) from
the ones (from the spoofer) and determine the presence of
the spoofer. It can thus ensure the legitimacy of the user
profile construction.

Furthermore, when the legitimate user moves from current
location to another, e.g., from office to a meeting room, our
framework can adaptively rebuild the user’s profile. This
rebuilding procedure can be user triggered or triggered af-
ter detecting the user movement based on existing tech-
niques [19, 17, 4].

Profile Matching Authenticator: This component ex-
amines the real-time CSI measurements per packet from
a device ID and performs user authentication by perform-
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Figure 1: Overview of the CSI-based user authenti-
cation framework.

ing user profile matching. It is grounded on the machine-
learning based techniques and raises an alert if the pro-
file matching fails. Our authenticator aims to achieve fine-
grained user authentication as it can work at per packet
level - authenticating each packet of the device ID. It is ca-
pable to authenticate different users even when they possess
similar signal fingerprints due to the complex environment
setup in real-life. The authenticator works well under both
single antenna as well as multiple-antennas cases (using data
fusion).

4. FEASIBILITY STUDY OF CSI-BASED
USER AUTHENTICATION

In this section, we first provide the background of CSI
measured from OFDM subcarriers. We then discuss the
feasibility of using CSI for user authentication. We next
present our data pre-processing techniques applied to CSI
measurements for more reliable user authentication.

4.1 Preliminary
Our authentication framework exploits the CSI measured

from OFDM subcarriers, a reliable and fine-grained descrip-
tion of channel characteristics, for user authentication. OFDM
technique has been extensively used in wireless communica-
tion systems to improve the communication performance by
utilizing the frequency diversity of wireless channels. For
example, OFDM is used in popular wireless networks in-
cluding IEEE 802.11a/g/n, WiMAX, 4G and Digital Sub-
scriber Line (DSL). OFDM is a method of encoding data
streams on multiple carrier frequencies. In particular, Data
in OFDM is split into multiple streams, which are coded
and modulated respectively into different subcarriers. The
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Figure 2: Example for channel state information of
OFDM that is collected at three different positions.

frequency of each subcarrier is designed to be orthogonal to
each other, so that the interference during transmission is
minimized. For example, for the OFDM employed by the
802.11a/g/n physical layer, a relatively wideband channel
(or carrier) with 20 or 40 MHz is partitioned into 54 or 108
subcarriers for data transmission, so that each subcarrier
can be used as a narrowband channel. This inspires us to
exploit the channel state information (CSI) extracted from
OFDM subcarriers for user authentication, which can pro-
vide a finer granularity of the channel information and has
the potential to achieve higher accuracy for user authentica-
tion in practice. Figure 2 depicts the amplitude of channel
state information across 30 subcarrier groups at three differ-
ent positions. For each position, the CSI of 50 packets are
measured from an Intel WiFi 5300 card in a laptop [11].

4.2 Feasibility study
To be able to use CSI for user authentication, the mea-

sured CSI from different devices should satisfy the unique-
ness requirement. That is, the CSI measured at different de-
vices resided at different locations should be distinct, while
the CSI collected from different packets emitted by the same
device should be similar, if not identical. We observe in
Figure 2 that the amplitude of CSI at different subcarri-
ers is different due to frequency diversity. Furthermore, the
CSI shape from these three devices at different locations are
distinct. This is because the CSI is the reflection of the
complicated wireless channel and is affected by the wireless
environment due to reflection, refraction, shadowing, etc.
The CSI decorrelates with location rapidly. If two users are
located at different locations, the profile of CSI should dif-
fer significantly. Additionally, we observe that the CSI of
multiple packets from the same device at a fixed location
exhibit the same trend, which indicates that an unique pro-
file could be built for each user and serves as the basis for
user authentication.

Note that compared to the RSS, which only provides over-
all received power for each packet, CSI provides fine-grained
channel information, i.e., channel responses on multiple sub-
carriers. Therefore, instead of deploying multiple landmarks
or monitors to collect multi-dimensional RSS reading for
user authentication purpose, a single monitor can provide

392



multi-dimensional channel state information sufficient for
user authentication. Furthermore, since the widely adopted
IEEE 802.11n standard[1] already defines a mechanism to
exchange detailed CSI between a pair of wireless devices,
employing CSI as an unique means for user authentication
will not involve extra communication cost for the prevalent
WiFi networks.

Data Preprocessing: In our study, we observe that the
mean amplitude value of CSI measurement may shift over
time. We call such a mean value shift as temporal bias, and
it will result in inaccurate CSI profile construction for user
authentication. Therefore, our framework develops a data
preprocessing strategy to cope with CSI samples to mitigate
the effects caused by such temporal bias.

In particular, we observe a shift on the amplitude of a
specific subcarrier due to the interference presented at ei-
ther transmitter or receiver. Figure 3 (a) plots the curve of
the CSI sample in a packet and many curves are collected
over time. It shows that the amplitude of each subcarrier
in CSI samples varies over time. Our data preprocessing
strategy adjusts the mean value of the CSI sample (from
a specific packet) to zero. This helps to reduce the overall
variance across the subcarriers on CSI measurements before
performing user authentication. To illustrate, we denote the
raw CSI sample per packet from a particular user u as a k-
dimensional vector Cu, and the preprocessed CSI sample can
be obtained as:

Cu = Cu − 11×K
1

K

K∑
k=1

Cu(k), (1)

where K is the number of subcarriers within a single CSI
sample, and 11×K is a K-length all-one vector. After apply-
ing the data preprocessing strategy, the updated CSI sam-
ples will have smaller variance and reduced amplitude bias
on each subcarrier as shown in Figure 3(b). In addition, the
wireless devices in the 802.11n network are usually equipped
with multiple-antennas. Thus, the CSI samples collected
from each channel between the transmitting antenna i and
receiving antenna j of two communicating devices will go
through the pre-process as shown in equation 1, where Cu

will be replaced by Ci,j
u .

5. ATTACK-RESILIENT USER PROFILE
BUILDER

In this section, we describe the attack-resilient profile buil-
der which employs clustering analysis on CSI measurements
to determine whether the network environment is benign or
the spoofer is present when constructing the user profile.

5.1 Basic Idea
Since the spoofing attack could be present at any time, we

need to determine whether a spoofer is present when con-
structing a user profile. Our attack-resilient profile builder
aims to ensure the legitimacy of the user profiles even un-
der a malicious wireless environment. The relational behind
our attack-resilient profile builder is that the CSI measure-
ments of each device presents unique spatial characteristics:
the CSI has strong spatial correlation with the device’s loca-
tion. Although the wireless channel may fluctuate over time,
the CSI of wireless packets from one device at a fixed loca-
tion should be clustered together in the multi-dimensional
signal space constructed by CSI measurements. For exam-
ple, the 30 subcarriers obtained in our experiments can form
a 30-dimensional CSI space, and the amplitudes of the CSI
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Figure 3: CSI samples before and after data pro-
cessing.

from the 50 packets in Position 1 are clustered together (i.e.,
has a constant shape) in CSI space as shown in Figure 2.
Furthermore, the CSI measurements of the wireless packets
collected from another device resided at a different location
(Position 2) should form a different cluster in the CSI space.
Thus, when the environment is benign, the CSI measure-
ments from a particular device identity should be clustered
together and form one cluster in the CSI space, while un-
der the spoofing attack, the spoofer utilizes the same device
identity as the legitimate user to transmit packets, and the
CSI readings of the device identity are the mixture readings
from both legitimate user and the spoofer, resulting in more
than one CSI cluster.

To determine whether the network environment is benign,
Our framework applies clustering analysis to partition the
CSI from one device identity into two clusters. Under nor-
mal conditions without spoofing, the distance between the
partitioned two CSI clusters should be small since there is
basically only one cluster from a single device at a physical
location. However, under a spoofing attack, there is more
than one devices at different physical locations claiming the
same device identity. As a result, more than one CSI clus-
ters will be formed in the CSI space. Therefore, the distance
between two partitioned clusters will be large as the cluster
centers are derived from the different CSI clusters associated
with different locations in physical space. Therefore, by ex-
amining the distance between the two partitioned CSI clus-
ters, any presence of the spoofing attack can be determined
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Figure 4: Work Flow for the Attack-Resilient Profile
Builder.

when building user profiles. The flow of the Attack-resilient
Profile Builder is shown in Figure 4. Only when there is
no spoofing attack present, the profile of the legitimate user
will be built.

5.2 Algorithm Description

5.2.1 Modulation and Coding Scheme Study
WiFi devices usually use a fixed range of modulation and

coding scheme (MCS) for data transmission. We find in our
experiments that the modulation and coding scheme occa-
sionally changes to a different one and then switches back
due to the variation of the wireless channel. And the oc-
casionally changed modulation and coding scheme creates
outliers in the CSI measurements. Thus, our framework first
performs outlier filtering based on the modulation and cod-
ing scheme used for packet transmission before conducting
clustering analysis. In particular, MCS is a specification of
the high-throughput (HT) physical layer (PHY) parameter
in 802.11n standard [1]. It contains the information of the
modulation order (e.g., BPSK, QPSK, 16-QAM, 64-QAM),
the forward error correction (FEC) coding rate, etc. Each
802.11n packet header (at 2.4GHz band) contains a 16-bit
MCS, which can be extracted together with the CSI sample
of each packet.

Figure 5(a) shows the raw CSI measurements for a wireless
device with two clusters formed in our experiments. Under
such cases, the MCS rate is changing according to the chan-
nel condition, and we can observe CSI samples resulting from
different MCS rates. For these cases we find the MCS values
are greater than 263, different from most of the other testing
cases in both the lab and apartment environments. We thus
filter out CSI for the packets with MCS value greater than
263, which corresponds to single spatial stream with trans-
mission rate 60Mbps [1]. After filtering out the outliers, the
CSI coming from the rest of the packets exhibit the similar
shape (i.e., form one cluster in the CSI space) as shown in
Figure 5(b).

5.2.2 Clustering Analysis
We utilize the K-means algorithm to partition the filtered

CSI measurements from the device identity u into two clus-
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Figure 5: CSI samples before and after filtering
based on MCS rate.

ters. The K-means algorithm is one of the most popular
iterative descent clustering methods [12]. The squared Eu-
clidean distance is chosen as the dissimilarity measure. If
there are S CSI samples from the device u, the K-means
clustering algorithm partitions S CSI samples into K disjoint
subsets Lk containing Sk sample points so as to minimize
the sum-of-squares criterion:

Jmin =
K∑

k=1

∑
Cu,s∈Lk

‖Cu,s − μk‖2, (2)

where Cu,s is a CSI vector representing the CSI value for
the sth packet and μk is the geometric centroid of the sam-
ple points for Lk in CSI space. In our cluster analysis, we
choose K = 2. We further choose the distance between two
centroids as the test statistic T for identity-based attack
detection,

Dc = ||μk − μk′ || (3)

with k, k′ ∈ {1, 2}.
Under normal conditions in a benign network environ-

ment, the distance between the centroids from the K-means
cluster analysis in CSI space should be close to each other,
because there is only one cluster from a single device u at a
physical location. However, when a spoofer is present, there
is more than one devices residing at different physical lo-
cations, claiming the same device identity. The distance
between two partitioned CSI clusters thus will be large.
Through the analysis above, we show that the clustering
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thenticator.

method has the capability of detecting the presence of the
spoofer by applying the threshold τ to the Dc as following:{

Dc > τ attacker is present;
Dc ≤ τ normal condition.

(4)

5.2.3 User Profile Building
If the CSI samples are collected in a benign environment,

the framework deposits the pre-processed CSI samples, Cu,
as the profile for user u for future profile matching based
authentication. We note that the user profile only requires
a small number of packets, i.e. less than 100 packets.

If the user moves from one location to another (e.g., walks
from his office to a meeting room), the user authentication
framework will adaptively rebuild the user’s profile. Follow-
ing are possible two ways to update the user’s profile: 1) the
user can actively trigger the profile updating after he moves
to a new place; 2) the profile updating can be triggered by
detecting the user movement using existing techniques op-
erating on wireless signals [19, 17, 4].

6. USER AUTHENTICATION LEVERAGING
PROFILE MATCHING

In this section, we present our profile matching authenti-
cator which uses machine-learning based methods for packet-
level user authentication.

6.1 Basic Idea
The basic idea of our profile matching authenticator is

using machine learning to determine whether the CSI mea-
surement for the incoming packet with the user identity u
matches the profile constructed at the profile builder. If the
incoming CSI sample matches the user profile, the corre-
sponding packet can be authenticated successfully as from
the user u. Otherwise, the user authentication fails. Figure 6
illustrates the work flow of our profile matching authentica-
tor. In particular, the profile matching scheme works at the
packet level, which minimizes the latency of the authenti-
cation process. In addition, the packet-level authentication
can also be used to monitor and count the number of packets
injected by the attacker.

6.2 Approach Description
We next present the profile matching method using the

CSI samples from a single antenna. We then present the
profile matching using CSI samples from multiple antennas
to improve the performance of user authentication.

6.2.1 Profile Matching using a Single Antenna Pair
We perform the profile matching via the support vector

machine (SVM) technique, which is a computationally effi-
cient way of learning good separating hyperplanes in a high
dimensional feature space. The CSI samples are used as fea-
tures in the SVM to perform profile matching for each user.
We first study the case using a single antenna pair for profile
matching.

In this study, we consider the profile matching as a two-
class pattern classification problem. The CSI sample Cu

with user identity u denotes the data to be classified, where
u = 1, · · · , U (with U as total number of legitimate users),
and let scalar y denote its class (y ∈ {−1, 1}). We use
{(Cu,s, yu,s), s = 1, ..., S} to denote a set of CSI samples
associated with the user identity u. The challenge is how to
construct a decision function f(Cu) that correctly classifies
the input CSI data, which could be different from all the
constructed profiles.

If the constructed CSI user profiles are linearly separable,
we can represent them with a linear function in the following
form:

f(Cu) = wTCu + b (5)

such that f(Cu,s) ≥ 0 for yu,s = 1 and f(Cu,s) ≤ 0 for
yu,s = −1, where w and b represent the hyperplane f(Cu) =
0 separating two classes.

We seek to find such a hyperplane that maximizes the
separating margins between the two classes. In particular,
this hyperplane can be found by minimizing the following
cost function:

min J(w, ξ) =
1

2
‖w‖2 + Γ

S∑
s=1

ξu,s (6)

subject to the following constraints:

yu,s(w
TΦ(Cu,s) + b) ≥ 1− ξu,s, ξu,s ≥ 0, s = 1, · · · , S, (7)

where Φ(·) is a non linear operator mapping the CSI profile
Cu to a higher dimensional space, Γ indicates the significance
of the constraint violations with respect to the distance be-
tween the points and the hyperplane and ξ is a slack variable
vector.

The mapping between the input CSI samples Cu,s′ and
user profile Cu,s is constructed in the form of the kernel func-
tionKernel(·, ·), such asKernel(Cu,s, Cu,s′) = ΦT (Cu,s)Φ(Cu,s′).
Particularly, we choose a polynomial kernel as the mapping
function and the problem in Equation 6 can be expressed
as:

max
αs

{
S∑

s=1

αs−1

2

S∑
s=1

l∑
s′=1

αu(yu,syu,s′Kernel(Cu,s, Cu,s′))αs′}

(8)
subject to the constraints:

αs ≥ 0,
S∑

s=1

αsyu,s = 0, (9)

where αs is the Lagrange multipliers associated with equa-
tion 7. Thus, the profile matching classifier for input CSI
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sample Cu,s′ is derived as:

f(Cu,s′) = sign(
S∑

s=1

(αsyu,sKernel(Cu,s′ , Cu,s) + b)). (10)

And the authentication result is determined as:

f(Cu,s′) =

{
1 success
−1 failure.

(11)

6.2.2 Fusion via Multiple Antennas Pairs
When multiple antennas are available, we can further im-

prove the performance of the user authentication accuracy.
For example, we can employ a simple majority voting pro-
cess to combine the independent profile matching results
from different antenna pairs. Assume that the input CSI
samples with user identity u between the transmitting an-
tenna i and receiving antenna j are represented as Ci,j

u,s′ , all

the independent results from different antenna pairs consist
of the voting set Ω = {f(Ci,j

u,s′), 1 ≤ i ≤ I, 1 ≤ j ≤ J},
where I and J are the numbers of transmitting and receiv-
ing antennas respectively. Finally, the authentication result
is given by:

f ′(Cu,s′) = sign(

I∑
i=1

J∑
j=1

f(Ci,j
u,s′)). (12)

If f ′(Cu,s′) = 1, the authentication successes; otherwise it
fails.

7. PERFORMANCE EVALUATION
In this section, we present the performance evaluation of

the proposed CSI-based user authentication framework in
two types of real environments, laboratory and apartment.
We show that the CSI-based authentication framework is
resilient to attacks, and outperforms existing RSS-based au-
thentication methods.

7.1 Experimental Setup
We conduct experiments in a 802.11n WiFi network with

two laptops (i.e., Lenovo T500 and T61) serving as moni-
tors that collect the wireless packets. These two laptops run
Ubuntu 10.04 LTS with the 2.6.36 kernel and are equipped
with Intel WiFi Link 5300 wireless card. Both Intel wireless
cards’ drivers we installed are able to collect CSI informa-
tion from frames transmitted in HT rate [1]. A commercial
wireless access point, Linksys E2500, is sending out pack-
ets that can be captured by these two monitors. We use
the ping command on two laptops to simulate the authen-
tication packets continuously transmitted over the network.
The packet rate is set to 10 packets/second. For each packet,
we extract CSI for 30 subcarrier groups, which are evenly
distributed in the 56 subcarriers of a 20 MHz channel [11].
We also record the RSS value of each packet for comparison.

We conduct experiments in two indoor environments, i.e.,
a laboratory and an apartment. The laboratory represents
the typical office environment, which has office cubicle and
many furniture that create complex multipath effects in a
large room. The apartment, on the other hand, represents
the typical home environment with small rooms and simple
furniture. The size of these two environments are 11m×12m
and 11m × 6m, respectively. The experimental setups in
these two environments are shown in Figure 7. The num-
bered circles in the figures are the positions used to collect
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Figure 7: Experimental setups in (a) Laboratory
and (b) Apartment.

CSI data for evaluating our user authentication framework,
and the two red stars represent two network monitors.

7.2 Experimental Methodology
In the experiments, we collect 400 packets at each lo-

cation, and both CSI and RSS values of each packet are
recorded. When using RSS measurements for user authenti-
cation, we employ the RSS values collected from two network
monitors as the two-dimensional feature vector for clustering
and profile matching, while our proposed CSI-based authen-
tication framework only uses the CSI measurements from
one network monitor to perform user authentication.

To evaluate the performance of our proposed framework,
we examine two main attacking scenarios: 1) In the first
attacking scenario, both the legitimate user and the attacker
are present at the same time in the network. 2) In the second
attacking scenario, after the attacker obtains the legitimate
user’s identity, only the attacker is active in the network. In
order to obtain the statistical results, we choose all possible
point pairs in both experimental environments and treat one
point as the position of the legitimate user and the other
point as the position of the attacker. We run the proposed
framework through all possible combinations of point pairs.
There are a total of 66 pairs for laboratory environment
and 36 pairs for apartment environment. The experimental
results are presented in the following sections for the attack
resilient profile builder and profile matching authenticator.

7.3 Metrics
In order to evaluate the performance of our proposed user

authentication framework, we define the following two met-
rics, attack detection ratio and authentication accuracy.

Attack detection ratio (during profile building):
We define the attack detection ratio R̄ as the number of
correctly detecting the presence of spoofing attacks over the
total number of experiments with spoofing attacks. The
spoofing attacks presented when building the user profile
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belong to the attacking scenario 1. Given a total number of
P attacking cases the attack detection ratio can be written
as:

R̄ =
1

P

P∑
p=1

Hp

s.t. Hp =

{
0 Dc ≤ τ
1 Dc > τ,

(13)

where Dc is the distance between two centroids of clusters
formed in the profile builder, and τ is the threshold used for
spoofing attack detection.

Authentication accuracy (during user authentica-
tion): We define the authentication accuracy Ap as the
number of correctly classified packets over the total number
of packets collected in the pth attacking run. The attacks
could belong to either the attacking scenario 1 or 2. We
use Nu,p to denote the number of packets that are sent by a
legitimate user u and are correctly determined as from the
user u by our system. Similarly, we use N ′

u,p to denote the
number of packets sent by the adversary using the identity
of the legitimate user u and are correctly determined as not
from the user u. We then define the authentication accuracy
for the pth experimental run as:

Ap =
Nu,p +N ′

u,p

Na,p
, (14)

where Na,p is the total number of packets received with user
identity u, and Nu,p +N ′

u,p ≤ Na,p.
We further define the average authentication accuracy and

worst authentication accuracy as shown below to evaluate
the general and worst-case performance.

• Average authentication accuracy: Given P test-
ing cases, the average authentication accuracy is given
as:

Aavg =
1

P

P∑
p=1

Ap. (15)

• Worst authentication accuracy: The worst au-
thentication accuracy chooses Ap from the attacking
case with the smallest number of Nu,p and N ′

u,p:

Aworst = min
p

Ap. (16)

7.4 Evaluation Results

7.4.1 Attack Detection Study During Profile Build-
ing

We first compare the effectiveness of our Attack-resilient
Profile Builder when determining the presence of a spoofer
(during profile building) using CSI to that using RSS. We
examine the attack detection ratio by varying the threshold
τ . As shown in Figure 8, the results show that the averaged
detection ratio for the proposed CSI based approach achieves
0.92 with the optimal distance threshold 17dB in Figure 8
(a), while the maximum detection ratio for the RSS-based
method is only 0.4 with distance threshold 2dB as shown
in Figure 8 (b). This observation indicates that our profile
builder can effectively determine whether the network envi-
ronment is benign or a spoofer is present when building the
user profiles.
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Figure 8: Attack-resilient Profile Builder: Attack
detect ratio versus cluster distance threshold when
a spoofer is present.
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Authenticator: Authentication accuracy when two
users possess similar RSS fingerprints.

7.4.2 Authentication Accuracy Study
Discriminating two far-away users with similar RSS

fingerprints: Due to the irregularity of wireless signal prop-
agation, two geographical distant users may share similar
RSS signatures. For example, in Figure 7 (a), two posi-
tions 6 and 9 are about 6 − 7m away from each other, but
their RSS fingerprints obtained from our same network mon-
itor look similar; positions 8 and 12 present the same signal
phenomenon. This makes RSS-based user authentication
schemes suffer poor performance when two legitimate users
(but physically separated) present the similar signal finger-
prints. In particular, we observe that the authentication ac-
curacy for RSS-based method degrades to only around 0.64
as shown in Figure 9. However, our proposed CSI-based
method could still achieve the authentication accuracy close
to 1. The results confirm that CSI measurements provide
fine-grained information on differentiating users, even when
their RSS measurements are similar.

Comparison with RSS-based method: We next study
the overall performance of our CSI based user authentica-
tion method. Figure 10 shows the comparison of the au-
thentication accuracy when using CSI-based and RSS-based
methods in two different environments (i.e., a laboratory
and an apartment). We note that the RSS-based method
relies on RSS values collected from two network monitors to
perform user authentication, while our proposed CSI-based
authentication framework only uses the CSI measurement
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Figure 10: User authentication accuracy comparison
between CSI-based and RSS-based methods.

from one antenna at one network monitor. We observe that
our proposed CSI-based method outperforms the RSS-based
method in both experimental environments. Specifically,
Figure 10 (a) shows that the average authentication accu-
racy for CSI-based method is very high (above 0.984), and
the RSS-based method has a lower authentication accuracy
(i.e., 0.92). Furthermore, we show that the worst authen-
tication accuracy for RSS-based method reduces to around
0.27 and 0.36 in the apartment and laboratory environments
respectively, whereas our CSI-based method maintains the
high authentication accuracy over 0.95 as presented in Fig-
ure 10 (b). These observations strongly indicate the robust-
ness of our CSI-based user authentication framework even
when only a single antenna is used on WiFi devices.

Impact from single/multiple antennas: We further
examine the performance when employing measurements from
multiple antennas. We expect that using measurements
from multiple antennas can provide better reliability for user
authentication. Figure 11 shows that both the average and
worst authentication accuracy exhibit an increasing trend
when more antennas are used. In particular, the authen-
tication accuracy of using single antenna in the apartment
and laboratory environments is over 0.95. When the num-
ber of antenna pairs (i.e., a set of transmitting and receiving
antennas) increases from 1 to 4, the average authentication
accuracy in laboratory and apartment further improves, and
the worst authentication accuracy improves even more. We
also observe that when using 3 antenna pairs in the labora-
tory environment the authentication accuracy has a slightly
drop when comparing to that of using 2 antenna pairs. This
is because although current commodity wireless devices are
usually equipped with multiple antennas, the main antennas
usually have better quality of signal reception. Therefore,
including the CSI samples from the main antennas (i.e., us-
ing 1 or 2 antenna pairs in our experiments) results in better
stability of user authentication.

Impact from user profile size: Finally, we study how
the number of packets (i.e., user profile size) employed to
build the user profile affects the performance of our frame-
work. We vary the size of user profile from 1 sample to 200
samples, and the corresponding average authentication ac-
curacy is shown in Figure 12. When the size of user profile
increases, the authentication accuracy increases and then
maintains at a high level (i.e., over 0.95). We note that
even if the profile of each user contains only 1 CSI sample,
the authentication accuracy is still over 0.91. These results
demonstrate that our profile builder is highly effective in our
CSI-based user authentication framework.
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Figure 11: CSI-based user authentication accuracy
when involving single and multiple antennas.
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Figure 12: Impact of user profile size on CSI-based
user authentication accuracy.

8. CONCLUSION
In this paper, we study utilizing channel state information

(CSI) to perform practical user authentication in wireless
networks. The fine-grained channel information revealed in
CSI has the potential to perform accurate user authenti-
cation. We propose a CSI-based user authentication frame-
work including Attack-resilient User Profile Builder and Pro-
file Matching Authenticator. The Attack-resilient Profile
Builder employs clustering analysis to intelligently deter-
mine whether the network environment is benign without
the presence of the identity-based attack when construct-
ing the profile for the legitimate user. The Profile Match-
ing Authenticator performs packet level user authentication
grounded on Support Vector Machine (SVM). It has the
capability to distinguish two users even when they possess
the similar signal fingerprints. Our extensive experiments
conducted in both lab and apartment environments confirm
the feasibility of exploiting CSI to perform accurate user
authentication. The evaluation results show that the CSI-
based approach is highly effective as compared with methods
directly applying received signal strength.

9. ACKNOWLEDGMENTS
This work was supported in part by the National Sci-

ence Foundation under grant numbers CNS-1318751, CNS-
1318748 and Army Research Office W911NF-13-1-0288.

398



10. REFERENCES
[1] IEEE Std. 802.11n-2009: Enhancements for higher

throughput, 2009. Available at
http://www.ieee802.org.

[2] B. Azimi-Sadjadi, A. Kiayias, A. Mercado, and
B. Yener. Robust key generation from signal envelopes
in wireless networks. In Proceedings of the 14th ACM
conference on Computer and communications security,
pages 401–410, 2007.

[3] V. Brik, S. Banerjee, M. Gruteser, and S. Oh. Wireless
device identification with radiometric signatures. In
Proceedings of the 14th ACM international conference
on Mobile computing and networking, pages 116–127,
2008.

[4] G. Chandrasekaran, M. A. Ergin, M. Gruteser, R. P.
Martin, J. Yang, and Y. Chen. Decode: Exploiting
shadow fading to detect comoving wireless devices.
IEEE Transactions on Mobile Computing,
8(12):1663–1675, 2009.

[5] O. Cheikhrouhou, A. Koubaa, M. Boujelben, and
M. Abid. A lightweight user authentication scheme for
wireless sensor networks. In IEEE/ACS International
Conference on Computer Systems and Applications
(AICCSA), pages 1–7, 2010.

[6] Y. Chen, J. Yang, W. Trappe, and R. P. Martin.
Detecting and localizing identity-based attacks in
wireless and sensor networks. IEEE Transactions on
Vehicular Technology, 59(5):2418–2434, 2010.

[7] O. Delgado-Mohatar, A. FÃžster-Sabater, and J. M.
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