
SenSpeed: Sensing Driving Conditions to Estimate
Vehicle Speed in Urban Environments

Haofu Han∗, Jiadi Yu∗, Hongzi Zhu∗, Yingying Chen†, Jie Yang‡, Yanmin Zhu∗, Guangtao Xue∗ and Minglu Li∗
∗Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, P.R.China

Email: {hanhaofu, jiadiyu, hongzi, yzhu, gt xue, mlli}@sjtu.edu.cn
†Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, USA

Email: yingying.chen@stevens.edu
‡Department of Computer Science and Engineering, Oakland University, Michigan, USA

Email: yang@oakland.edu

Abstract—Acquiring instant vehicle speed is desirable and
a corner stone to many important vehicular applications. This
paper utilizes smartphone sensors to estimate the vehicle speed,
especially when GPS is unavailable or inaccurate in urban
environments. In particular, we estimate the vehicle speed by
integrating the accelerometer’s readings over time and find the
acceleration errors can lead to large deviations between the
estimated speed and the real one. Further analysis shows that
the changes of acceleration errors are very small over time which
can be corrected at some points, called reference points, where
the true vehicle speed is known. Recognizing this observation, we
propose an accurate vehicle speed estimation system, SenSpeed,
which senses natural driving conditions in urban environments
including making turns, stopping and passing through uneven
road surfaces, to derive reference points and further eliminates
the speed estimation deviations caused by acceleration errors.
Extensive experiments demonstrate that SenSpeed is accurate and
robust in real driving environments. On average, the real-time
speed estimation error on local road is 1.32mph, and the offline
speed estimation error is as low as 0.75mph. Whereas the average
error of GPS is 3.1mph and 2.8mph respectively.

I. Introduction

The smartphone-based vehicular applications become more
and more popular to analyze the increasingly complex urban
traffic flows and facilitate more intelligent driving experi-
ences including vehicle localization[1][2], enhancing driving
safety[3][4], driving behavior analysis[5][6] and building intel-
ligent transportation systems[7][8]. Among these applications,
the vehicle speed is an essential input. Accurate vehicle
speed estimation could make those vehicle-speed dependent
applications more reliable under complex traffic systems in
urban environments.

Generally, the speed of a vehicle can be obtained from
GPS. However, GPS embedded in smartphones often suffers
from the urban canyon environment [9], which would cause
low availability and accuracy. Besides, the low update rate
of GPS is not able to keep up with the frequent change
of the vehicle speed in urban driving environments. Addi-
tionally, continuously using GPS drains the phone battery
quickly. Thus, it is hard to obtain accurate vehicle speed
relying on GPS for applications requiring real-time or high-
accuracy speed estimations. Besides vehicle speed estimation
based on GPS, there are a couple of alternatives by using
either the OBD-II interface [3] or smartphone’s cell tower
signals [10][11]. Although the speed obtained from OBD-II

is quite accurate, this approach relies on an additional OBD-
II adapter. Using cell tower signal changes on smartphones
to perform vehicle speed tracking, [10][11] show a promising
direction that the smartphone on the vehicle can be employed
to facilitate vehicle speed estimation. However, the existing
studies utilizing Derivative Dynamic Time Warping (DDTW)
algorithm that introduces large overhead on collecting offline
trace and prevents large-scale deployment. Also, the speed
estimation accuracy of DDTW suffers from the coarse-grained
signal information.

Moving along this direction, in this paper we consider a
sensing approach, which uses smartphone sensors to sense
natural driving conditions, to derive the vehicle speed without
requiring any additional hardware. The basic idea is to obtain
the vehicle’s speed estimation by integrating the phone’s ac-
celerometer readings along the vehicle’s moving direction over
time. While the idea of integrating the acceleration values over
time seems simple, a number of challenges arise in practice.
First, the accelerometer readings are noisy and affected by
various driving environments. Second, the speed estimation
should be real-time and accurate. Finally, the solution should
be lightweight and computational feasible on smartphones.

We first show the vehicle speed estimation using the
integral of accelerometer’s readings through real road driving
experiments in two different cities. We find that directly per-
forming integration over acceleration results in large deviations
from the true speed of the vehicle. The interesting observation
is that the error between the integral value and true speed
increases almost linearly over time, and is independent of
different phone types. This indicates that the changes of the
acceleration error are very small over time which can be
corrected if we can derive the speed errors at some time points.
Based on this simple yet useful finding, we develop a vehicle
speed estimation system, SenSpeed, which utilizes smartphone
sensors (accelerometer and gyroscope) to sense the practical
driving conditions, which can be exploited to eliminate the
acceleration errors and estimate vehicle speed accurately.

In particular, our system, SenSpeed, identifies unique ref-
erence points from the natural driving conditions to infer the
vehicle’s speed at each reference point grounded on different
features presented by these reference points. Such reference
points include making turns, stopping (at a traffic light or
stop sign or due to road traffic) and passing through uneven
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road surfaces (e.g., speed bumps or potholes). Based on the
speed inferred from the reference points, SenSpeed measures
the acceleration error between each two adjacent reference
points and eliminates such errors to achieve high-accuracy
speed estimation. The main advantage of SenSpeed is that
it senses the unique features in natural driving conditions
through simple smartphone sensors to facilitate vehicle speed
estimation. Furthermore, SenSpeed is easy to implement and
computational feasible on standard smartphone platforms. Our
extensive experiments in both Shanghai, China and New York
City, USA validate the accuracy and the feasibility of using
our system in real driving environments.

We highlight our main contributions as follows:

• We propose to perform accurate vehicle speed estima-
tion by sensing natural driving conditions using smart-
phone sensors. We study the impact of the acceleration
error on the speed estimation results obtained from the
integral of the phone’s accelerometer readings.

• We exploit three kinds of reference points sensed from
natural driving scenarios to infer the vehicle speed
at each reference point, which could be utilized to
reduce the acceleration error that affect the accuracy
of vehicle speed estimation.

• We develop a vehicle speed estimation system, Sen-
Speed, which utilizes the information obtained from
the reference points to measure and eliminate the
acceleration error and generates high-accuracy speed
estimation.

• We conduct extensive experiments in two cities,
Shanghai, China and Manhattan in New York City,
USA. The results show that, in representative ur-
ban environments, SenSpeed can estimate the vehicle
speed in real-time with an average error of 1.32mph,
while achieving 0.75mph during the offline estimation.

The rest of the paper is organized as follows: The related
work is reviewed in Section II. We describe basic idea in
Section III. Section IV presents the design details of our speed
estimation system, SenSpeed. We evaluate the performance of
our system and present the results in Section V. Finally, we
give conclusive remarks in Section VI.

II. Related work

In this section, we review the existing work on vehicle
speed estimation, which can be categorized as follows.

Estimation using pre-deployed infrastructures: In the
existing work, there are two vehicle speed estimation mech-
anisms deployed on highways or main roads. One is em-
ploying the loop detectors[12][13], and the other is using
traffic cameras[8]. These solutions all rely on pre-deployed
infrastructures that incur installation cost. The traffic camera
could be installed in urban environments, but it suffers low
accuracy, bad weather conditions and high maintenance cost.

Estimation using additional devices: OBD-II adapter [3] is
a popular interface to provide the vehicle speed in real-time.
Acoustic wave sensors [14] [15] are utilized to estimate the
vehicle speed in open environments. Furthermore, traffic mag-
netic sensors are also employed to capture the vehicle speed

Fig. 1. Illustration of the vehicle’s coordinate system and the smartphone’s
coordinate system.

[16]. These approaches need to install additional hardware to
perform speed estimation.

Estimation using phones: To eliminate the need of pre-
deployed infrastructures and additional hardware, recent stud-
ies concentrate on using cell phones to measure the vehicle
speed. In particular, [17][18] use GPS or sub-sampled GPS
to drive the vehicle speed. Although GPS is a simple way to
obtain vehicle speed, the urban canyon environment and the
low update frequency of GPS make it difficult to accurately
capture the frequent changing vehicle speed in urban environ-
ments. And continuously using GPS causes quicker battery
drainage on smartphones. Knowing the drawbacks of using
GPS, [11] [10] estimate the vehicle speed by warping mobile
phone signal strengths and [19][20] use the handovers between
base stations to measure the vehicle speed. These solutions
need to build a signal database which may incur high labor
cost and cannot achieve high estimation accuracy.

Obtaining the vehicle speed becomes more and more im-
portant in supporting large amounts of vehicular applications.
Our work is different from the previous studies in that we
explore a smartphone-enabled sensing approach based on nat-
ural driving conditions without the need of GPS or additional
hardware.

III. Basic Idea

We first describe how to obtain the vehicle speed from
smartphone sensors. The vehicle’s acceleration can be obtained
from the accelerometer sensor in the smartphone when a phone
is aligned with the vehicle. Suppose the accelerometer’s y-axis
is along the moving direction of the vehicle as shown in Fig.1.
We could then monitor the vehicle acceleration by retrieving
readings from the accelerometer’s y-axis. The vehicle speed
can then be calculated from the integral of the acceleration
data over time:

S peed(T ) = S peed(0) +

∫ T

0

acc(t) dt, (1)

where S peed(T ) is the vehicle speed at time T and acc(t) is
the vehicle acceleration function of each time instant t.

Instead of producing a continuous function acc(t), the ac-
celerometer in practise takes a series of the vehicle acceleration
samples at a certain sampling rate. Thus the vehicle speed can
be transformed as

S peed(T ) = S peed(0) +

T ·k∑
i=0

1

k
· accy(i), (2)
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Fig. 2. The true speed, integral value of the accelerometer’s readings and
their difference in a real driving environment.

where k is the sample rate of the accelerometer and accy(i) is
the ith sample, i.e. the ith received reading from the accelerom-
eter’s y-axis. Therefore, in order to obtain the vehicle speed,
we take a series of the acceleration samples by monitoring the
accelerometer continuously.

Although the basic idea of using smartphone sensors to
estimate vehicle speed is simple, it is challenging to achieve
high-accuracy speed estimations. The most obvious problem is
that the noise from sensor readings cause serious errors in the
estimation results. Such sensor readings are affected by various
noise encountered while driving such as engine vibrations,
white noise, etc. And the estimation errors are accumulated
when integrating the accelerometer’s readings over time.

To study the impact of the accumulative error on the
speed estimation’s accuracy, we conduct experiments about
700 miles driving at different urban regions with three different
smartphones (Galaxy Nexus by Samsung, Nexus4 by LG and
iPhone4s by Apple) for over two weeks. Fig.2 shows the results
of a 12 minutes driving that compare the integral value of
readings from the accelerometer’s y-axis with the true vehicle
speed collected from an OBD-II adapter. It can be seen that the
integral results (i.e., the purple curve) grows rapidly over time.
This is because the accumulative errors cause large deviations
between the speed estimation from the integral value and the
true speed. Therefore, in order to estimate the vehicle speed
accurately, the accumulative error must be eliminated.

One important observation is that the black curve of the
difference between the integral value from Equ.(2) and the true
speed increases almost linearly over time, which indicates that
the changes over time of the acceleration error are very small.
These results are consistent during our experiments at different
urban regions with three different smartphones. Thus, if we
can derive techniques to measure the acceleration error, the
integral value of the accelerometer’s readings can be corrected
to get close to the true vehicle speed. Since the difference
curve between the integral value and the true speed is an
approximate linear function of time, the acceleration error is
strongly related to the slope of the curve. If we can obtain the
true speeds at two time points along the difference curve, the
slope of the curve could then be calculated and the acceleration
error could be derived accordingly. However, the difference
curve is not exactly linear, and slight changes of the slope
(i.e., the acceleration error) would affect the accuracy of the
speed estimation. To sense the slight changes over time of the
acceleration errors, we should capture as many as possible time
points, called reference points, where the true speed is known,
then calculate acceleration errors between each two adjacent

Fig. 3. System architecture.

points. After knowing these acceleration errors, the integral
values can be corrected to get closer to the true speeds.

IV. Design of SenSpeed

In this section, we present the design of our proposed
system, SenSpeed, which estimates vehicle speed accurately
through sensing driving conditions in urban environments.
SenSpeed does not depend on any pre-deployed infrastructure
and additional hardware.

A. System Overview

The vehicle speed can be estimated by integrating of
acceleration data over time. However, the accumulative error
from the biased accelerations causes large deviations between
the true speed and the estimated speed. In order to realize an
accurate vehicle speed estimation, SenSpeed senses the natural
driving conditions to identify the reference points, then uses the
information of the reference points to measure the acceleration
error and further eliminates accumulative error.

Our system identifies three kinds of references points, mak-
ing turns, stopping, and passing through uneven road surfaces,
by sensing natural driving conditions based on smartphone
sensors. 1) making turns: A vehicle usually undergoes plenty
of turns in urban environments. The vehicle speed can be
inferred according to a principle of the circular movement
when a vehicle makes a turn. 2) stopping: A vehicle stops
frequently in urban environments because of stop signs, red
traffic lights or heavy traffic. When a vehicle stops, the vehicle
speed is determined to be zero. 3) passing through uneven
road surfaces: Speed bumps, potholes, and other severe road
surfaces are common on urban roads. The accelerometer’s
readings from smartphones can be utilized to infer the vehicle
speed, when a car is passing over uneven road surfaces.

The workflow of SenSpeed is shown in Fig.3. SenSpeed
uses two kinds of sensors in smartphones, accelerometers and
gyroscopes, to estimate the vehicle speed. The accelerometer
is used to monitor the vehicle acceleration and the gyroscope
is used to monitor the vehicle angular speed. Getting the
readings from the accelerometer and the gyroscope, SenSpeed
first performs Coordinate Reorientation to align the phone’s
coordinate system with the vehicle’s. After that, the raw
speeds are obtained by calculating the integral of the aligned
readings from the accelerometer in Raw Speed Estimation.
Meanwhile, SenSpeed senses reference points by analyzing the
aligned readings from the accelerometer and the gyroscope in
Sensing Reference Points and infers the vehicle speed at each
reference point. Next, in Acceleration Error Measurement,
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Fig. 4. Illustration of the circular movement when
a car makes a turn.

Fig. 5. The speed measurement at a turn reference
point using centripetal acceleration and angular speed.

Fig. 6. CDF of the speed measurement errors
at turn reference points.

the acceleration errors between each two adjacent reference
points are calculated and then used to correct the raw speed
estimations in Reference Points Correction. Finally, SenSpeed
outputs high-accuracy speed estimations. In order to achieve
accurate speed estimations, the speeds at the two adjacent
reference points need to be known. However, the speed at
the next reference point is unknown on the real-time speed
estimation, so the acceleration error between two reference
points can not be calculated. Since we know the changes of the
acceleration error over time are very small, Acceleration Error
Measurement uses the exponential moving average to derive
the current acceleration error from recent histories. Therefore,
SenSpeed can provide real-time speed estimation of vehicles.

B. Sensing Reference Points

To correct speed estimation from the integral of the ac-
celerometer’s readings, the acceleration error should first be
measured. If we know the speed at reference points, the accel-
eration error can be inferred. SenSpeed senses natural driving
conditions to identify reference points including making turns,
stopping and passing over uneven road surfaces.

1) Sensing Turns: When a vehicle makes a turn, it experi-
ences a centripetal force, which is related to its speed, angular
speed and turning radius. Thus, by utilizing the accelerometer
and the gyroscope, we can derive the tangential speed of a
vehicle. Suppose a car is turning right, as is shown in Fig.4,
then v = ωR, a = ω2R, and ω = ω′, where a is the centripetal
acceleration, ω′ is the angular speed of the car, R is the turning
radius and ω is the angular speed that is related to the center
of the orbit circle. Thus, we obtain

v =
a
ω′
. (3)

Since the centripetal acceleration a and the angular speed ω
can be obtained from the accelerometer and the gyroscope
respectively, the speed can be calculated based on Equ.(3).

Fig.5 plots the angular speed obtained from the gyroscope,
the speed measurement from Equ.(3) and the speed from an
OBD-II adapter when a vehicle makes a turn, i.e., at a turn
reference point. It can be seen that the change of the angular
speed is very clear at the turn reference point. If the readings
from the gyroscope exceeded a trained threshold, SenSpeed
determines the vehicle is making a turn. In addition, the values

of the speed measurement from Equ.(3) at the turn reference
point are very close to the ground truth.

Then, we analyze the speed measurement error at turn
reference points. A series of experiments are conducted in
real driving environments. Fig.6 plots the CDF of the speed
estimation errors at turn reference points. From this figure, we
observe that 80% of measurement errors are lower than 2.2mph
and the average error is about 1.1mph, which indicates that the
speed measurements at turn reference points are accurate. We
also find that drivers tend to use a small angular speed to avoid
an exorbitant centripetal acceleration when turning under high
speed, but a small angular speed is more easily affected by
noise. Thus, the accuracy decreases under the higher speed in
Fig.6. However, drivers usually make turns under 20mph for
driving safety, thus accurate vehicle speed can be inferred by
using turns as reference points.

2) Sensing Stops: The vehicle speed decreases to zero
when a vehicle stops, so we can obtain the exact speed at a stop
reference point. Based on our observation, the data pattern of
the acceleration on the vehicle’s z-axis for stop is remarkably
different from that of moving. Fig.7 plots the readings from the
accelerometer’s z-axis when the vehicle is moving and stops.
From Fig.7, it can be seen that the jitter of the acceleration
on z-axis is almost disappeared and the standard deviation of
the acceleration on z-axis remains low while the vehicle stops.
Thus, the standard deviation of the acceleration on z-axis can
be used to detect stop reference points.

3) Sensing Uneven Road Surfaces: Speed bumps, potholes,
and uneven road surfaces are common in urban environments.
When a car is passing over uneven road surfaces, the ac-
celerometer’s readings from smartphones can also be utilized
to infer the vehicle speed. Fig.8 shows the accelerations on
the car’s z-axis, when a car is passing over a speed bump.
The front wheels hit the bump first and then the rear wheels.
In Fig.8, the first peak is produced when the front wheel is
passing over the bump and the second peak is produced by the
rear wheels. Suppose we know the time interval �T between
these two peaks, as well as the wheelbase W of the vehicle,
then the vehicle speed can be measured as v = W

�T .

Considering the similarity between these two peaks, we use
the auto-correlation analysis to find �T . Given an acceleration
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StoppedMoving Moving

Fig. 7. Illustration of the acceleration on the vehicle’s z-axis and the
corresponding standard deviation when a vehicle stops.

sequence on z-axis, {Acc}, auto-correlation of lag τ is:

R(τ) =
E[(Acci − μ)(Acci+τ − μ)]

σ2
, (4)

where μ is the mean value of Acc and σ is the standard
deviation. Fig.8 also shows the auto-correlation results of the
accelerometer’s readings on z-axis. Obviously, R(τ) is an even
function, so R(τ) = R(−τ). To get the �T , we need to find
the maximum peak value except the one at τ = 0, and the
horizontal distance from the maximum peak to τ = 0 equals
to �T . And for the wheelbase, we can get it from vehicle’s
product specifications.

Fig.9 depicts the accuracy of speed measurement at refer-
ence points including speed bumps, potholes, and other uneven
road surfaces. It can be seen that 80% of measurement errors
are lower than 1.7mph under the low speed (i.e., 0 − 30mph),
80% of measurement errors are lower than 2.2mph under the
high speed (i.e., 60 − 90mph), and the average error is about
1.12mph. Also, we find that the vehicle speed affects the mea-
surement accuracy, i.e., the accuracy slightly increases as the
speed decreases. This is because that the accuracy is affected
by the sampling rate. For example, suppose the vehicle speed
is 20mph, the sampling rate of the accelerometer is 200Hz and
the wheelbase is 3m, then the samples between the two wheels
passing over a bump or pothole is wheelbase

speed · f requency ≈ 56
samples. By contrast, when the vehicle speed is 80mph, the
number of the samples decreases to 17samples. A smaller
number of samples causes slightly worse accuracy. However,
the average vehicle speed in urban area is relatively low (under
60mph). Thus the vehicle speed at uneven road surfaces can
be accurately measured in real driving environments.

C. Eliminating Accumulative Errors

With the above sensed reference points, once a vehicle
makes turns, stops or passes over uneven road surfaces, Sen-
Speed is able to estimate the instant vehicle speed. In order to
realize an accurate vehicle speed estimation, SenSpeed utilizes
reference points to qualify the acceleration error and eliminate
accumulative error.

In Fig.10, the vehicle starts with zero speed, and there
are two reference points PA and PB (i.e., the vehicle passes
the reference point A and B at time Ta and Tb respectively).
Suppose the integral value of the accelerometer’s readings
from zero to time t is S (t) and the measured speed at the
reference point x is RPS x, the errors of the vehicle speed
at the reference point a and b are �S (Ta) = S (Ta) − RPS a
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Fig. 8. Illustration of the acceleration on the vehicle’s z-axis and the
corresponding auto-correlation results when a car is passing over a bump.

and �S (Tb) = S (Tb) − RPS b respectively. Since the value
of acceleration error is nearly a steady constant and strongly
related to the slope of the �S (t) curve, the acceleration error
between PA and PB can be calculated as:

Ã =
�S (Tb) − �S (Ta)

�T b
a

. (5)

where �T b
a is the interval time between the reference points

A and B. Thus, the accumulative error from Ta to t is
∫ t

Ta
Ã dt,

i.e., Ã × (t − Ta). Furthermore, the corrected speed estimation
S ′(t) between A and B is:

S ′(t) = S (t) − �S (Ta) − Ã × (t − Ta). (6)

We then apply this algorithm to the same data used in Fig.2,
and the corrected estimation results are shown in Fig.11. It
can be seen that the corrected speeds match the ground truth
closely. As a result, the mean estimation error after speed
correction by using the reference points is 0.65mph.

The above algorithm uses the information of two adjacent
reference points to correct the speed estimations between these
two points. However, it is an offline algorithm that can not be
used for real-time speed estimations, because the information
about the next reference point is unknown on real-time speed
estimations. In order to achieve a real-time speed estimation,
an online algorithm is proposed to estimate the current acceler-
ation error. Since we know that the acceleration error changes
slightly over time, thus the current acceleration error can be
derived from the recent reference points. In particular, we
utilize the exponential moving average to estimate the current
acceleration error by using the recent reference points. When
the ith reference point is sensed, the current acceleration error
Ãi between the ith and (i + 1)th reference point is updated
through:

Ãi = α · Ãi−1 + (1 − α) × �S (Ti) − �S (Ti−1)

�T i
i−1

, (7)

where α is the weight coefficient. The real-time speed estima-
tion between the ith and the (i+1)th reference point is corrected
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Fig. 10. Illustration of the acceleration error
measurement using reference points.

Fig. 11. Results of the offline and online vehicle
speed estimation using SenSpeed.

by:

S ′(t) = S (t) − �S (Ti) − Ãi+1 × (t − Ti). (8)

We also apply this online algorithm to the same data used in
Fig.2, and present the corrected speed estimation in Fig.11.
We observe that there are some small differences between the
online estimation and the ground truth, which indicates the
online algorithm has a comparable accuracy when compared
with the offline algorithm. Although the differences exist, they
are very small and the mean estimation error of the online
speed estimation algorithm is 1.08mph.

D. Practical Issues

In the implementation of SenSpeed, we are facing several
practical issues as follows.

1) Reorienting the Coordinate Systems: SenSpeed can not
derive meaningful vehicle speed estimations from sensors’
readings unless the phone’s coordinate system is aligned with
the vehicle’s. Since the pose of a smartphone in a vehicle
could be arbitrary, we should first align the motion sensors’
readings in the phone’s coordinate system with the vehicle’s
before it can be utilized to estimate the vehicle speed. In

our previous work [3], a rotation matrix R =
[

î ĵ k̂
]

(where î, ĵ and k̂ are three-dimensional coordinate vectors that
represent the x, y and z-axis direction of the vehicle coordinate
system in the phone’s respectively) is used to align the sensors’
readings with vehicle’s coordinate system. Each element in
the rotation matrix is obtained from the accelerometer and
gyroscope’s readings. However, [3] does not consider the
transform accuracy on z-axis of the accelerometer. Consider
the scenario that the gravity direction does not align with the
z-axis of the vehicle when the vehicle is running on a slope.
In order to keep the orthogonality of the vectors in rotation
matrix, we recalibrate the z-axis vector by k̂ = î× ĵ. After that,
a sensor reading in the smartphone’s coordinate system can be
aligned exactly with the vehicle’s coordinate system with the
recalibrated rotation matrix.

2) Allowing Usage of Phone: The coordinate alignment
uses a rotation matrix to align the phone’s coordinate system
with the vehicle’s. Once the pose of phone is changed, the
rotation matrix needs to be re-calculated. In order to solve
the problem, SenSpeed first needs to detect the change of the
phone’s pose, then recalculates a new rotation matrix to align
the phone’s coordinate system with the vehicle’s. Fig.12 shows

the readings from the gyroscope while a driver or passenger
picks up a phone and then puts it back. It can be seen that the
gyroscope’s readings have large fluctuation on all three axis
when the pose of phone changes. As a result, SenSpeed is
able to detect the change of the phone’s pose by monitoring the
gyroscope’s readings continuously. Once a change of the pose
is detected, SenSpeed conducts coordinate alignment again to
calculate a new rotation matrix.

3) Acquiring the Wheelbase Information: When SenSpeed
uses uneven road surfaces as reference points, the information
of wheelbase is needed to infer the speed at the reference
points. Although we can get the wheelbase of a vehicle from
the product specifications, it requires extra user operations to
input the wheelbase into the system. To solve this problem,
SenSpeed first uses stops and turns as reference points to
estimate the vehicle speed v. The delay �T between the
two peaks caused by the front wheels and the back wheels
can be monitored when a vehicle is passing over a bump,
pothole or road joint. Thus, the wheelbase can be calculated
as W = v · �T . After a couple of wheelbase measurements, the
accurate wheelbase information can be obtained. This method
only involves SenSpeed itself, so it is a self-learning process
to obtain the information of wheelbase.

V. Evaluation

In this section, we evaluate our speed estimation system,
SenSpeed, in real driving environments using two types of
smartphones in two different cities.

A. Prototype

We implement SenSpeed as an Android App and install it
on smartphones: Galaxy Nexus (Manufactured by Samsung,
Android 4.2, 1.2GHz dual-core, 1GB RAM, Maximum sam-
pling rate of accelerometer and gyroscope: 100Hz) and Nexus4
(Manufactured by LG, Android 4.2, 1.5GHz quad-core, 2GB
RAM, Maximum sampling rate of accelerometer and gyro-
scope: 200Hz). SenSpeed senses the natural driving conditions
by using both accelerometers and gyroscopes.Meanwhile, the
raw data of accelerometers’ and gyroscopes’ reading are stored
on smartphones for offline data analysis.

B. Real Road Driving Environments

To evaluate the generality and robustness of SenSpeed, we
conduct experiments in two typical urban environments: one
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Fig. 12. Illustrating the change of the gyroscope’s readings while a driver
or passenger picks up a phone and then puts it back.

is in Shanghai, China with Nexus4, and the other one is in
New York City, USA with Galaxy Nexus. Fig.13 shows the
areas that our traces covered in these two cities. In Shanghai,
we evaluate our system on different road types including local
roads and elevated roads, as well as different regions including
the area within Inner Ring (financial districts and shopping
centers) and the area outside Outer Ring (living districts).
Similarly in Manhattan, two kinds of road types (local road
and highway), as well as two regions (the financial district
in Downtown and the living district in Uptown), are covered
in our experiments. Furthermore, experiments are conducted
in both peak time and off-peak time. In addition, three types
of cars are involved in our experiments: Volkswagen Lavida
and Passat are used in Shanghai, and Nissan Altima is used
in Manhattan, New York City. We collect about 1500 miles
driving traces in Shanghai for over one month and 1000 miles
driving traces in Manhattan for over 3 weeks.

C. Reference Point Density Analysis

Our accurate vehicle speed estimation is built upon the
identified reference points (i.e., turns, stops, and uneven road
surfaces) from the natural driving conditions. We thus first
statistically analysis the reference point density in urban envi-
ronments using all the data collected in these two cities. The
details are presented in Table I.

Our overall observation from Table I is that the reference
point is very dense in both Shanghai and Manhattan. For local
road, there are about 9 reference points per mile (rps/mile) in
Shanghai and around 11rps/mile in Manhattan. Whereas we
have about 5rps/mile on elevated road in Shanghai and about
9rps/mile on highway of Manhattan on average. Further, we
find that the density of reference points is affected by road
types and period of day. Specifically, the density of stops nearly
doubled on peak time in both Shanghai and Manhattan due
to different traffic conditions. And the density of turns and
stops on the local road is much higher than that on highway

TABLE I. Density of reference points in Shanghai andManhattan.

Type & Period
Shanghai Manhattan

Local
Road

Elevated
Road

Local
Road

Highway

All
peak 10.96/mile 6.37/mile 14.56/mile 9.01/mile
Off-peak 9.00/mile 4.92/mile 11.30/mile 8.98/mile

Stop
peak 4.30/mile 1.82/mile 6.63/mile 0.42/mile
Off-peak 2.33/mile 0.37/mile 3.36/mile 0.39/mile

Turn 3.89/mile 0.31/mile 2.27/mile 0.21/mile

uneven road surfaces 2.77/mile 4.25/mile 5.66/mile 8.38/mile

(a) Shanghai (b) Manhattan

Fig. 13. Areas covered by our experiments in two cities marked by different
colors including red, purple, and green to represent different regions and types
of roads in urban environments.

or elevated road. Moreover, one surprising finding is that the
density of uneven road surfaces on highway or elevated road is
much higher than that on local road. This is because highway
and elevated road have lots of road joints which causes high
density of uneven road surfaces. Due to the density of turns
and uneven road surfaces only depends on the travel path, there
is no density difference of these two types between peak-time
and off-peak time periods.

D. Speed Estimation Accuracy

We evaluate the speed estimation accuracy of our system
when driving on different types of road and under different
periods of day. We experimented with two type of speed
estimations: online and offline speed estimation. We compare
the estimated speed by our system with that of ground truth and
the GPS. The ground truth is obtained from the calibrated (i.e.,
with respect to tire pressure and tire worn) OBD-II adapter.
Fig.14 presents the average estimation error in both Shanghai
and Manhattan for online, offline and GPS estimations.

Overall Performance: From Fig.14, we observe that our
speed estimation (both online and offline) leveraging all the
reference points (i.e., All) has low errors and achieves better
accuracy than that of GPS under all types of roads and different
periods of day. For example, on local road in Manhattan, the
average error for the offline and online speed estimation is only
0.7mph and 1.3mph respectively, whereas it is up to 2.8mph
and 3.1mph for GPS respectively (Due to the next sample from
GPS is unknown, the online estimation using GPS has lower
accuracy). Further, we find that the offline estimation is slightly
better than that of the online estimation, and this is because
the value of acceleration error is not exactly accurate due to
the lack of the next reference point information.

Accuracy v.s. Reference Points: We next evaluate the
estimation accuracy of our system by using only one type
of reference points. We find that the average estimation error
on local road is still lower than of GPS even if only one
type of reference points is used in both cities. However, the
speed estimation using turns or stops is worse than that of
GPS under elevated road and highways due to the fact that
there are less turns and stops can be used as reference points.
Still, we find that by using uneven road surfaces only, we can
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Fig. 14. The average estimation error of the vehicle speed in Shanghai and Manhattan.

achieve comparable or better accuracy when comparing with
GPS under all types driving roads.

Accuracy v.s. Type of Roads: Fig.14 shows the road type
affects the speed estimation accuracy. In particular, the average
speed estimation errors on the elevated road or highway are
higher than that on the local road (e.g. in Shanghai, the
average error of the offline and online speed estimation is
0.67mph and 1.23mph respectively on local roads, but it is
up to 1.7mph and 2.5mph respectively on the elevated road).
This is because there are less reference points on the elevated
road and highway than those on local road. However, the
average estimation error on elevated road and highway is still
lower than that of GPS. Further, for GPS, we can observe the
average estimation error on local road is higher than the error
on highway due to the urban canyon environment (i.e., local
road) causes lower GPS availability and accuracy.

Finally, we find that the period of day and various districts
slightly affect the estimation accuracy. The average estimation
error at the peak time in financial district is slightly lower than
at the off-peak time in living district respectively. It is the heavy
traffic that causes more stops and further increases the density
of stops. Since only the density of stops is affected by traffic,
overall performance of SenSpeed is not affected evidently by
various districts and the period of day.

E. Impact of Reference Points Density

To further evaluate the accuracy and robustness of Sen-
Speed, we analyze the speed estimation errors using different
percentages of reference points and compare the estimated
speed with the ground truth collected from an OBD-II adapter.

Fig.15 shows the CDF of the speed estimation errors using
different percentages (i.e., 25%, 50%, 75% and 100%) of
reference points. As we have seen, we can always get high

accurate speed estimations for the offline speed estimation
regardless how many percent of reference points are used. For
example, 80% of estimation errors are lower than 1.2mph if
all reference points are used for the offline speed estimation,
and the accuracy shows no obvious change when reference
points are reduced from 100% to 25%. For the online speed
estimation, 80% of estimation errors are lower than 2.3mph
if all reference points are used, and also the accuracy shows
no obvious change when reference points are reduced from
100% to 50%. Even if the reference points are reduced to 25%,
65% of estimation errors are still lower than 2.3mph. Thus, the
proposed online speed estimation is highly accurate and robust
to different densities of reference points in urban environments.
Although the accuracy of SenSpeed is affected by the density
of reference points, excessive reference points do not con-
tribute much to the estimation accuracy. For example, in the
online speed estimation, the speed estimation errors using 50%
reference points are very close to the estimation errors using
100% reference points. Thus, SenSpeed is robust when facing
a decline of reference point density in urban environments, and
has potential to be employed in rural area.

Meanwhile, we compare SenSpeed with GPS and DDTW
(Derivative Dynamic Time Warping)[10]. From Fig.15, it can
be seen that SenSpeed significantly outperforms DDTW in
both offline and the online speed estimation. Compared with
GPS, SenSpeed still has a higher accuracy. For example, 80%
of GPS’s estimation errors are lower than 5mph. By contrast,
85% of SenSpeed’s estimation errors are lower than 5mph only
when 25% of the reference points are used for the online speed
estimation.

F. Impact of Sensor Sampling Rate

The maximum sampling rates are different among various
smartphones, we thus further investigate the impact sensors’
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Fig. 15. CDF of the speed estimation errors using different percentages of
reference points, i.e., 25%, 50%, 75% and 100%

sampling rate on the performance of SenSpeed. Fig.16 shows
the CDF of the speed estimation errors using different sampling
rates. It can be seen the estimation errors of the offline and
online algorithm raise slightly when the sampling rate drops
from 200Hz to 25Hz. Based on our in-depth analysis, we
find the the slight raise of the estimation error is mainly
caused by the speed measurement error at the uneven road
surface. As we discussed in Section IV-B, the accuracy of
speed measurement at uneven road surfaces is sensitive to the
accelerometer’s sampling rate. However, sampling rates do not
affect the accuracy of speed measurements at the turn or stop
reference points. Thus, the performance of SenSpeed only has
slightly change under lower sampling rates. The results show
that SenSpeed can provide highly accurate speed estimation
for various devices with different sensor sampling rates.

VI. Conclusion

In this paper, we address the problem of performing
accurate vehicle speed estimation in urban environments to
support pervasive vehicular applications. We employ smart-
phone sensors to sense natural driving conditions to achieve
high estimation accuracy. In particular, we propose a vehicle
speed estimation system called SenSpeed to identify three
useful reference points, including making turns, vehicle stop-
ping, and passing through uneven road surfaces, to measure
and eliminate the errors caused by directly using phone’s
accelerometer readings for speed estimation. The key insight
is that natural driving conditions present unique features and
can be exploited to enable accurate real-time vehicle speed
estimation. Our extensive experiments driving in two different
cities over one month time period show that SenSpeed can
estimate the vehicle speed in real-time with a low average
error of 1.32mph, while achieving 0.75mph during the offline
estimation.
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