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Abstract—We show that signal strength variability can be re-
duced by employing multiple low-cost antennas at fixed locations.
We further explore the impact of this reduction on wireless local-
ization by analyzing a representative set of algorithms ranging
from fingerprint matching, to statistical maximum likelihood
estimation, and to multilateration. We provide experimental
evaluation using an indoor wireless testbed of the localization
performance under multiple antennas. We found that in nearly
all cases the performance of localization algorithms improved
when using multiple antennas. Specifically, the median and the
90th percentile error can be reduced up to 70%. Additionally, we
found that multiple antennas improve the localization stability
significantly, up to 100% improvement, when there are small
scale 3-dimensional movements of a mobile device around a given
location.

I. INTRODUCTION

Accurate and cost effective localization of wireless devices

would enable a variety of diverse new applications in areas

including health care, inventory control, personal management,

robotic navigation and geometric routing. However, indoor

environments are particularly challenging for radio-based lo-

calization, because effects such as reflection, refraction, shad-

owing, scattering, make signal characterization with respect to

location difficult. The positioning of wireless devices indoors

thus remains an active area of research.

To date, most wireless localization systems, based on com-

mercially available components, use received signal strength

(RSS) as the base modality. However, a significant problem

with RSS is that small-scale multipath fading adds high

frequency components with large amplitudes to the signal at

a given location. Thus, the RSS can vary by 5-10 dB with

small (a few wavelengths) changes in location. We confirm

these results in this work. However, because the small-scale

fading effects occur at the level of several wavelengths (about

12 cm at 2.4 GHz), and the granularity of the localization

system is typically much larger (2-3 meters), using multiple

receivers spaced on the order of a few wavelengths presents the

opportunity to smooth out these effects, while maintaining the

same number of landmarks used by the localization system. In

particular, multiple receivers can be realized by multiplexing

between multiple antennas on a single receiver.

This work investigates the impact on the localization sys-

tem of using multiple receivers spaced closely together. We

performed a trace-driven study on an 802.11 testbed in a real

office building environment. Each receiver location, called a

landmark, supported 3 antennas spaced within 1-2 ft of each

other. We first investigated signal variability, and found that

using multiple antennas resulted in signal-to-distance models

with better fits to a theoretical curve based on free-space

models than when using a single antenna, thus confirming that

additional antennas help average out small-scale environmental

effects.

We then evaluated the effects of using multiple antennas

on wireless localization. In order to evaluate the generality

of applying multiple antennas, we evaluated the impact of

multiple antennas on a diverse set of algorithms, which use an

array of techniques ranging from nearest neighbor matching in

signal space, represented by RADAR [1], to statistical maxi-

mum likelihood estimation, as represented by the Area-Based

Probability (ABP) [2], and to multilateration, represented by

Bayesian Networks (BNs) [3]. We found that all algorithms

under study improved their absolute position accuracy when

using multiple antennas. Another key finding is that using

multiple antennas significantly reduces the fraction of poor

localization results across almost all of the algorithms. In one

case, the median and the 90th percentile localization error were

reduced up to 70%.

In addition to accuracy, we also investigated stability. We

define stability as the localization system’s ability to maintain

a position in the face of small-scale movements of a device.

For example, if a device moves 1 ft, ideally the localization

system should return a result that is 1 ft away from the

previous position. Instability is a common anecdotal problem

with localization systems, but has not received much attention

by the research community. We thus conducted a detailed eval-

uation of the impact of multiple antennas on the localization

stability. We quantified how much the localized position of

a device moves in the physical space as a function of small-

scale movements of the device around its current position. Our

results show that multiple antennas help improve localization

stability significantly. Specifically, we can achieve up to 100%

improvement in stability over the single antenna case.

A third set of experiments examined how averaging or not

averaging the data from multiple antennas at a landmark posi-

tion impacted the results. If averaging has no measurable im-

pact, then a host using multiple antennas could save bandwidth

and computational resources by averaging the RSS values

at a single landmark location before localization occurred.

However, we found that there is not clear trend whether or

not to average the data from multiple antennas.

The final set of experiments explored the algorithms’ sen-
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sitivity to the assumption that RSS follows a Gaussian dis-

tribution. The main reason to make such an assumption is

that it makes the mathematics tractable, because the Gaussian

distribution is closed under summation, i.e., the sum of two

Gaussians is a Gaussian. This property also allows for averag-

ing of multiple antenna streams to rest on a sound theoretical

foundation. We generated synthetic traces that followed a

Gaussian distribution using parameters from fitted measured

data. Our results show that the performance behavior on real

data is consistent with the localization performance under

Gaussian distribution for RSS at each testing position.

The rest of the paper is organized as follows. Section II

discusses previous research in localization and related antenna

work. We present our testbed infrastructure, accuracy and

stability metrics as well as our methodology for a series of

investigations in Section III. In Section IV we present our

experimental results. Specifically, we show the goodness of fit

of RSS data to a theoretic model under multiple antennas, and

we describe the accuracy and stability performance of local-

ization using RADAR, ABP and BNs with real and Gaussian

fingerprint sets. We provide a discussion in Section V. Finally,

we conclude our work in Section VI.

II. RELATED WORK

There have been active research efforts in positioning wire-

less devices indoors. Among these, improving localization

accuracy is the center focus, ranging from algorithm develop-

ment, to landmark placement, and to increasing the landmark

density. Various localization schemes [1], [2], [3], [4], [5]

utilizing different modalities, such as RSS and Time-Different-

Of-Arrival (TDOA), and different mapping functions, such

as fingerprint matching and statistical approaches, have been

developed to more accurately position mobile devices. [6]

investigates the impact of landmark placement on localization

performance and proposes an optimal landmark deployment

approach to improve the performance without increasing the

number of landmarks (about 1 landmark per 4000 square feet).

On the other hand, [7] shows that by using the truncated

singular value decomposition technique and increasing the

landmark density (about 1 landmark per 1000 square feet) a

better localization accuracy is achieved. In this work, we take a

different approach by exploring the impact on the localization

system when using multiple antennas at a given location.

Work that is closely related to ours is [8] and [9]. [8]

presents a detailed characterization of signal strength behavior

in an 802.15.4 network environment with monopole antennas.

Their findings demonstrate that the relative antenna orientation

between receiver-transmitter pairs is a major factor in signal

strength variability, even in the absence of multipath effects.

Further, [9] reviews the principles of radio propagation in

indoor environments and also explores relevant concepts such

as spatial and temporal variations of the channel, large scale

path losses and mean excess delay. Theoretical distributions

of the sequences of arrival times, amplitudes and phases are

presented. Our work is different in that in addition to a

signal variability study, we investigate the impact of using

Fig. 1. WINLAB floor plan.

Location Landmark Antenna x y z

1 1 136 96 6.25
A 2 134 96 6.252

12 135 96 6.25
3 3 131 43 5

B 4 134 43 54
14 134 43 6

5 5 62 48.5 7.41
C 6 62 46.5 7.416

16 62 47.5 7.41
7 7 83 1 5.83

D 8 81 1 5.838
18 82 1 5.83

9 9 151 5 5.83
E 10 149 1 5.8310

20 148 1 5.83

TABLE I
Coordinates x, y, z (in feet) of the 15 antennas in our testbed. Locations A,

B, C, D, E are depicted as red stars in Figure 1.

multiple antennas on wireless localization including accuracy

and stability.

Finally, there has been a wide range of research covering

development of antennas suitable for mobile communications

systems, and many experimental results have been reported to

show the system requirements and feasibility. An application

of phased-array and adaptive antennas has been suggested

in recent years for mobile communications to overcome the

problems of single-antenna systems [10], [11], [12], [13], [14],

[15], [16], [17]. Specifically, these two types of antennas have

been shown to help improve a mobile system’s performance

in several ways, such as by increasing channel capacity and

spectrum efficiency, extending range coverage, reducing co-

channel interference and multipath fading.

III. METHODOLOGY

In this section we describe our experimental methodology.

We first describe the infrastructure we used, and then describe

the metrics to quantify the localization accuracy and stability.

We then present our methodology for a series of investigations,

which include: 1) the impact of small-scale movements on

localization accuracy and stability, 2) the impact of averaging

or not averaging RSS data on a single landmark, 3) the

effects of modeling RSS as a Gaussian distribution at a testing

location.
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Placement Coordinates, Description
Floor (x, y, 0)

Center (x, y, 3)
East (x − 1, y, 3)
West (x + 1, y, 3)
North (x, y + 1, 3)

Desk South (x, y − 1, 3)
Vertical (x, y, 3), keyboard and monitor vertical to the

floor with Orinoco card pointing to the ceiling
Parallel (x, y, 3), keyboard vertical to the floor, moni-

tor parallel to the floor
Shoulder (x, y, 5.16)

TABLE II
Placements of a mobile around a given location (x, y, z) (coordinates in

feet). Each location (x, y, z) is depicted as a green dot in Figure 1.

A. Testbed Infrastructure

All data was collected using an 802.11 (Wi-Fi) network

in the Wireless Network Laboratory (WINLAB) at Rutgers

University. Figure 1 depicts the floor plan of our experimental

site, where the floor size is 219ft × 169ft. All experiments

were conducted in the yellow/shaded area, which is the WIN-

LAB space. There are 10 landmarks (also called access points,

anchors, or base-stations) deployed at five different locations

with 2 landmarks per location. In our terminology, a landmark

is any device that observes packet traffic properties, e.g., RSS,

at a known location.

The location of each landmark is shown as a red star in

Figure 1 and denoted as A, B, C, D, and E. Each landmark

is a Linux machine with a 1-GHz CPU, 512 MBs of RAM and

a 20-GB disk. At each location, one landmark has two Atheros

miniPCI 802.11 wireless cards, whereas the other only one of

the same type. Each card can be connected to an external 7 dBi

Omni directional antenna. Thus, there can be up to 3 antennas

per location or 15 antennas total. Table I presents the x, y and

z coordinates of all antennas along with their numerical IDs.

The green dots in Figure 1 are a total of 101 testing spots
where we collected RSS data for testing. For each testing spot

(x, y, z), we collected measurements from 7 unique positions

with an additional 2 orientations, for a total of 9 unique

placements. Table II summarizes all the different placements

of a mobile device around a given testing spot. The mobile

we consider here is a Dell laptop running Linux and equipped

with an Orinoco silver card. Along the height dimension, we

call the placements at 0 ft, 3 ft and 5.16 ft as floor, desk and

shoulder respectively. At the desk level, we call the small 1-

foot movements around the main center placement the north,
south, east and west placements. Finally, we call the two

orientations the vertical and parallel placements.

For each placement i, we estimated an RSS vector Si =
(si1, si2, . . . , sij , . . .). This vector is called a fingerprint,
where sij is the average RSS corresponding to antenna j
(value of j is based on Table I). Given the number of testing

spots and placements around each spot, the total number of

fingerprints in our experimental data set is 101 × 9 = 909.

To compute a fingerprint, our mobile would transmit packets

and every landmark would forward the packets observed from

all the antennas to a centralized server. It would wait for

Combination Description
1-antenna Use the RSS of the landmarks with only one

antenna (i.e., 1, 3, 5, 7, 9)
2-antenna-noavg - Use the RSS of the landmarks with only one

antenna
- Use the RSS of the antenna with smaller ID
from the landmarks with two antennas
(i.e., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

2-antenna-avg Average the RSS of the landmarks with two
antennas (i.e., avg(2, 12), avg(4, 14), avg(6,
16), avg(8, 18), avg(10, 20))

2-antenna-avg-plus-1 - Use the RSS of the landmarks with only one
antenna
- Average the RSS from the landmarks with
two antennas
(i.e., 1, avg(2, 12), 3, avg(4, 14), 5, avg(6, 16),
7, avg(8, 18), 9, avg(10, 20))

3-antenna-noavg Use the RSS from the three antennas that exist
at each landmark position
(i.e., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18,
20)

3-antenna-avg Average the RSS from the three antennas that
exist at each landmark position
(i.e., avg(1, 2, 12), avg(3, 4, 14), avg(5, 6, 16),
avg(7, 8, 18), avg(9, 10, 20))

TABLE III
Localization antenna combinations for a given landmark position.

at least 350 packets from each antenna before computing a

fingerprint. We used the GRAIL infrastructure [18] to collect

the packets.

We examined the effect of the orientation of multiple

antennas and found it had little overall impact on the RSS

differences between multiple antennas at one location. Specif-

ically, we collected fingerprints with all 3 antennas at each

landmark location vertical to the floor (the top of the antennas

pointing to the ceiling), and another set with one of the 3

antennas being parallel to the floor. After analyzing the two

data sets, we concluded that there is no significant difference

on the RSS in the two data sets, and thus the results we present

in this work are based on data collected with all landmark

antennas being vertical to the floor.

B. Metrics

In this section we formalize our two metrics that apply to

all localization algorithms:

Accuracy: For a given localization attempt, accuracy is

the Euclidean distance between the location estimate obtained

from the localization system and the actual location of the

mobile device in the physical space. We refer to this distance

as localization error. To capture the statistical characterization

of the localization error, we study the Cumulative Distribution

Function (CDF) of the localization error for all the testing

placements.

Stability: Stability measures how much the location esti-

mate moves in the physical space in response to small-scale

movements of a mobile device. We believe that stability is

a desirable property in localization systems, since a location

estimate should not move too far in the physical space if there

is a small-scale movement of a mobile device. For instance,

when someone works at his office desk and moves his laptop

1 ft away, the localized position of the laptop should not
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change too much. Thus, we would like to know how stability

is affected by using multiple antennas at each landmark.

We define stability by taking the Euclidean distance between

the location estimate, p1, of a mobile device at its “original”

position and the localization results p2, p3, . . . , pn obtained

when the mobile device is moved around its original location.

In essence, if p1 and pi (i �= 1) are k feet apart, stability tells

us whether the localization results of these two positions are

close to the actual distance (k feet).

C. Experiments

In this section we describe three types of experiments we

conducted. In all cases, our results are trace-driven. That

is, we collected the fingerprints in a real environment, and

then performed the localization off-line by running different

localization algorithms using the collected fingerprints. When

an algorithm required a training phase, e.g., training data

for BN or a signal map for RADAR, we always use the

points from the center placements. We use a leave-one-out

methodology for computing the accuracy and stability CDFs.

That is, if applicable, we give an algorithm a training or

signal map with measured or interpolated fingerprints from

the center locations and give it a fingerprint from an unknown

location to localize. Note that some versions of BN do not use

fingerprints with known coordinates; we describe these later

in Section IV-D.

Horizontal and Vertical Movements Experiments. The

first set of experiments we performed examined accuracy

and stability as a function of small-scale movements around

a given testing spot. We tested both these metrics in the

horizontal plane, i.e., (x, y), using the desk-level fingerprints

including the center, north, south, east, west, vertical and

parallel placements. In the vertical, i.e., z plane, we used the

floor, center and shoulder placements. In both cases, the center

location serves as the “original” p1, and the other positions are

the additional small-scale movements.

Data Averaging and Non-averaging Experiments. An

important open question is if landmarks should aggregate the

RSS readings from the different antennas or a localization

algorithm should use directly the raw RSS from each antenna.

In our case, the simple aggregation scheme we examined was

to perform an averaging between the antennas at a given

landmark; more complex schemes are left as our future work.

We derived a systematic way to evaluate the localization

performance under the cases of a single antenna, two antennas,

and three antennas by either using the raw RSS readings from

each individual antenna or averaging the RSS readings over

two or three antennas from a landmark position. Table III

summarizes various antenna combinations we consider here. In

order to insure the generality of the results, we tried different

combinations of 1 and 2 antennas. Each combination is given

a specific name as shown in Table III.

Distribution Experiments. A third class of experiments

investigated the impact of assuming that RSS data follows

a Gaussian distribution. Such assumptions are quite common

among localization algorithms. For example, both the ABP

and BN algorithms assume the data follows a Gaussian distri-

bution.

In order to measure the impact of this assumption, we

generated a data set of fingerprints we call the Gaussian one.

To generate this distribution, we used the signal propagation

constants fitted to a simple propagation model, described in

Section IV-A. The model defines the mean RSS that should

be observed given the distance between the mobile and the

landmark. To compute the variance, we used the variance of

the fitted distribution. We then generated fingerprints using a

Gaussian distribution for each RSS reading in a fingerprint.

IV. RESULTS

In this section, we describe our results. In order to get some

intuition if multiple antennas do help average out small-scale

effects, we first describe a small experiment examining the

goodness of fit of RSS data to a theoretic model. We then

present the accuracy and stability results for RADAR, Area

Based Probability (ABP), and Bayesian Networks (BNs). For

each algorithm, we show overall accuracy and stability results

for small-scale movements, when averaging and not averaging

the antenna data, and when applying the Gaussian distribution.

A. Impact on Free Space Models

In this section, we look for evidence on how multiple

antennas “smooth out” the effects of small-scale variations

in signal strength. An intuitive definition of “smooth out” is

that the change in RSS does not vary much with a change

in location. We experimented with several metrics examining

rates of change in signal space vs. location when using

multiple antennas, however, we did not find them grounded

with sufficient theoretical foundations to use them.

Our metric is to examine how well readings from multiple

antennas fit a simple propagation model. Recall that in free

space, signal power decays approximately linearly with log

distance. Specifically, signal strength S can be described by

the following propagation model:

S = b0 + b1 log(D) (1)

where in equation (1), b0, b1 are propagation constants of the

model and D is the Euclidean distance between the transmitter

and the receiver. We call such a log-linear model a free space
model.

Our approach is to add multiple antennas, and then observe

the goodness of fit of the data to a best fit free-space model.

The goodness of fit is observable as the coefficient of determi-

nation or R2. Recall that R2 can take values from 0 to 1, with

a value of 1 indicating a perfect fit to the model, and a value

close to 0 indicating a poor fit. Table IV describes various

cases of antenna combinations: a single antenna, averaging on

two antennas, and averaging on three antennas.

Figure 2 presents the R2 for the five landmark locations.

For positions A, B, C, D by averaging the RSS of all three

antennas (3− antenna− avg), the RSS data set achieves the

best fit, with R2 around 0.8. We also see that averaging gives

a better fit when compared to the fit of single antennas. Thus,
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Antenna Combination Description
1-antenna-odd RSS from antenna with odd ID

(i.e., 1, 3, 5, 7, 9)
1-antenna-even-small RSS from antenna with small, even ID

(i.e., 2, 4, 6, 8, 10)
1-antenna-even-large RSS from antenna with large, even ID

(i.e., 12, 14, 16, 18, 20)
2-antenna-avg average RSS from antennas with even IDs

(i.e., avg(2, 12), avg(4, 14), avg(6, 16), avg(8,
18), avg(10, 20))

3-antenna-avg average RSS from all three antennas
(i.e., avg(1, 2, 12), avg(3, 4, 14), avg(5, 6, 16),
avg(7, 8, 18), avg(9, 10, 20))

TABLE IV
Variability antenna combinations for a given landmark position.
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Fig. 2. Goodness of fit of real RSS to the signal propagation model.

adding multiple antennas does improve the data fit to a simple

free-space model, although the effect is not very large.

B. RADAR

The RADAR algorithm is a classic scene-matching local-

ization algorithm [1]. RADAR requires a signal map, which

is a set of fingerprints with known (x, y) locations. Given

a fingerprint with an unknown location, i.e., one to localize,

RADAR returns the x, y of the closest fingerprint in the

signal map to the one to localize, where “closest” is defined as

the Euclidean distance of the fingerprints to each other in an

N -dimensional “signal space” with N landmarks [19]. That

is, it views the fingerprints as points in an N -dimensional

space, where each landmark forms a dimension, and returns

the corresponding x, y of the closest point. In our experiments

that follow, the distance between the points in the signal map

is about 5-10 ft.

Accuracy. Figure 3 presents the localization error CDFs of

RADAR for the antenna combinations displayed in Table III.

Figure 3(a) shows the localization error for the center position

at the desk level. We see that using 3 antennas at a landmark

position results in a better performance than using only 1

antenna or using 2 antennas. Specifically, we found that at

the error of 10 ft, the probability increases from 42% for the

1−antenna case to 70% under the 3−anntena−avg case,

and at the error of 20 ft, the probability increases from 77%

for the 1− antenna case to 90% for the 3− antenna− avg
case. The overall improvement for the median error is 20%
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Fig. 3. Localization error CDFs using RADAR.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Distance (feet)

P
ro

b
a

b
il

it
y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Distance (feet)

P
ro

b
a

b
il

it
y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

(a) (x, y) plane (b) z-axis

Fig. 4. Localization stability using RADAR.

and the 90th percentile error is 29%.

Figures 3(c) and 3(d) are the corresponding error CDFs for

the floor and shoulder positions respectively. We observe com-

parable performance behavior to that at the desk level under

multiple antennas. Further, the long CDF tails in Figure 3(c)

indicate we have larger maximum localization errors at the

floor level, compared to the desk and shoulder level. This is

due to the fact that at the floor level the signal suffers from

shadowing.

We further studied the localization performance for RADAR

when modeling the RSS as a Gaussian distribution, which

was discussed in Section III-C. The resulting localization

errors are presented in Figure 3(b). We see that the error

CDFs follow the same trend as in Figure 3(a), but with

qualitatively worse performance than the single antenna case.

This indicates that when using a fingerprint matching method

for localization, modeling the RSS as a Gaussian distribution

provides consistent results with real experimental data.

Stability. Figure 4 presents the localization stability for

RADAR when using multiple antennas. Examining the dis-

tance CDFs at the (x, y) plane as shown in Figure 4(a), we

found that the total percentage of the small-scale movements

of the mobile device being localized back to the same esti-
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mated position when the mobile device resides at its original

center position increases from 13.7% for a single antenna

to 26.7% when averaging the RSS from 3 antennas at one

landmark position. A 100% improvement is achieved in this

case. Further, the stability at the 50th percentile moves from

19 ft (1− antenna) to 11 ft (3− antenna− avg), indicating

a 42% improvement, whereas the 90th percentile achieves a

comparable 30% improvement.

Moreover, as shown in Figure 4(b) the stability of the mobile

device movement along the z-axis exhibits similar behav-

ior. This is very encouraging as better localization stability

strongly indicates that using multiple low-cost antennas for

improving localization performance is effective.

C. Area Based Probability

Area Based Probability (ABP) utilizes an Interpolated Map

Grid (IMG) to interpolate the signal map to cover the entire

experimental floor. The floor is divided into a regular grid of

equal-sized tiles. Because direct measurement of the finger-

print for each tile is expensive and prohibitive for fine-grained

tiles, we use an interpolation approach. The goal of using an

IMG fitting is to derive an expected RSS fingerprint for each

tile from the data set that would be similar to an observed one.

ABP returns a set of tiles bounded by a probability that the

mobile device is within the returned tile set. The probability

is called the confidence α and it is adjustable by the user. We

used a tile size of 10in × 5in, which is comparable to the

distance between the antennas at a landmark location (1 or 2

ft). ABP assumes the distribution of RSS for each landmark

follows a Gaussian distribution with mean as the expected

value of RSS reading vector s. The Gaussian random variable

from each landmark is independent. ABP then computes the

probability of the mobile device being at each tile Li, with

i = 1...L, on the floor using Bayes’ rule:

P (Li|s) =
P (s|Li) × P (Li)

P (s)
(2)

Given that the mobile device must be at exactly one tile

satisfying
∑L

i=1 P (Li|s) = 1, ABP normalizes the probability

and returns the most likely tiles/grids up to its confidence

α [2]. In order to normalize for accuracy and stability results,

we select the tile with the median localization error from the

tile set. In all results we show next, the value of the confidence

level is α = 0.75.

Accuracy. Figure 5 shows the localization error CDFs of

ABP when using multiple antennas. The 3−antenna−noavg
case tops out the performance. Comparing to the 1−antenna
case, we observe that the median error moves from 7 ft to 2

ft and the 90th percentile error moves from 16 ft to 4 ft under

the 3 − antenna − noavg case. Thus, the location accuracy

has an improvement over 70% for both the median as well

as the 90th percentile error when using 3 antennas at a given

location.

Examining the z-axis, the error CDFs for the floor and

shoulder level in Figures 5(c) and 5(d) have qualitatively

similar performance to the desk level shown in 5(a). Again, by
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Fig. 5. Localization error CDFs using ABP.
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Fig. 6. Localization stability using ABP.

using the RSS readings from each antenna at a given landmark

location achieves the best performance. Moreover, we noticed

that the CDFs at the floor level only have slightly longer tails

than those at the desk and shoulder level. This indicates that

by interpolating the signal map across the experimental floor

helps smooth out the signal variability and thus reduces the

maximum localization errors.

Finally, Figure 5(b) presents the localization errors using the

Gaussian data set. We observe consistent better performance

under the cases of multiple antennas. The performance of the

3−antenna−noavg case using the Gaussian simulated data

is even better than using the real experimental data.

The above results in location accuracy show that when using

the approach of an interpolated signal map with grid size

smaller than the distance between 2 adjacent antennas at a

landmark location, each antenna is treated as a separate land-

mark, the 3−antenna−noavg case has the best performance

and improves the localization accuracy over 70%. Hence, by

using signal map interpolation, we achieved better location

accuracy improvement than using the raw fingerprints in the

signal map directly (as RADAR does).

Stability. Figure 6 shows that using multiple antennas,

including the cases of 2− antenna−noavg, 2− antenna−
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(a) Network M1 (b) Network M2 (c) Network M3

Fig. 7. Bayesian graphical networks using plate notation.

avg− plus− 1 and 3− antenna−noavg at a given location

helps improve localization stability, with the 3 − antenna −
noavg case providing the most stability improvement. No-

tably, the total percentage of testing points, under small-scale

movements, localized back to the original localization result

(i.e., location estimation at the center) increases from less

than 5% for a single antenna to over 14% for the case of

3 − antenna − noavg. Similar to RADAR, this is an over

100% stability improvement. Further, examining Figure 6(a)

the stability distance at the 50th percentile moves from 8 ft for

the case of 1−antenna to 2 ft for the 3−antenna−noavg
case, resulting in a stability improvement of 73%. We also

observe over 70% improvement for the 90th percentile. In the

z-axis as shown in Figure 6(b), employing multiple antennas

at a given location again provides consistent improvement in

localization stability.

One effect we observed is that when using signal map inter-

polation, the cases of averaging the RSS readings from multi-

ple antennas at a given location such as 2−antenna−avg and

3 − antenna − avg have the same localization performance

as the single antenna case. This is because for tiny grids (10in

× 5in), averaging RSS at a given location is just like placing

a single landmark at a location, which is the same as having

a single antenna in a landmark.

D. Bayesian Networks

Bayesian Networks (BNs) are graphical models that encode

dependencies and relationships among a set of random vari-

ables. The vertices of the graph correspond to variables and

the edges represent dependencies [20]. As described in [3],

the BNs we use encode the relationship between the RSS

and a location based on the signal-versus-distance propagation

model shown in Equation 1.

Figure 7 presents a series of Bayesian networks called M1,

M2, and M3. Each rectangle is a “plate” [3], and shows

a part of the network that is replicated. The vertices X
and Y represent location, the vertex Si is the RSS reading

from the ith landmark, and the vertex Di represents the

Euclidean distance between the location specified by X and

Y and the ith landmark. The value of Si follows a signal

propagation model Si = b0i + b1i log Di, where b0i, b1i

are parameters specific to the ith landmark. The distance

Di =
√

(X − xi)2 + (Y − yi)2 depends on the location
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Fig. 8. Localization error CDFs using Bayesian network M2.

(X,Y ) where the signal is transmitted and the coordinates

(xi, yi) of the ith landmark. The networks capture noise and

outliers by modeling the Si as a Gaussian distribution around

the above propagation model with variance τi:

Si ∼ N(b0i + b1i log Di, τi) (3)

The parameters b0i, b1i, τi of the model are unknown, and the

training fingerprints as well as the fingerprint vector of the

mobile object are used to adjust their value according to the

relationships encoded in the network. Through Markov Chain

Monte Carlo (MCMC) simulation, BNs compute a probability

distribution for the location variables X and Y .

Network M1 is the simplest amongst the three depicted in

Figure 7, and requires a training set in order to give good

localization results. Network M2 is hierarchical by making

the coefficients of the signal propagation model have common

parents. As was shown in [3], M2 can localize with no training

fingerprints, leading to a zero-profiling technique for location

estimation. The impact of multiple antennas on zero-profiling

is a key effect we tested for, because typically this approach

has the measurably worst performance, but has the benefit of

not having to collect fingerprints at known locations. Finally,

network M3 extends M2 by incorporating the corridor effect.

That is, when a location (X,Y ) shares a corridor with a

landmark, then the signal strength tends to be stronger along

the entire corridor. In this paper, we define “sharing a corridor”

as having an X- or Y -coordinate within three feet of the

corresponding landmark coordinate.

Accuracy. Figure 8 presents the localization error CDFs

of M2 under multiple antennas. Figure 8(a) shows the error

CDFs, when localizing one device (testing=1) in its center

position at desk level. We see that all the curves have similar

performance, although case 3 − antenna − noavg performs
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Fig. 9. Gaussian approach: Localization error CDFs using Bayesian network
M2.

slightly better than the rest, and 1 − antenna is the worst.

The other two networks (M1, M3) have performance similar

to M2 under multiple antennas, and their results are omitted

here due to space constraints.

Figures 8(b), 8(c), and 8(d) present the error CDFs of M2

when localizing 51 devices simultaneously with no training set

at the levels of desk, floor, and shoulder respectively. We see

that the 3−antenna−noavg case has the best performance for

all three positions. The accuracy improvement on the median

error between 1−antenna and 3−antenna−noavg is 40%

(from 22 ft to 13 ft) at the desk level, 33% (from 18 ft to 12 ft)

at the floor level, and 46% (from 26 ft to 14 ft) at the shoulder

level. Similarly, the same amount of improvement is achieved

at the 90th percentile of the error CDFs. Conclusively, our

empirical results suggest that more antennas per landmark

location primarily help improve the localization accuracy of

Bayesian networks when there is no training set.

Another important observation is that 3 antennas per land-

mark location, case 3−antenna−noavg, makes the localiza-

tion error when locating multiple mobile devices comparable

to that when locating a single device. Specifically, from

Figures 8(a) and 8(b) we see that the median and the 90th

percentile errors for testing=1 and testing=51 are of the same

magnitude for 3 − antenna − noavg.

Figure 9 depicts the localization accuracy of Bayesian

Network M2 when using the Gaussian simulated data set.

We observe that in both figures the different antenna com-

binations can be placed into three groups based on their

performance: (a) 3− antenna− noavg, 3− antenna− avg,

2 − antenna − avg − plus − 1, (b) 2 − antenna − noavg,

2−antenn−avg, and (c) 1−antenna. The first group has the

best performance, whereas the last the worst. Intuitively, this

kind of grouping should be expected, since BNs assume that

the RSS follows a Gaussian distribution, and thus the averaged

RSS of antennas that belong to the same landmark position is

also Gaussian [21]. Therefore, unlike with real experimental

data, BNs perform similarly either we average or not average

the RSS of the multiple antennas at a given landmark location.

Stability. Figure 10 presents localization stability CDFs

for Bayesian network M2. The stability results for the other

networks (M1, M3) are similar and hence omitted. Figure

10(a) shows that when localizing one mobile device, the more

antennas per landmark location, the better the stability. The

stability improves by 36% at the 50th percentile, moving from

11 ft (1−antenna) to 7 ft (3−antenna−noavg), and 33%

at the 90th percentile, moving from 21 ft (1−antenna) to 14

ft (3 − antenna − noavg). However, the difference between

the cases of 3 − antenna − noavg and 3 − antenna − avg
is negligible. In general, we noticed that when our networks

use training data, averaging or not averaging the RSS from

multiple antennas at a given location does not make any dif-

ference on the localization stability, regardless of the number

of multiple devices we localize simultaneously.

Figures 10(b) and 10(c) show that when no training data is

used, case 3 − antenna − noavg has the best performance.

Moreover, the more antennas the better, but 3 − antenna −
noavg gives better stability than 3 − antenna − avg. At the

desk level, the median of stability improves by 43%, from 16

ft (1−antenna) to 9 ft (3−antenna−noavg), and the 90th

percentile by 44%, from 36 ft (1 − antenna) to 20 ft (3 −
antenna−noavg). Along the z-axis, there is an improvement

of 40% at the median and 34% at the 90th percentile.

V. DISCUSSION

One observation is that the distance between multiple anten-

nas at a landmark location has important effects on localization

algorithms. The signal map in RADAR uses the measured

fingerprints directly. In Figure 3 the location accuracy in

the 3 − antenna − avg case is slightly better than the

3− antenna−noavg case. We believe this is because in our

study the distance between two antennas is small, only 1-2

ft away from each other, while the testing points are about

5-10 ft away from each other, which is a magnitude of 5

times larger. The fine-grained RSS differences at 3 antennas

will not affect the coarse-grained fingerprint matching. As

a result, the 3 separate antennas at one landmark location

will not be treated as 3 separate landmarks by the algorithm

when performing fingerprint matching in the signal space.

Additionally, averaging the RSS from 3 antennas reduces the

RSS variability and thus provides the best performance when

working with algorithms dealing with fingerprints directly.

On the other hand, ABP uses an interpolated signal map and

a tile size of 10in × 5in, which is comparable to the distance

between two antennas at a landmark location. We found that

using the RSS from each individual antenna (3 − antenna −
noavg), which treats each antenna as a separate landmark,

achieves the best improvement in both location accuracy and

stability as shown in Figures 5 and 6.

In general, we believe that the ratio of the granularity of

the distances between the antennas at a landmark and the

distances used to collect training/testing fingerprints can have

a significant impact on the results of either averaging or not

averaging RSS of multiple antennas. A full characterization of

this effect is left as our future work.

VI. CONCLUSION

By employing multiple receivers spaced closely at a given

location, we investigated the impact on wireless localization

under various cases of multiple antennas. We performed a

62



0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Distance (feet)

P
ro

b
ab

ili
ty

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Distance (feet)

P
ro

b
ab

ili
ty

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Distance (feet)

P
ro

b
ab

ili
ty

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

(a) (x, y) plane: Training = 100, Testing = 1 (b) (x, y) plane: No training, Testing = 51 (c) z-axis: No training, Testing = 51

Fig. 10. Localization stability using Bayesian network M2.

trace-driven study on an 802.11 wireless testbed in a real office

environment. Through a signal variability study, we found

that adding additional antennas helps average out small-scale

environmental effects.

We then studied the performance of a representative set of

localization algorithms, in localization accuracy and stability,

when using multiple antennas. We found that all algorithms

under study improved their absolute accuracy by either av-

eraging or not averaging the RSS from multiple antennas at

a given location. Specifically, both the median error as well

as the 90th percentile error can be reduced up to 70%. One

important observation is that the ratio of the distance between

the training/testing points to the distance between multiple an-

tennas at a landmark location affects the localization accuracy.

Notably, localization schemes utilizing the tiny grids obtained

by the signal map interpolation achieved the best performance

improvement when treating each individual antenna at a given

location as distinct landmarks.

Finally, our investigation of the localization stability when

there are small-scale movements of a mobile device shows

that multiple antennas help improve localization stability sig-

nificantly, up to 100% improvement over the regular single

antenna case. In summary, we found that adding multiple an-

tennas gives substantial performance benefits for localization

that are worth the costs.
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