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Abstract. In this paper, we examine several localization algorithms and evaluate
their robustness to attacks where an adversary attenuates or amplifies thesig-
nal strength at one or more landmarks. We propose several performance metrics
that quantify the estimator’s precision and error, including Hölder metrics, which
quantify the variability in position space for a given variability in signal strength
space. We then conduct a trace-driven evaluation of several point-based and area-
based algorithms, where we measured their performance as we appliedattacks
on real data from two different buildings. We found the median error degraded
gracefully, with a linear response as a function of the attack strength. We also
found that area-based algorithms experienced a decrease and a spatial-shift in the
returned area under attack, implying that precision increases though bias is in-
troduced for these schemes. We observed both strong experimental and theoretic
evidence that all the algorithms have similar average responses to signalstrength
attacks.

1 Introduction

Secure localization is important for distributed sensor systems because the position of
sensor nodes is a critical input for many sensor network tasks, such as tracking, monitor-
ing and geometric-based routing. However, assuring the validity of localization results
is not straight-forward because these algorithms rely on physical measurements that
can be affected by non-cryptographic attacks. Although there has been recent research
on securing localization, to date there has been no study on the robustness of localiza-
tion algorithms to physical attacks. In this paper, we investigate the susceptibility of a
wide range of signal strength localization algorithms to attacks on the Received Sig-
nal Strength (RSS). RSS is an attractive basis for localization because all commodity
radio technologies, such as 802.11, 802.15.4, and Bluetooth provide it, and thus the
same algorithms can be applied across different platforms.Also, using RSS allows the
localization system to reuse the existing communication infrastructure, rather than re-
quiring the additional cost needed to deploy specialized localization infrastructure, such
as ceiling-based ultrasound, GPS, or infrared methods.



In this work, we investigate the response of several localization algorithms to unantici-
pated power losses and gains, i.e. attenuation and amplification attacks. In these attacks,
the attacker modifies the RSS of a sensor node or landmark, forexample, by placing
an absorbing or reflecting material around the node. Specifically, we investigate point-
based and area-based RF fingerprinting algorithms, wherebya database of collected RF
fingerprints are measured at several landmarks for an initial set of locations. In order to
evaluate the robustness of these algorithms, we provide a generalized characterization
of the localization problem, and then present several performance metrics suitable for
quantifying performance. We present a new family of metrics, which we call Hölder
metrics, for quantifying the susceptibility of localization algorithms to perturbations in
signal strength readings. We use worst-case and average-case versions of the Hölder
metric, which describe the maximum and average variabilityas a function of changes
in the RSS. We then experimentally evaluate the performanceof a wide variety of lo-
calization algorithms after applying attenuation and amplification attacks to real data
measured from two different office buildings.

Using experimentally observed localization performance,we found that the error for a
wide variety of algorithms scaled with surprising similarity under attack. The single ex-
ception was the Bayesian Networks algorithm, which degraded slower than the others
in response to attacks against a single landmark. In addition to our experimental obser-
vations, we found a similar average-case response of the algorithms using our Hölder
metrics. However, we observed that methods which returned an average of likely posi-
tions had less variability and are thus less susceptible than other methods.

We also observed that all algorithms degraded gracefully, experiencing linear scaling
in localization error as a function of the amount of loss or gain (in dB) an attack intro-
duced. This observation applied to various statistical descriptions of the error, leading
us to conclude that no algorithm “collapses" in response to an attack. This is impor-
tant because it means that, for all the algorithms we examined, there is no tipping point
at which an attacker can cause gross errors. In particular, we found the mean error of
most of the algorithms for both buildings scaled between 1.3-1.8 ft/dB when all the
landmarks were attenuated simultaneously, and 0.5-0.8 ft/dB when attenuating a single
landmark. We also showed experimentally that RSS can be easily attenuated by 15 dB,
and that, as a general rule of thumb, very simple signal strength attacks can lead to
localization errors of 20-30 ft.

Finally, we conducted a detailed evaluation of area-based algorithms as this family of
algorithms return a set of potential locations for the transmitter. Thus, it is possible that
these algorithms might return a set with a larger area in response to an attack and could
have less precision (or more uncertainty) under attack. However, we found all three of
our area-based algorithms shifted the returned areas rather than increased returned area.
Further, one of the algorithms, the Area Based Probability (ABP) scheme, significantly
shrank the size of the returned area in response to very largechanges in signal strength.

The rest of this paper is organized as follows. We first discuss related work in Section 2.
Next, in Section 3 we give an overview of the algorithms used in our study and discuss
how signal strength attacks can be performed. In Section 4, we provide a formal model
of the localization problem as well as introduce the metricsthat we use in this paper.



We then examine the performance of the algorithms through anexperimental study in
Section 5, and discuss the Hölder metrics for these algorithms in Section 6. Finally, we
conclude in Section 7.

2 Related Work

In general, localization algorithms can be categorized as:range-based vs. range-free,
scene matching, and aggregate or singular. The range-basedalgorithms involve dis-
tance estimation to landmarks using the measurement of various physical properties
like RSS [1], Time Of Arrival (TOA) [2] and Time Difference OfArrival (TDOA) [3].
Rather than use precise physical property measurements, range-free algorithms use
coarser metrics like connectivity [4] or hop-counts [5] to landmarks to place bounds
on candidate positions. In scene matching approaches, a radio map of the environment
is constructed, either by measuring actual samples, using signal propagation models,
or some combination of the two. A node then measures a set of radio properties (of-
ten just the RSS of a set of landmarks), thefingerprint, and attempts to match these
to known location(s) on the radio map. These approaches are almost always used in
indoor environments because signal propagation is extensively affected by reflection,
diffraction and scattering, and thus ranging or simple distance bounds cannot be effec-
tively employed. Matching fingerprints to locations can be cast in statistical terms [6,7],
as a machine-learning classifier problem [8], or as a clustering problem [9]. Finally, a
third dimension of classification extends to aggregate or singular algorithms. Aggre-
gate approaches use collections of many nodes in the networkin order to localize (of-
ten by flooding), while localization of a node in singular methods only requires it to
communicate to a few landmarks. For example, algorithms using optimization [10] or
multidimensional scaling [4] require many estimates between nodes.

Recently, it has been recognized that there are many non-cryptographic attacks that can
affect localization performance. For example, wormhole attacks tunnel through a faster
channel to shorten the observed distance between two nodes [11]. Compromised nodes
may delay response messages to disrupt distance estimation[12] and compromised
landmarks may even broadcast completely invalid information [13]. Physical barriers
can directly distort the physical property used by localization. [12] provided a thorough
survey of potential attacks to various localization algorithms based on their underlying
physical properties.

Secure localization algorithms have been proposed to address these attacks. [14] uses a
distance bounding protocol [15,16] to upperbound the distance between two nodes. Lo-
cation estimation (via multilateration) with distances from the bounding protocol can be
verified against these bounds and any inconsistency will then indicate attack. [17] uses
hidden and mobile base stations to localize and verify location estimate. Since such base
station locations are hard for attackers to infer, it is hardto launch an attack, thereby
providing extra security. [18] uses both directional antenna and distance bounding to
achieve security. Compared to all these methods, which employ location verification
and discard location estimate that indicates under attack,[13] and [12] try to eliminate



the effect of attack and still provide good localization. [12] makes use of the data redun-
dancy and robust statistical methods to achieve reliable localization in the presence of
attacks. [13] proposes to detect attacks based on data inconsistency from received bea-
cons and to use a greedy search or voting algorithm to eliminate the malicious beacon
information.

In our work, we focus only on fingerprinting algorithms that use RSS, and provide an
investigation into the feasibility of signal strength attacks as well as the susceptibility
of fingerprinting algorithms to such attacks. Of previous work, only [12] proposed a
possible solution to the fingerprint-based localization, but the susceptibility of different
fingerprinting methods was not completely investigated.

3 Algorithms and Signal Strength Attacks

In this paper we are only concerned with localization algorithms that employ signal
strength measurements. There are several ways to classify localization schemes that
use signal strength: range-based schemes, which explicitly involve the calculation of
distances to landmarks; and RF fingerprinting schemes whereby a radio map is con-
structed using prior measurements, and a device is localized by referencing this radio
map. For this study, we focus on indoor localization schemes, and therefore we restrict
our attention to RF fingerprinting methods, which have had more success for indoor
environments. RF fingerprinting methods can be further broken down into two main
categories: point-based methods, and area-based methods.

Point-based methods return an estimated point as a localization result. A primary exam-
ple of a point-based method is the RADAR scheme [9]. Variations of RADAR, such as
Averaged RADAR and Gridded RADAR have been proposed in [19].On the other hand,
area-based algorithms return amost likelyarea in which the true location resides. Two
examples of area-based localization algorithms are the Area Based Probability (ABP)
method [19] and the Bayesian Networks method [20]. One of themajor advantages
of area-based methods compared to point-based methods is that they return a region,
which has an increased chance of capturing the transmitter’s true location.

For this paper, we have selected a representative set of algorithms from each class of RF
fingerprinting schemes for conducting our analysis. The algorithms we have selected are
presented in Table 1. Although there are a variety of other fingerprinting localization
algorithms that may be studied, our results are general and can be applied to other
point-based and area-based methods. More details for thesealgorithms can be found
in [9,19,20].

To attack signal-strength based localization systems, an adversary must attenuate or
amplify the RSS readings. This can be done by applying the attack at the transmitting
device, e.g. simply placing foil around the 802.11 card; or by directing the attack at the
landmarks. For example, we may steer the lobes and nulls of anantenna to target select
landmarks. A broad variety of attenuation attacks can be performed by introducing
materials between the landmarks and sensors [12]. We measured the effect of different



Table 1.Algorithms under study

Algorithm Abbreviation Description

Area-Based
Simple Point Matching SPM Maximum likelihood matching of the RSS to an area using thresholds.
Area Based Probability ABP-α Bayes rule matching of the RSS to an area probabilistically bounded

by the confidence levelα%.
Bayesian Network BN Returns the most likely area using a Bayesian network approach.
Point-Based
RADAR R1 Returns the closest record in the Euclidean distance of signal space.
Averaged RADAR R2 Returns the average of the top 2 closest records in the signal map.
Gridded RADAR GR Applies RADAR using an interpolated grid signal map.
Highest Probability P1 Applies maximum likelihood estimation to the received signal.
Averaged Highest Probability P2 Returns the average of the top 2 likelihoods.
Gridded Highest Probability GP Applies likelihoods to an interpolated grid signal map.

materials on the RF propagation when inserted between the landmarks and the sensors.
Figure 1 shows the experimental results. These materials are easy to access and attacks
utilizing these kind of materials can be simply performed with low cost. Based upon
the results in Figure 1, we see that there is a linear relationship between the unattacked
signal strength and the attacked signal strength in dB for various materials. The linear
relationship suggests that there is an easy way for an adversary to control the effect of
his/her attack on the observed signal strength.
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Fig. 1.Signal attenuation when going through a barrier

In the rest of this paper, we will use the linear attenuation model to describe the effect of
an attack on the RSS readings at one or more landmarks. The resulting attacked readings
are then used to study the consequent effects on localization for the algorithms surveyed
above. In particular, in this study, we apply our attacks to individual landmarks, which
might correspond to placing a barrier directly in front of a landmark, as well as to the
entire set of landmarks, which corresponds to placing a barrier around the transmitting
device. Similar arguments can be made for amplification attacks, whereby barriers are
removed between the source and receivers. Although there are many different and more
complex signal strength attack methods that can be used, we believe their effects will
not vary much from the linear signal strength attack model weuse in this paper, and
note that such sophisticated attacks could involve much higher cost to perform.



4 Measuring Attack Susceptibility

The aim of a localization attack is to perturb a set of signal strength readings in order
to have an effect on the localization output. When selecting alocalization algorithm,
it is desirable to have a set of metrics by which we can quantify how susceptible a
localization algorithm is to varying levels of attack by an adversary. In this section, we
shall provide a formal specification for an attack, and present several measurement tools
for quantifying the effectiveness of an attack.

4.1 A Generalized Localization Model

In order to begin, we need to specify a model that captures a variety of RF-fingerprinting
localization algorithms. Let us suppose that we have a domain D in two-dimensions,
such as an office building, over which we wish to localize transmitters. WithinD, a set
of n landmarks have been deployed to assist in localization. A wireless device that trans-
mits with a fixed power in an isotropic manner will cause a vector of n signal strength
readings to be measured by then landmarks. In practice, thesen signal strength read-
ings are averaged over a sufficiently large time window to remove statistical variability.
Therefore, corresponding to each location inD, there is ann-dimensional vector of
signal readingss = (s1, s2, · · · , sn) that resides in a rangeR.

This relationship between positions inD and signal strength vectors defines a finger-
print functionF : D → R that takes our real world position(x, y) and maps it to a
signal strength readings. F has some important properties. First, in practice,F is not
completely specified, but rather a finite set of positions(xj , yj) is used for measuring a
corresponding set of signal strength vectorssj . Additionally, the functionF is generally
one-to-one, but is not onto. This means that the inverse ofF is a functionG that is not
well-defined: There are holes in then-dimensional space in whichR resides for which
there is no well-defined inverse.

It is precisely the inverse functionG, though, that allows us to perform localization.
In general, we will have a signal strength readings for which there is no explicit in-
verse (e.g. perhaps due to noise variability). Instead of using G, which has a domain
restricted toR, we consider various pseudo-inversesGalg of F for which the domain of
Galg is the completen-dimensional space. Here, the notationGalg indicates that there
may be differentalgorithmicchoices for the pseudo-inverse. For example, we shall de-
noteGR to be the RADAR localization algorithm. In general, the function Galg maps
ann-dimensional signal strength vector to a region inD. For point-based localization
algorithms, the image ofGalg is a single point corresponding to the localization result.
On the other hand, for area-based methods, the localizationalgorithmGalg produces a
set of likely positions.

An attack on the localization algorithm is a perturbation tothe correctn-dimensional
signal strength vectors to produce a corruptedn-dimensional vector̃s. Corresponding
to the uncorrupted signal strength vectors is a correct localization resultp = Galg(s),
while the corrupted signal strength vector produces an attacked localization result̃p =
Galg(s̃). Here,p andp̃ are set-valued and may either be a single point or a region inD.



4.2 Attack Susceptibility Metrics

We wish to quantify the effect that an attack has on localization by relating the effect
of a change in a signal strength readings to the resulting change in the localization
resultp. We shall usep0 to denote the correct location of a transmitter,p to denote the
estimated location (set) when there is no attack being performed, and̃p to denote the
position (set) returned by the estimator after an attack hasaffected the signal strength.
There are several performance metrics that we will use:

Estimator Distance Error: An attack will cause the magnitude ofp0 − p̃ to increase.
For a particular localization algorithmGalg we are interested in the statistical charac-
terization of‖p0 − p̃‖ over all possible locations in the building. The characterization
of ‖p0 − p̃‖ depends on whether a point-based method or an area-based method is
used, and can be described via its mean and distributional behavior. For a point-based
method, we may measure the cumulative distribution (cdf) ofthe error‖p0−p̃‖ over the
entire building. For area-based methods, we replacep̃, which is a set, with its median
(along thex andy dimensions separately). Thus, for area-based metrics, we calculate
the CDF of the distance between the median of the estimated locationsp̃med and the
true location, i.e.‖p0 − p̃med‖.

The CDF provides a complete statistical specification of thedistance errors. It is often
more desirable to look at the average behavior of the error. For point-based methods,
the average distance error is simplyE[‖p0− p̃‖], which is just the average of‖p0− p̃‖
over all locations. Area-based methods allow for more options in defining the average
distance error. First, for a particular value ofp0, p̃ is a set of points. For eachp0, we
get a collection of error values‖p0 − q‖, asq varies over points iñp. For eachp0,
we may extract the minimum, 25th percentile, median, 75th percentile, and maximum.
These quartile values of‖p0 − q‖ are then averaged over the different positionsp0.

Estimator Precision: An area-based localization algorithm returns a setp. For local-
ization, precision refers to the size of the returned estimated area. This metric quantifies
the average value of the area of the localized setp over different signal strength read-
ingss. Generally speaking, the smaller the size of the returned area, the more precise
the estimation is. When an attack is conducted, it is possiblethat the precision of the
answer̃p is affected.

Precision vs. Perturbation Distance:The perturbation distance is the quantity‖pmed−
p̃med‖. The precision vs. perturbation distance metric depicts the functional depen-
dency between precision and increased perturbation distance.

Hölder Metrics: In addition to error performance, we are interested in how dramat-
ically the returned results can be perturbed by an attack. Thus, we wish to relate the
magnitude of the perturbation‖s − s̃‖ to its effect on the localization result, which is
measured by‖Galg(s) − Galg(s̃)‖. In order to quantify the effect that a change in the
signal strength space has on the position space, we borrow a measure from functional
analysis [21], called the Hölder parameter (also known as the Lipschitz parameter) for
Galg. The Hölder parameterHalg is defined via

Halg = max
s,v

‖Galg(s) − Galg(v)‖

‖s − v‖
.



For continuousGalg, the Hölder parameter measures the maximum (or worst-case)ratio
of variability in position space for a given variability in signal strength space. Since the
traditional Hölder parameter describes the worst-case effect an attack might have, it
is natural to also provide an average-case measurement of anattack, and therefore we
introduce the average-case Hölder parameter

Halg = avg
s,v

‖Galg(s) − Galg(v)‖

‖s − v‖
.

These parameters are only defined for continuous functionsGalg, and many localization
algorithms are not continuous. For example, if we look atGR for RADAR, the result
of varying a signal strength reading is that it will yield astair-stepbehavior in position
space, i.e. small changes will map to the same output and thensuddenly, as we continue
changing the signal strength vector, there will be a change to a new position estimate
(we have switched over to a new Voronoi cell in signal space).In reality, this behav-
ior does not concern us too much, as we are merely concerned with whether adjacent
Voronoi cells map to close positions. We will revisit this issue in Section 6. Finally, we
emphasize that Hölder metrics measure the perturbability of the returned results, and
do not directly measure error.

5 Experimental Results

In this section we present our experimental results. We firstdescribe our experimental
method. Next, we examine the impact of attacks on the RSS to localization error when
attacking all landmarks simultaneously as well as single-landmark attacks. We then
quantify the algorithms’ linear responses to RSS changes. Finally, we present a preci-
sion study that investigates the impact of attacks on the returned areas for area-based
algorithms.

5.1 Experimental Setup

Figure 2 shows our experimental set up. The floor map on the left, (a) is the 3rd floor of
the CoRE building at Rutgers, which houses the computer science department and has
an area of 200x80ft (16000ft2). The other floor shown in (b) is an industrial research
laboratory (we call the Industrial Lab), which has an area of225x144ft (32400ft2).
The stars are the training points, the small dots are testingpoints, and the larger squares
are the landmarks, which are 802.11 access points. Notice that the 4 CoRE landmarks
are more co-linear than the 5 landmarks in the Industrial Lab.

For both attenuation and amplification attacks, we ran the algorithms but modified the
RSS of the testing points. We altered the RSS by +/-5 dB to +/-25 dB, in increments
of 5 dB. We experimented with different ways to handle signals that would fall below
the detectable threshold of -92 dBm for our cards. We found that substituting the mini-
mal signal (-92 dBm) produced about the same localization results and did not require
changing the algorithms to special case missing data.
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Fig. 2.Deployment of landmarks and training locations on the experimental floors

We experimented different training set sizes, including 35, 115, 225, 253 and 286 points.
Although there are some small differences, we found that thebehavior of the algorithms
matches previous results and varied little after using 115 training points, and we thus
used a training set size of 115 for this study.

5.2 Localization Error Analysis

In this section, we analyze the estimator distance error through the statistical character-
ization of‖p0 − p̃‖ by presenting the error CDFs of all the algorithms as a function of
attenuation and amplification attacks. The CDF provides a complete statistical specifi-
cation of the distance errors.

Figure 3(a) shows the normal performance of the algorithms for the CoRE building and
(e) shows the results for the Industrial Lab. For the area-based algorithms, the median
tile error is presented, as well as the minimum and maximum tile errors for ABP-75.
As in previous work, the algorithms all obtain similar performance, with the exception
of BN which slightly under-performs the other algorithms.

Figures 3(b) and 3(c) show the error CDFs under simultaneouslandmark attenuation
attacks of 10 and 25 dB for CoRE, respectively, while Figure 3(f) and 3(g) show the
similar results in the industrial lab. First, bulk of the curves shift to the right by roughly
equal amounts: no algorithm is qualitatively more robust than the others. Comparing
the two buildings, the results show that the industrial lab errors are slightly higher for
attacks at equal dB, but again, qualitatively the impact of the building environment is
not very significant.

Figures 3(d) and 3(h) show the error CDFs for the CoRE and Industrial Lab under
a 10 dB amplification attack. The results are qualitatively symmetric with respect to
the outcome of the 10 dB attenuation attack. We found that, ingeneral, comparing
amplifications to attenuations of equal dB, the errors were qualitatively the same.
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(a) CoRE: No attack (b) CoRE: 10dB attenuation
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(c) CoRE: 25dB attenuation (d) CoRE: 10dB amplification
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(e) Industrial: No attack (f) Industrial: 10dB attenuation
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(g) Industrial: 25dB attenuation (h) Industrial: 10dB amplification

Fig. 3.Error CDF across localization algorithms when attacks are performed onall the landmarks.



An interesting feature is that the minimum error for APB-75 also shifts to the right by
roughly the same amount as the other curves. Figures 3(a) and3(e) show that, in the
non-attacked case, the minimum tile error for ABP-75 is quite small, meaning that the
localized node is almost always within or very close to the returned area. However,
under attacks, the closest part of the returned area moves away from the true location
at the same rate as the median tile. We observed similar effects for the SPM and BN
algorithms.

Next, we examine attacks against a single landmark. We foundattacks against certain
landmarks had a much higher impact than against others in theCoRE building. Fig-
ure 4(a) and 4(b) show the difference in the error CDF by comparing attacks of land-
marks 1 and 2. Figure 2(a) shows that landmark 1 is at the southern end of the building,
while landmark 2 is in the center and is close to landmark 4. The tail of the curves in
Figure 4(a) are much worse than for 4(b), showing that when landmark 1 is attacked sig-
nificantly more high errors are returned. we observed a similar effect for amplification
attacks.
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(a) CoRE: Attenuation, Landmark 1 (b) CoRE: Attenuation, Landmark 2
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(c) Industrial: Attenuation, Landmark 4 (d) Industrial: Attenuation, Landmark 5

Fig. 4. Error CDF across localization algorithms when attacks are performed onan individual
landmark. The attack is 25dB of signal attenuation.

The Industrial Lab results in Figures 4(c) and (d) show much less sensitivity to land-
mark placement compared to the CoRE building. Figure 2(b) shows that landmark 5
is centrally located and we initially suspected this would result in attack sensitivity.
However, the error CDFs show that the remaining 4 landmarks provide sufficient cov-
erage: as landmark 5 is attacked, the error CDFs are not much different from attacking
landmark 4.



5.3 Linear Response

In this section, we show that the average distance error,E[‖p0 − p̃‖], of all the al-
gorithms scales in a linear way to attacks: the localizationerror changes linearly with
respect to the amount of signal strength change in dB (recallit is a log-scaled change in
power).

Figure 5 plots the median error vs. RSS attenuation for simultaneous landmark attacks
in Figure 5(a) and 5(d), and for individual landmarks in the other figures. Points are
measured data, and the lines are linear least-squares fits. The most important feature is
that, in all cases, the median responses of all the algorithms fits a line extremely well,
with an average R2-statistic of 0.98 for both the CoRE and Industrial Lab, and aworse-
case R2 of 0.94 for both buildings. Comparing the slopes across all the algorithms, we
found a mean change in positioning error vs. signal attenuation of 1.55 ft/dB under si-
multaneous attacks with a minimum of 1.3 ft/dB and maximum of1.8 ft/dB. For the
single landmark attack, the slope was substantially less, 0.64 ft/dB, although BN de-
grades consistently less than the other algorithms at 0.44 ft/dB. The linear fit results are
quite important as it means that no algorithm has a cliff where the average positioning
error suffers a catastrophic failure under attack. Instead, it remains proportional to the
severity of the attack.
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Fig. 5.Median mean error across localization algorithms under attenuation attack

While the median error characterizes the overall response toattacks, it does not address
whether an attacker can cause a few, large errors. We examined the response of the
maximum error as a function of the strength of the attack, i.e. how the 100th percentile



error scales as a function of the change in dB. We note that this characterization is
not the same as, nor is directly related to, the Hölder metrics. Those metrics define the
rates of change between physical and signal space within thelocalization function itself,
while here we characterize the change in the estimator errorto the change in signal, i.e.
‖p0 − p̃‖/‖s − v‖.

Figure 6 plots the worst-case error for each algorithm as a function of signal dB for
the CoRE building. The figure shows that almost all the responses are again linear,
with least-squares fits of R2 values of 0.84 or higher, though SPM does not have a
linear response. The second important point is the algorithms’ responses vary, falling
into three groups. BN, R1 and R2 are quite poor, with the worsecase error scaling at
about 4 ft/dB. P1 and P2, are in a second class, scaling at close to 3 ft/dB. The gridded
algorithms, GP and GR, as well as ABP-75 fair better, scalingat 2 ft/dB or less. Finally,
SPM is in a class by itself, with a poor linear fit (R2 of 0.61) and the maximum error
topping out at about 85 ft after 15 dB of attack.
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Fig. 6.Maximum error as a function of attack strength for CoRE

Examining the error CDFs and the maximum errors, we can see that most of the lo-
calizations move fairly slowly in response to an attack, at about 1.5 ft/dB. However,
for some of the algorithms, particularly BN, R1 and R2, the top part of the error CDF
moves faster, at about 4 ft/dB. What this means is that, for a select few points, an at-
tacker can cause more substantial errors of over 100 ft. However, at most places in the
building, an attack can only cause errors with much less magnitude.

Figure 5 show that BN is more robust compared to other algorithms for individual land-
mark attacks. Recall BN uses a Monte-Carlo sampling technique (Gibbs sampling) to
compute the full joint-probability distribution for not just the position coordinates, but
also for every node in the Bayesian network. Under a single landmark attack we found
the network reduces the contribution of network nodes directly affected by the attacked
landmark to the full joint-probability distribution whileincreasing other landmarks’
contributions. In effect, the network “discounts” the attacked landmark’s contribution
to the overall joint-density because the attacked data fromthat landmark is highly un-
likely given the training data.

To show this effect we developed our own Gibbs sampler so thatwe could observe
the relative contributions of each node in the Bayesian network to the final answer.
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Fig. 7. Contribution of each Landmark during sampling in the BN algorithm under attenuation
attacks.
Figure 7 shows the percentage contribution for each landmark to overall joint-density.
For instance, in CoRE, the contribution of each landmark starts almost uniformly. When
Landmark 1 under attack, the contribution of Landmark 1 goesfrom 0.25 down to 0.15.
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Fig. 8. Analysis of precision CDF across area-based algorithms. The attack is performed on all
the landmarks.

5.4 Precision Study

In this section, we examine the area-based algorithms’ precision in response to attacks.
Figure 8 shows the CDF of the precision (i.e. size of the returned area) for different
area-based algorithms under attack for all the landmarks inCoRE and Industrial Lab.



We found the algorithms did not become less precise in response to attacks, but rather,
the algorithms tended to shift and shrink the returned areas. Figure 8(a) shows a small
average shrinkage for SPM in the CoRE building, and likewise, 8(b) shows a similar
effect for BN.

ABP-75 had the most dramatic effect. Figures 8(c) and 8(d) show the precision versus
the attack strength for both buildings. The shrinkages are quite substantial. We found
that, under attack, the probability densities of the tiles shrank to small values that were
located on a few tiles– reflecting the fact that an attack causes there not to be a likely
position to localize a node. We also found that this effect held for amplification attacks,
as is shown in Figure 8(d). The shrinking precision behaviormay be useful for attack
detection, although a full characterization of how this effect occurs remains for future
work.
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Fig. 9.Precision vs. perturbation distance under attenuation attack

Examining this effect further, Figure 9 presents the precision vs. the attack strength,
with a least squares line fit. Figure 9(a) shows the effect when attacking all landmarks
on the CoRE building. Figure 9(b) shows a downward trend, butmuch weaker, when at-
tacking one landmark. We observed similar results for the Industrial Lab. We see mostly
linear changes in precision in response to attacks, although with great differences be-
tween the algorithms. The figures show that the decrease in precision as function of dB
is particularly strong for ABP-75.

6 Discussion about Hölder Metrics

In the previous section we examined the experimental results, and looked at the perfor-
mance of several localization algorithms in terms of error and precision. We now focus
on the performance of these localization algorithms in terms of the Hölder metrics. The
Hölder metrics measure the variability of thereturnedanswer in response to changes in
the signal strength vectors.

We first discuss the practical aspects of measuringH andH for different algorithms.
In Section 4, the Hölder parameters are defined by calculating the maximum and av-
erage over the entiren-dimensional signal strength space. In practice, it is necessary
to perform a sampling technique to measureH andH. Additionally, as noted earlier,



the definition ofH andH are only suitable for (Hölder) continuous functionsGalg.
In reality, several localization algorithms, such as RADAR, are not continuous and in-
volve the tessellation of the signal strength space into Voronoi cellsVj , and thus only
a discrete set of localization results are produced (image of Vj underGalg). Hence, for
anys ∈ Vj we haveGR(s) = (xj , yj). Unfortunately, for neighboring Voronoi cells,
we may takes ∈ Vj andv ∈ Vi such that they are arbitrarily close (i.e.‖s − v‖ → 0),
while ‖GR(s) − GR(v)‖ 6= 0. In such a case, the formal calculation ofH andH is
not possible. However, for our purposes, we are only interested in measuring the notion
of adjacency of Voronoi cells in signal space yieldingcloselocalization results. Thus,
our calculation ofH andH is only performed over the centroids of the various Voronoi
cells for localization algorithms that tessellate of signal strength space.

Table 2.Analysis of (worst-case)H and (average-case)H

Algorithms CoRE: H LAB: H CoRE: H LAB: H

Area-Based
SPM 23.7646 11.0659 1.8856 2.3548

ABP-75 20.0347 23.0652 1.8548 2.3424
BN 31.7324 14.9168 2.0595 2.5873

Point-Based
R1 36.2400 20.7846 1.9750 2.3677
R2 19.8586 8.7313 1.9138 2.3058
GR 35.9880 20.6886 1.9691 2.3628
P1 20.8832 20.7846 1.9793 2.3683
P2 19.8586 8.7313 1.9178 2.3058
GP 21.8303 20.6886 1.9649 2.2882

The Hölder parameters for the different localization algorithms are presented in Table
2. Examining these results, there are several important observations that can be made.
First, if we examine the results forH we see that, for each building, all of the algorithms
have very similarH values. Hence, we may conclude that the average variabilityof
the returned localization result to a change in the signal strength vector is roughly the
same for all algorithms. This is an important result as it means, regardless of which RF
fingerprinting localization system we deploy, the average susceptibility of the returned
results to an attack is essentially identical.

However, if we examine the results forH, which reflects the worst-case susceptibil-
ity, then we see that there are some differences across the algorithms. First, comparing
H andH for both point-based and area-based algorithms, we see thatthe worst-case
variability can be much larger than the average variability. Additionally, the point-based
methods appear to cluster. Notably, RADAR (R1) and Gridded Radar (GR) have similar
performance across both CoRE and the Industrial Lab, while averaged RADAR (R2)
and averaged Highest Probability (P2) have similar performance across both buildings.
A very interesting phenomena is observed by looking at the algorithms that returned
an average of likely locations (R2 and P2). Across both buildings these algorithms ex-
hibited less variability compared to other algorithms. This is to be expected as averag-
ing is a smoothing operation, which reduces variations in a function. This observation
suggests that R2 and P2 are more robust from a worst-case point-of-view than other
point-based algorithms.



7 Conclusion

In this paper, we analyzed the robustness of RF-fingerprinting localization algorithms
to attacks that target signal strength measurements. We first examined the feasibility
of conducting amplification and attenuation attacks, and observed a linear dependency
between non-attacked signal strength and attacked signal strength readings for different
barriers placed between the transmitter and a landmark receiver. We provided a set of
performance metrics for quantifying the effectiveness of an attenuation/amplification
attack. Our metrics included localization error, the precision of area-based algorithms,
and a new family of metrics, called Hölder metrics, that quantify the variability of the re-
turned answer versus change in the signal strength vectors.We conducted a trace-driven
evaluation of several point-based and area-based localization algorithms where the lin-
ear attack model was applied to data measured in two different office buildings. We
found that the localization error scaled similarly for all algorithms under attack. Further,
we found that, when attacked, area-based algorithms did notexperience a degradation
in precision although they experienced degradation in accuracy. We then examined the
variability of the localization results under attack by measuring the Hölder metrics. We
found that all algorithms had similar average variability,but those methods returned the
average of a set of most likely positions exhibited less variability. This result suggests
that the average susceptibility of the returned results to an attack is essentially identical
across point-based and area-based algorithms, though it might be desirable to employ
either area-based methods or point-based methods that perform averaging in order to
lessen the worst-case effect of a potential attack.
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