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Stabilization of Planar Collective Motion:
All-to-All Communication
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Abstract—This paper proposes a design methodology to stabi-
lize isolated relative equilibria in a model of all-to-all coupled iden-
tical particles moving in the plane at unit speed. Isolated relative
equilibria correspond to either parallel motion of all particles with
fixed relative spacing or to circular motion of all particles with
fixed relative phases. The stabilizing feedbacks derive from Lya-
punov functions that prove exponential stability and suggest al-
most global convergence properties. The results of the paper pro-
vide a low-order parametric family of stabilizable collectives that
offer a set of primitives for the design of higher-level tasks at the
group level.

Index Terms—Cooperative control, geometric control, multi-
agent systems, stabilization.

I. INTRODUCTION

THE collective control of multiagent systems is a rapidly
developing field, motivated by a number of engineering

applications that require the coordination of a group of individ-
ually controlled systems. Applications include formation con-
trol of unmanned aerial vehicles (UAVs) [1], [2] and spacecraft
[3], cooperative robotics [4]–[6], and sensor networks [7], [8]. A
specific application motivating the results of the present paper
is the use of autonomous underwater vehicles (AUVs) to col-
lect oceanographic measurements in formations or patterns that
maximize the information intake, see e.g., [9], [10]. This can
be achieved by matching the measurement density in space and
time to the characteristic scales of the oceanographic process
of interest. Coordinated, periodic trajectories such as the ones
studied in this paper, provide a means to collect measurements
with the desired spatial and temporal separation.

The design focus of collective stabilization problems is on
achieving a certain level of synchrony among possibly many but
individually controlled dynamical systems. The primary design
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issue is not how to control the individual dynamics, but rather
how to interconnect them to achieve the desired level of syn-
chrony. This motivates the use of simplified models for the in-
dividuals. For instance, synchrony in populations of coupled os-
cillators has been studied primarily by means of phase models;
these models only retain the phase information of individual os-
cillators as the fundamental information pertaining to synchrony
measures of the ensemble [11]. Even these simplified models
raise challenging issues for the analysis or design of their inter-
connection. They have recently motivated a number of new de-
velopments in stability analysis [12], [13]. The interconnected
control system is high dimensional, both in the number of state
variables and control variables. It is nevertheless characterized
by a high level of symmetry, which is maximal when all the
individual models are assumed identical. Symmetry properties
make these models well suited to the reduction techniques of
geometric control [14]. Symmetry and geometry play a central
role in the analysis of cyclic pursuit strategies for kinematic uni-
cycle models studied in [15].

Motivated by the issues above, we consider in the present
paper the model of identical, all-to-all coupled, planar particles
introduced in [16]. The particles move at constant speed and
are subject to steering controls that change their orientation. In
addition to a phase variable that models the orientation of the
velocity vector, the state of each particle includes its position in
the plane. The synchrony of the collective motion is thus mea-
sured both by the relative phasing and the relative spacing of
particles.

In [17] and [18], we observed that the norm of the average
linear momentum of the group is a key control parameter: it is
maximal in the case of parallel motions of the group and min-
imal in the case of circular motions around a fixed point. We
exploited the analogy with phase models of coupled oscillators
to design steering control laws that stabilize either parallel or
circular motions. Expanding on this idea, the design method-
ology in the present paper is to construct potentials that reach
their minimum at desired collective formations and to derive the
corresponding gradient-like steering control laws as stabilizing
feedbacks. We treat separately phase potentials that control the
relative orientation of particles and spacing potentials that con-
trol their relative spacing. We show that the design can be made
somewhat systematic and versatile, resulting in a simple but
general controller structure. The stabilizing feedbacks depend
on a restricted number of parameters that control the shape and
the level of symmetry of parallel or circular formations. This
low-order parametric family of stabilizable collectives offers a
set of primitives that can be used to solve path planning or opti-
mization tasks at the group level.

0018-9286/$25.00 © 2007 IEEE
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The results of the paper rest on two idealistic assumptions:
all-to-all communication and identical individuals. Neither of
these assumptions is realistic in a practical environment, not
in engineering models nor in models of natural groups. The
all-to-all assumption is instrumental to the results of the paper
but this strong assumption is completely relaxed in a companion
paper [30] where we extend the present results to communica-
tion topologies where communication is limited. The assump-
tion of identical individuals is fundamental to the symmetry
properties of the closed-loop vector field, which is instrumental
to the proposed stability analysis. It is known that the individual
dynamics may exhibit much more complicated behaviors away
from this ideal situation. Many earlier studies nevertheless sug-
gest that synchrony is robust and that an ensemble phenomenon
resulting from a specific interconnection structure will persist in
spite of individual discrepancies. The analysis of the celebrated
Kuramoto model (see [19] for a recent review) exemplifies both
the robustness of synchronization at the ensemble level and its
mathematical mysteries at the individual level in a population
of non-identical, all-to-all coupled oscillators. In this sense, the
ideally engineered models considered in this paper may help in
capturing gross dynamical properties of more realistic, multia-
gent, simulation models or of biologists’ observations of animal
groups.

The rest of this paper is organized as follows. Section II
reviews the geometric properties of the considered model.
Section III introduces a basic phasing potential that controls
the group linear momentum. In Section IV we introduce a
spacing potential that is minimum in circular formations. These
results provide the basic control laws to achieve either parallel
or circular formations, the only possible relative equilibria of
the model. Due to symmetry, the dimension of the equilibrium
set is high and can be reduced with the help of symmetry
breaking controls laws that derive from further potentials.
We show in Sections V, VI and VII how to stabilize isolated
relative equilibria of the model, both in circular formations
(Sections V and VI) and in parallel formations (Section VII).
Exponential stabilization of isolated circular relative equilibria
is presented in Section VI. Section VIII illustrates how to
combine the results of the previous sections in a low-parameter
catalog of stabilizable collectives. Conclusions are presented in
Section IX.

II. A MODEL OF STEERED PARTICLES IN THE PLANE

We consider a continuous-time kinematic model of
identical particles (of unit mass) moving in the plane at unit
speed [1]

(1)

In complex notation, the vector
denotes the position of particle and the angle de-
notes the orientation of its (unit) velocity vector

. The scalar is the steering control for particle . We
use a bold variable without index to denote the corresponding

-vector, e.g., and . In
the absence of steering control , each particle moves at
unit speed in a fixed direction and its motion is decoupled from

the other particles. We study the design of various feedback con-
trol laws that result in coupled dynamics and closed-loop con-
vergence to different types of organized or collective motion.
We assume identical control for each particle. In that sense, the
collective motions that we analyze in the present paper do not
require differentiated control action for the different particles
(e.g., the presence of a leader for the group).

The model (1) has been recently studied by Justh and
Krishnaprasad [1]. These authors have emphasized the Lie
group structure that underlies the state space. The configura-
tion space consists of copies of the group . When
the control law only depends on relative orientations and
relative spacing, i.e., on the variables and

, , the closed-loop vector field is
invariant under an action of the symmetry group and the
closed-loop dynamics evolve on a reduced quotient manifold.
This -dimensional manifold is called the shape space
and it corresponds to the space of all relative orientations and
relative positions. Equilibria of the reduced dynamics are called
relative equilibria and can be only of two types [1]: parallel
motions, characterized by a common orientation for all the
particles (with arbitrary relative spacing), and circular motions,
characterized by circular orbits of the particles around a fixed
point. Both types of motion have been observed in simulations
in a number of models that are kinematic or dynamic variants
of the model (1), see for instance [20].

A simplification of the model (1) occurs when the feedback
laws depend on relative orientations only. The control has then
a much larger symmetry group ( copies of the translation
group), and the reduced model becomes a pure phase model

where the phase variable belongs to the -dimen-
sional torus . This phase model still has an -symmetry
if the feedback only depends on phase differences. Phase-os-
cillator models of this type have been widely studied in the
neuroscience and physics literature. They represent a simplifi-
cation of more complex oscillator models in which the uncou-
pled oscillator dynamics each have an attracting limit cycle in a
higher-dimensional state space. Under the assumption of weak
coupling, the reduction of higher-dimensional models to phase
models by asymptotic methods (singular perturbations and av-
eraging) has been studied in e.g., Ermentrout and Kopell [21]
and Hoppensteadt and Izhikevich [22].

The results in this paper build upon an extensive literature on
phase models of coupled oscillators [11], [19], [23], [24]. We
will stress the close connection between collective motions in
groups of oscillators and collective motions in groups of moving
particles.

Euler discretization of the continuous-time model (1) yields
the discrete-time equations

(2)

The direction of motion of particle is updated at each time
step according to some feedback control . We consider
continuous-time models in this paper, but we mention a few
relevant references that study their discrete-time counterpart.
Couzin et al. [25] have studied such a model where the feedback
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control is determined from a set of simple rules: repulsion from
close neighbors, attraction to distant neighbors, and preference
for a common orientation. Their model includes stochastic
effects but also exhibits collective motions reminiscent of
either parallel motion or circular motion around a fixed center
of mass. Interestingly, these authors have shown coexistence
of these two types of motion in certain parameter ranges and
hysteretic transition from one to the other. A discrete stochastic
phase model has been studied by Vicsek et al. [26].

III. PHASE STABILIZATION

We start our analysis with a basic but key observation for
the results of this paper: the (average) linear momentum of
a group of particles satisfying (1) is the centroid of the phase
particles , that is

(3)

The parameter is a measure of synchrony of the phase vari-
ables [11], [19]. It is maximal when all phases are synchro-
nized (identical). It is minimal when the phases balance to re-
sult in a vanishing centroid. The set of synchronized states is an
isolated point modulo the action of the symmetry group . It
defines a manifold of dimension one. The set of balanced states,
which we call the balanced set, is defined as all for
which . For odd, the equation has full rank
everywhere and the set of balanced states defines a manifold of
codimension two. For even, the balanced set is not a man-
ifold of codimension two. The equation loses rank at points
where there are two anti-synchronized, equally-sized clusters,
i.e., each cluster consists of synchronized phases and the
phase of one cluster equals the phase of the other cluster plus .

In the particle model (1), synchronization of the phases cor-
responds to a parallel formation: all particles move in the same
direction. In contrast, balancing of the phases corresponds to
collective motion around a fixed center of mass. Control of the
group linear momentum is thus achieved by minimizing or max-
imizing the potential

(4)

which suggests the gradient control , i.e.,

(5)

The inner product is defined by for
. For vectors, we use the analogous boldface notation

for . This all-to-all sinu-
soidal coupling (5) is the most frequently studied coupling in
the literature of coupled oscillators [11], [19], [24]. Its gradient
nature enables the following global convergence analysis.

Theorem 1: The potential reaches its
unique minimum when (balancing) and its unique
maximum when all phases are identical (synchronization). All
other critical points of are isolated in the shape manifold

and are saddle points of .

The phase model with the gradient control (5) forces
convergence of all solutions to the critical set of . If ,
then only the set of synchronized states is asymptotically stable
and every other equilibrium is unstable. If , then only the
balanced set where is asymptotically stable and every
other equilibrium is unstable.

Proof: The gradient dynamics forces
convergence of all solutions to the set of critical points of ,
characterized by the algebraic equations

(6)

Critical points where are global minima of . As a
consequence, the balanced set is asymptotically stable if
and unstable if . From (6), critical points where

are characterized by , that is,
phases synchronized at and phases syn-

chronized at , with . At those
points, . The value
defines a synchronized state and corresponds to a global max-
imum of . As a consequence, the set of synchronized states
is asymptotically stable if and unstable if .

Every other value corresponds to a saddle
and is, therefore, unstable both for and . For

, this is because the second derivative

(7)

takes negative values if and positive values if
. As a consequence, a small variation at those critical

points decreases the value of if and increases the
value of if . For , a small variation
of two angles can be used to prove the desired result.

The consequence of Theorem 1 is that parallel formations are
stabilized by all-to-all sinusoidal coupling of the phases differ-
ences, i.e., the control law (5) with . With , the
same control law stabilizes the center of mass of the particles to
a fixed point. The fact that the remaining equilibria are saddles
suggests that the conclusions of Theorem 1 are almost global,
that is, almost all solutions either converge to the synchronized
state or to the balanced set .

We note that the conclusions of Theorem 1 can be equiva-
lently stated in a rotating frame, that is, for the phase model

(8)

The convergence analysis is unchanged because of the property
, which is a consequence of the invariance of

under the action of the symmetry group .
For , the steady state of the phase model (8) gives

rise to straight orbits in the particle model (1): synchronization
then means parallel motion in a fixed direction, with arbitrary
but constant relative spacing, which is a relative equilibrium of
the model. In contrast, balancing means straight orbits towards
or away from a fixed center of mass, which does not correspond
to a relative equilibrium of the model.
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Fig. 1. Four different types of collective motion ofN = 12 particles obtained
with the phase control (8). The position of each particle, r , and its time-deriva-
tive, _r , are illustrated by a circle with an arrow. The center of mass of the group,
R, and its time-derivative, _R, are illustrated by a crossed circle with an arrow.
(a) ! = 0 and K < 0. (b) ! = 0 and K > 0. (c) ! 6= 0 and K < 0. (d)
! 6= 0 andK > 0. Only (a) is a relative equilibrium of the particle model (1).

For , the steady state of the phase model (8) gives rise
to circular orbits of radius in the particle model
(1). In general, particles orbit different circles. Synchronization
imposes parallel orientation of all velocity vectors whereas bal-
ancing imposes a fixed center of mass. A collective motion with
fixed center of mass corresponds to a relative equilibrium of the
model only if all particles orbit the same circle.

The four different types of collective motion associated with
the phase model (8) are illustrated in Fig. 1.

IV. STABILIZATION OF CIRCULAR FORMATIONS

In contrast to the phase control designed in the previous
section, we now propose a spacing control that achieves global
convergence to a circular relative equilibrium of the particle
model (1).

We start our analysis with the observation that under the con-
stant control , each particle travels at constant, unit
speed on a circle of radius . The center of the circle
traversed by particle is . Multiplied by the
constant factor becomes

(9)

A circular relative equilibrium is obtained when all the centers
coincide; this corresponds to the algebraic condition

(10)

This suggests to choose a stabilizing control that minimizes
the Lyapunov function

(11)

Noting that

(12)

the time-derivative of along the solutions of (1) is

(13)

where denotes the th row of the matrix and where we
have used the fact that is a projector, i.e., . Choosing
the control law

(14)

results in

(15)

Noting that

we obtain

(16)

where we denote by the relative position of particle
from the group center of mass . Using (16),

we rewrite the control law (14) as

(17)

Lyapunov analysis provides the following global convergence
result.

Theorem 2: Consider the particle model (1) with the spacing
control (17). All solutions converge to a relative equilibrium
defined by a circular formation of radius with
direction determined by the sign of .

Proof: The Lyapunov function defined in (11) is
positive definite and proper in the reduced shape space, that
is, when all points that differ only by a rigid translation

and a rigid rotation are identified. From (15),
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is nonincreasing along the solutions and, by the LaSalle Invari-
ance principle, solutions for the reduced system on shape space
converge to the largest invariant set where

(18)

for . In this set, and is constant for all
. This means that (18) can hold only if . As

a result, for some fixed , i.e., all particles orbit
the same circle of radius .

V. PHASE SYMMETRY BREAKING IN CIRCULAR FORMATIONS

The spacing control law of Section IV stabilizes particle mo-
tions to a unique set in the physical plane modulo the symmetry
group of rigid displacements. In contrast, the phase arrangement
of the particles is arbitrary. To reduce the dimension of the equi-
librium set, we combine the spacing potential defined in
(11) with a phase potential that is minimum at the desired
phase configuration. We require that preserves the sym-
metry of rigid rotation, that is, .

Theorem 3: Consider the particle model (1) and a smooth
phase potential that satisfies . The control
law

(19)

enforces convergence of all solutions to the set of relative equi-
libria defined by circular formations where all particles move
around the same circle of radius and direction given by the
sign of with a phase arrangement in the critical set of .
Every (local) minimum of defines an asymptotically stable
set of relative equilibria. Every relative equilibrium where
does not reach a minimum is unstable.

Proof: We use the composite Lyapunov function

(20)

which is lower bounded since and takes values in a
compact set. The time-derivative of along the solutions of (1)
is

(21)

which, using the property , becomes

(22)

Because the control (19) is

(23)

the Lyapunov function satisfies
along the closed-loop solutions. By the LaSalle Invariance prin-
ciple, solutions for the reduced system on shape space converge
to the largest invariant set where

(24)

for . In the set , the dynamics reduce to
, which implies that is constant. Therefore, the right-hand

side of (24) vanishes in the set , which implies since
. We conclude that solutions converge to a circular relative

equilibrium and that the asymptotic phase arrangement is in the
critical set of .

Consider the set of circular relative equilibria of radius
with a phase configuration in the critical set of . Because

in , local minima of correspond to local
minima of the Lyapunov function. Any connected subset of
on which reaches a strict minimum is, therefore, asymptoti-
cally stable. Note that because is a set of equilibria, is con-
stant on any connected subset. In contrast, consider

such that is not a minimum and denote by the con-
nected component of containing . is constant in . To
show instability of , consider a compact neighborhood

contains no other relative equilibrium. A solution
with initial condition in either asymptotically converges
to or leaves after a finite time. Let
such that . Then the solution with initial condition

cannot converge to (and therefore leaves after a finite
time) since decreases along solutions and .
Because is not minimum, can be chosen arbitrary close
to , which proves instability of .

Theorem 3 thus provides a global convergence analysis of
closed-loop dynamics achieved with the control law (19). It
shows that solutions either converge to circular relative equi-
libria with a phase configuration that (locally) minimizes the
phase potential or belong to the stable manifold of an unstable
equilibrium. As an illustration, simulation results in Fig. 2 il-
lustrate the convergence result for the choice . For

, the control law (19) achieves convergence to a cir-
cular formation but the asymptotic phase arrangement is not
constrained. For , the control law (19) forces conver-
gence to the synchronized circular formation. For , the
control law (19) forces convergence to a balanced circular for-
mation. Note that for , the expression of the control law
simplifies to

The stability analysis in Theorem 3 is entirely determined by
the critical points of the phase potential : (local) minima cor-
respond to stable equilibria and other critical points correspond
to unstable relative equilibria. When a critical point is nonde-
generate, this analysis extends to the Jacobian linearization of
the closed-loop system, providing (local) exponential stability
conclusions. We say that a critical point is nondegenerate (in
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Fig. 2. Circular formations achieved with the control (19) withN = 12; ! =
� = 0:1, and U = KU . (a) Convergence to a balanced circular formation
(K > 0). (b) Convergence to a circular formation with no constraint on the
asymptotic phase arrangement (K = 0). (c) Convergence to a synchronized
circular formation (K < 0).

) if all eigenvalues of the Hessian are
different from zero, except for the zero eigenvalue (with eigen-
vector ) associated to the rotational symmetry.

Theorem 4: Consider as in Theorem 3 the particle
model (1), a smooth phase potential that satisfies

, and the control law (19). A relative equi-
librium determined by a nondegenerate critical point of

is exponentially stable if is a (local) minimum and
exponentially unstable otherwise.

Proof: The proof is a local version of the proof of Theorem
3 around the relative equilibrium . In the coordinates

, the quadratic approximation of at is

where and . Like-
wise, the control law (23) linearizes to

where is the th row of . Then

along the closed-loop solutions of the linearized system.

The stability analysis then proceeds as in the proof of The-
orem 3: if is a minimum, then and the LaSalle invari-
ance principle proves asymptotic stability of the linearized (pe-
riodic) closed-loop system, which implies exponential stability
of the equilibrium. In contrast, if is not a minimum, then there
exist initial conditions for which . The corresponding
solutions of the linearized system cannot converge to the equi-
librium and must diverge exponentially.

The above result yields a systematic and general design
methodology by reducing the design of exponentially stabi-
lizing control laws to the construction of phase potentials.
Specifically, control laws that exponentially stabilize isolated
relative circular equilibria are automatically derived from phase
potentials that have nondegenerate minima at the desired
location. The phase potential of (4) achieves this objective
for the stabilization of the synchronized circular formation. The
next section focuses on the construction of more general phase
potentials that can be used to isolate specific balanced circular
formations.

VI. EXPONENTIAL STABILIZATION OF ISOLATED CIRCULAR

RELATIVE EQUILIBRIA

A. Stabilization of Higher Momenta

When the phase potential reaches its minimum, the phase
arrangement of the particles is only stabilized to the balanced
set, which is high dimensional. More general phase potentials
are introduced in this section in order to reduce the dimension
of this equilibrium set. A natural generalization of the potential

is a potential

(25)

which depends on the th moment of the phase distribution
on the circle, defined as

(26)

Note that . The next proposition is a direct generaliza-
tion of Theorem 1.

Theorem 5: Let . The potential
reaches its unique minimum when (balancing modulo

) and its unique maximum when the phase difference
between any two phases is an integer multiple of
(synchronization modulo ). All other critical points
of are isolated in the shape manifold and are saddle
points of .

Proof: Critical points of are the roots of

(27)

Critical points for which are global minima of .
Critical points for which are character-
ized by phases satisfying and
phases satisfying , with

. At those critical points,
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Fig. 3. Six possible different symmetric patterns forN = 12 corresponding to
M = 1; 2; 3; 4; 6 and 12. The top left is the synchronized state and the bottom
right is the splay state. The number of collocated phases is illustrated by the
width of the black annulus denoting each phase cluster.

. is maximized when . Critical points for
which and are saddles
because the second derivative

(28)

takes negative values if and positive values if
. As a consequence, a small variation at

those critical points decreases the value of if
and increases the value of if . For

, a small variation of two angles can be used to
prove the desired result.

We show in the next section how linear combinations of the
potentials enable the stabilization of specific sets of isolated
relative equilibria characterized by various discrete symmetry
groups.

B. Symmetric Balanced Patterns

Let be a divisor of . An -pattern is
a symmetric arrangement of phases consisting of clus-
ters uniformly spaced around the unit circle, each with
synchronized phases. For any , there exist at least two sym-
metric patterns: the -pattern, which is the synchronized
state, and the -pattern, which is the splay state, charac-
terized by phases uniformly spaced around the circle. Fig. 3
provides an illustration of all symmetric balanced patterns for

.
Symmetric balanced patterns are extremals of the potentials
. As a consequence, they are characterized as minimizers of

well-chosen potentials; these can be written as linear combina-
tions of the . This result for , i.e., the splay state, was
also presented in [27]. We first prove a technical lemma that we
will use in making this characterization explicit.

Lemma 1: Consider the following sum where

(29)

If , then , otherwise .
Proof: If then for all

which proves the first part of the lemma. To prove the second
part, we treat (29) as the sum of a geometric series and evaluate
it for all that satisfy . Multiplying both
sides of (29) by gives

Rearranging terms and solving for yields

(30)

which shows that since the numerator of (30) van-
ishes for all that satisfy .

Theorem 6: Let be a divisor of . Then
is an -pattern if and only if it is a global minimum of the
potential

(31)

with for and .
Proof: The global minimum of is reached (only)

when is minimized for each . If for
and , following (25) and (26)

this means the global minimum corresponds to for
and . We show that this

implies an -pattern configuration. From the condition
and Theorem 5, we can conclude that there are

clusters such that the th cluster is of size at phase
, where .

We would like to show that for all
. We have

(32)

and

(33)

Equations (32) and (33) are a system of linear equa-
tions in the unknown variables .
Namely, (32) and (33) can be written as where

with
and . The inverse of is given
by , where the bar denotes the complex
conjugate. To see this, observe that

(34)

For , (34) evaluates to by Lemma 1. For , we have
and (34) evaluates to zero by Lemma 1. Therefore,

the solution to the system of (32) and (33) is .



818 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 5, MAY 2007

Since both the th row and column of are all ones, we find
that for all .

Next, we show that an -pattern configuration mini-
mizes each for . For an -pat-
tern, the size of cluster is and its phase is given by

, where . Recall that the th
moment of the phase distribution is given by (26). Evalu-
ated at an -pattern, the th moment becomes

(35)

By Lemma 1, for and zero other-
wise. Therefore, for phases in an -pattern, for

and .
Corollary 1: Let . Then is an -pat-

tern, i.e., the splay state, if and only if it is a global minimum of
the potential

(36)

with for , where is the
largest integer less than or equal to .

Proof: By Theorem 6, the phases are in the splay state
if and only if they correspond to the global minimum of the
potential (31) with . Since imposes two
constraints on the system for each , minimizing the poten-
tial imposes constraints on the phase arrangement.
However, for potentials with symmetry, the dimension of the
shape space is . Therefore, we need only set for

since that imposes
independent constraints.

Due to the characterization of Theorem 6, stabilizing con-
trol laws for -pattern circular formations are directly and
systematically provided by Theorem 3.

Theorem 7: Each -pattern circular formation of ra-
dius is an isolated relative equilibrium of the particle model
(1) and is exponentially stabilized by the control law

(37)

Proof: The theorem is a consequence of Theorems 3, 4,
and 6. We only need to prove that each -pattern defines
a nondegenerate critical point of the potential .

Let the negative gradient of the potential be defined in
terms of the coupling function, , i.e.,

(38)

where for and . Also, let
be the derivative of with respect to , given by

(39)

As shown in [28], the linearization of coupling functions of this
form about an -pattern has eigenvalues that can be
described as the union of two sets. The first set consists of the
eigenvalue with multiplicity . These eigenvalues
are associated with intra-cluster fluctuation. The second set con-
sists of eigenvalues . These eigen-
values are associated with intercluster fluctuation.

Both sets of eigenvalues can be expressed as functions of the
Fourier coefficients of . For a general coupling function,
the Fourier expansion of is

(40)

The formulas for calculating the (real part of) the eigenvalues
are as follows [28]:

(41)

(42)

Note that only the coefficients determine stability and that
.

The coefficients are given by integrating

(43)

which gives

(44)

(45)

As a result, for , which, using (41), yields
. In addition, using (42), we find that

for and
. The zero eigenvalue corresponds to rigid rotation of

all phases [28]. Since the coupling function (38) is the gra-
dient of the potential , its Jacobian is the Hessian of
and, consequently, all the eigenvalues are real. Therefore, each

-pattern defines a nondegenerate critical point of the po-
tential since the Hessian has rank .

Theorem 7 does not exclude convergence to circular forma-
tions that correspond to other critical points of the phase po-
tential . However, no other local minima were identi-
fied and simulations suggest large regions of attraction of the
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Fig. 4. Result of a numerical simulation starting from random initial conditions
and stabilizing the splay state formation using the control (37) withM = N =
12; ! = � = 0:1; K = ! for m = 1; . . . ; b(N=2)c, and K = 0 for
m > b(N=2)c.

-pattern circular formations. Fig. 4 illustrates a simula-
tion of the splay state stabilization for particles using
the control law (37).

VII. SPATIAL SYMMETRY BREAKING IN

PARALLEL FORMATIONS

As shown in Theorem 1, the phase control
suffices to stabilize parallel equilibria. However, the asymptotic
relative positions of particles are arbitrary. In this section, we
show how to reduce the dimension of the equilibrium set in close
analogy to the design of the spacing control in Section IV.

We choose an arbitrary isolated parallel relative equilibrium
in the shape space by imposing on the relative position of
particle with respect to the center of mass a fixed length and
a fixed orientation relative to the group direction. Assuming
that all phases are synchronized at the relative equilibrium, this
gives in complex notation

(46)

where is a constant complex number. The rel-
ative positions with respect to the center of mass must balance,
that is, , which imposes the constraint

(47)

Motivated by the derivation of the spacing control in
Section IV, we observe that the definition

allows one to specify the parallel relative equilibrium of interest
by the conditions

(48)

Indeed, the condition imposes phase synchronization,
that is, for some , whereas the condition

implies for some , which in turn gives
. Summing over yields ,

which corresponds to the desired relative equilibrium.
The desired relative equilibrium thus minimizes the

Lyapunov function

(49)

which, in analogy with the results of Section IV, suggests the
control law

(50)

Lyapunov analysis provides the following result.
Theorem 8: Consider the particle model (1) with the con-

trol law (50). The parallel relative equilibrium defined by (48)
is Lyapunov stable and a global minimum of the Lyapunov func-
tion (49). Moreover, for every , there exists an invariant
set in which the Lyapunov function is nonincreasing along the
solutions. In this set, solutions converge to a parallel relative
equilibrium that satisfies

(51)

for some and for .
Proof: In the coordinates , the system (1) becomes

(52)

Writing the control law (50) as
, and using the identity

one obtains

(53)

Setting , the time-derivative of the Lyapunov function
(49) along solutions of (53) is

(54)

Fix an arbitrary compact neighborhood of the parallel equi-
librium (46) that contains no critical point of other than the
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synchronized state. Then there exists a constant such
that the inequality

(55)

holds in for . We show that a similar constant
exists for the inequality

(56)

Because the set is compact, it is sufficient to establish (56) in
the vicinity of critical points of , that is when the right hand
side of (56) vanishes. By assumption, the synchronized state is
the only critical point of in the set . Locally around that
state, we write where

and h.o.t. stands for “higher order terms.” We
then obtain

(57)

The left-hand side of (56) rewrites as

(58)

Using and the triangle inequality
yield

which, from (58), provides the inequality

(59)

Comparing (57) and (59), we see that (56) holds for (any)
in the vicinity of the synchronised state and there-

fore also for some uniformly bounded constant in the com-
pact set . Using the inequalities (55) and (56) in (54) yields

(60)

This implies that for every , there exists a neighborhood
of the parallel equilibrium (46) where the Lyapunov function
satisfies

(61)

for some . With defined from
(50), one obtains

(62)

For a fixed , let be the largest value such that (62)
holds in the set . Then the set
is invariant and solutions in converge to the largest invariant
set where for some and .
This is a set of parallel equilibria satisfying (51).

The phase control stabilizes the set of parallel
equilibria, which is of dimension in the shape space.
Away from singularities, the algebraic constraints (51) are
independent. As a result, the control law (50) isolates a subset
of parallel equilibria of dimension in the shape space.

The result of Theorem 8 is thus weaker than the results for cir-
cular equilibria for two reasons: the result is only local and the
control law does not isolate the desired parallel equilibrium for

. A simple calculation indeed shows that the Jacobian lin-
earization of (52) at the parallel equilibrium (46) possesses

uncontrollable spatial modes with zero eigenvalue. This means
that the Jacobian linearization of the closed-loop system will
possess zero eigenvalues for any smooth static state feed-
back. For , no smooth static state feedback can achieve
exponential stability of an isolated relative parallel equilibrium.

VIII. STABILIZABLE COLLECTIVES

In this section, we focus on the control structure (19) and dis-
cuss the role of key parameters. The constant determines the
type of relative equilibrium. For , the control (19) pro-
duces circular motion with radius and sense of
rotation determined by the sign of . The potential deter-
mines the steady-state phase arrangement. For and

, the control (19) produces parallel motion.
In the following subsections, we investigate removing the

symmetry of the control (19), i.e., its invariance to rigid
translation and rotation in the plane [1]. We stabilize circular
motion about a fixed beacon and parallel motion along a fixed
reference direction. We define behavior primitives to enable
the group to track piecewise-linear trajectories with fixed
waypoints.

A. Symmetry Breaking

The control (19) depends only on the relative spacing,
, and relative phase, , variables. As a result,

the model (1) with control (19) is invariant to rigid translations
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and rotations in the plane, which corresponds to the action of
the symmetry group . In this subsection, we investigate
breaking this symmetry first by adding a fixed beacon to break
the symmetry and, second, by adding a heading reference to
break the symmetry.

We break the translation symmetry of the spacing con-
trol (19) by stabilizing circular motion with respect to a fixed
beacon. Let be the location of a fixed beacon and (re)de-
fine the vector from the beacon to particle by .
We obtain the following extension of Theorem 3.

Corollary 2: Consider the particle model (1) and a smooth
phase potential that satisfies . The control
law (19) where is the location of a fixed
beacon, and is removed, i.e.,

(63)

enforces convergence of all solutions to a circular formation of
radius about . Moreover, the asymptotic phase
arrangement is a critical point of the potential .

Proof: We use the Lyapunov function which is
the sum of the composite Lyapunov function defined by
(20) in the proof of Theorem 3 and a new term that is minimized
when the center of the circular relative equilibrium is at

(64)

Recall that

with given by (9) and the projector defined in (10). We
compute

Since

using the control law (63), we once again obtain
along the solutions of the closed-loop

system. Solutions converge to the largest invariant set where

(65)

for . Proceeding as in the proofs of Theorems 2
and 3, we use the result that on the control is for

. This implies that the right hand side of (65) is
constant for each . Since and the left-hand
side of (65) is constant only if it is zero. This implies a circular
relative equilibrium centered at .

Next, we break the rotational symmetry of the control
(19) by introducing a heading reference , where .

We couple the dynamics of the particle group to the reference
heading by adding a new coupling term to only one of the par-
ticles in the group. This yields the following extension of The-
orem 3.

Corollary 3: Consider the particle model (1) and a smooth
phase potential that satisfies . Let

be given by (19) and

(66)

where and . This control enforces convergence of
all solutions to relative equilibria as in Theorem 3. In addition,
relative equilibria with phase arrangement minimizing and
satisfying define an asymptotically stable set.

Proof: Consider the potential

(67)

with given by (20). The time-derivative of along the
solutions of the particle model is

(68)

The control law (66) with and given by (19) for
results in . Solutions

therefore converge to the largest invariant set where (24) holds
for . The equations

, imply because the matrix has rank
. Likewise, the equations

, imply because the Hessian of has
rank . The relation then reduces to

(69)

which implies that or . Therefore, relative equi-
libria with which minimize are asymptotically stable
since they also minimize the potential .

We note that in the case , Corollary 3 proves asymp-
totic stability of parallel collective motion to a fixed heading
reference, . We use this result in the following subsection.

B. Trajectory Tracking With Behavior Primitives

We use the control (19) to define four behavior primitives
which can be combined to track piecewise-linear trajectories
following [18]. The behavior primitives include impulsive con-
trols to align the particles with the reference input trajectory
and feedback controls to stabilize this trajectory. The behaviors
are referred to as circular-to-parallel, parallel-to-parallel, par-
allel-to-circular, and circular-to-circular. In parallel motion,
the group center of mass follows a fixed reference heading. In
the circular state, particles orbit a fixed beacon with a prescribed
radius and sense of rotation.

Circular-to-Parallel: Starting from circular motion, this
behavior stabilizes parallel motion along a fixed reference
heading. The inputs to this behavior are the reference heading,
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, and the gain, . The impulse control which aligns the
particles in the reference direction is

(70)

The feedback control that stabilizes parallel motion is of the
form (19) for and (66) for with

and .
1) Parallel-to-Parallel: Starting from parallel motion, this

behavior stabilizes parallel motion along a different reference
trajectory. The inputs to this behavior are the new reference
heading, , and the gain, . The impulsive control used to align
the particles in the input direction is given by (70). The feed-
back control that stabilizes parallel motion is of the form (19)
for and (66) for with and

.
2) Parallel-to-Circular: Starting from parallel motion, this

behavior stabilizes circular motion about the location of the
center of mass at the time the behavior is initiated. The input
to this behavior are the parameters, and , the
initial center of mass of the group, , and the phase potential

. The impulsive control used to align the particles in the
input rotation direction is given by

(71)

The feedback control used to stabilize circular motion is of the
form (63), which is (19) with , where is a fixed
beacon and is removed.

3) Circular-to-Circular: Starting from circular motion, this
behavior stabilizes circular motion with a different radius, i.e.,
dilation/contraction, about the same fixed reference. The input
to this behavior are the parameters, and , the initial
center of mass of the group, , and the phase potential .
There is no impulsive control used to realign the particles. The
feedback control used to stabilize circular motion is of the form
(63), which is (19) with , where is a fixed
beacon and removed.

Next, we use the behavior primitives to construct a behavior
sequence that tracks a sample reference trajectory. The admis-
sible references are piecewise-linear paths specified by a list
of desired heading and duration pairs. An example of trajec-
tory tracking is shown in Fig. 5. In this example, twelve parti-
cles start from random initial conditions in the vicinity of the
origin (point A). Each step in the behavior sequence is simu-
lated for 200 time steps. The behavior sequence starts by stabi-
lizing circular motion about the origin with

, and . The next behavior in the sequence
is circular-to-parallel with reference heading and
gain , which takes the sensor network from point A to
point B in Fig. 5. At point B, the behavior parallel-to-parallel
is used to track the reference input to point C.
Then the parallel-to-circular behavior stabilizes circular motion
about a fixed center of mass with , and

. The sequence is repeated for the points C, D, and E.

Fig. 5. Trajectory tracking with N = 12 starting from random initial condi-
tions. The reference input is a piecewise-linear curve. The behavior sequence
starts in the vicinity of A by stabilizing circular motion with ! = 1=25 and
then follows A circular-to-parallel, B parallel-to-parallel, and C parallel-to-
circular. This sequence repeats for the points C, D, and E and then ends with
the circular-to-circular behavior at E with ! = �1=50. See text for control
parameters.

Lastly, the circular-to-circular behavior stabilizes circular mo-
tion in the same direction with the new radius
and .

C. Relevance and Limitations for Engineering Applications

The proposed coordinated group trajectory design method-
ology has been developed on the basis of simplified models that
may seem only remotely connected to the engineering applica-
tions presented in the introduction. We briefly discuss the rel-
evance and the limitations of the proposed approach, in partic-
ular in the context of the specific ocean sampling application
that motivated much of this work.

Models of point-mass particles steered at constant speed are
of course a strong simplification of dynamic models. Our ap-
proach is to decouple the trajectory design problem, that we pri-
marily view as a collective design problem, from the tracking
control problem, that we primarily view as an individual design
problem. This decoupling may not hold in full generality but
seems at least reasonable in applications where the time-scale of
the collective mission is significantly slower than the time-scale
of the individual dynamics.

In such situations, we envision the use of our controlled
models primarily in the task of trajectory design (and related
collective optimization designs). This means that given an ini-
tial condition and a desired collective motion for the group, the
simulated closed-loop trajectory of the model provides a refer-
ence trajectory for each of the vehicles. In such a scheme, each
vehicle is equipped with an internal tracking controller whose
task is to resolve the discrepancies between the reference and
the actual trajectory. The natural place to use a more detailed
model is in the design of the tracking controller of the indi-
vidual vehicles. This hierarchical control scheme is common
in applications. It does not necessarily imply that the design of
the reference trajectories be offline and centralized. In fact, the
whole purpose of the present work is to make the design of such
reference trajectories adaptive and decentralized. This means
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that the initial conditions of the controller that produces the
coordinated trajectory design will be continuously refreshed
but typically at a slower time scale than the time scale of the
individual tracking controllers. The all-to-all communication
setting of the present paper limits application to a centralized
path planning controller, but this limitation will be overcome in
a companion paper.

In the ocean sampling application described in [10], we pro-
vide further details on the integration of the proposed design in
a sensor network of underwater vehicles. In this application, the
collective task is to maximize the information intake. Solving
this dynamic optimization problem over the individual trajecto-
ries is a formidable and unrealistic task in a changing environ-
ment that involves several distinct time scales. We rather pro-
pose to restrict the optimization problem over the few parame-
ters that define simple collective shapes like the ones proposed
in this paper. We explicitly discuss an example involving sev-
eral vehicles tracing elliptical shapes with prescribed relative
spacing around the ellipses; this requires some generalization of
the circular shapes discussed in the present paper. This setup has
already been successfully demonstrated in a major field experi-
ment with a fleet of ten autonomous underwater gliders in Mon-
terey Bay, California, throughout the month of August 2006. We
note that the all-to-all communication setting works best for this
ocean sampling application because the vehicles do not commu-
nicate directly with one another but rather each communicates
(albeit asynchronously) with a common central computer.

Decoupling the collective trajectory design problem from the
individual reference tracking problem does not mean that the
setup of the present paper is sufficient to address all of the many
challenges of collective engineering applications. For instance,
the issue of avoiding collisions (between vehicles or between
vehicles and obstacles) is not addressed in the present paper.
For the described ocean sampling application, the spatial scales
are such that collision avoidance is not a primary issue for the
trajectory generation controller. Rather, it is a design specifica-
tion for the individual controllers. In other applications, such as
collective flight in narrow formations, collision avoidance might
be a primary issue that should be addressed at the level of the
coordinated trajectory design. Control laws with this capability
have been proposed in [1] and it is of interest in future research
to include collision avoidance in the present setting.

There are several further stability and robustness issues that
also deserve to be addressed at the group level and not only at the
individual level. A concrete example in the context of the ocean
sampling application is the issue of sea currents. In real ocean
conditions, currents can be of the same magnitude or greater
than the propulsion capability of some underwater vehicles. As
a consequence, they should be taken into account even in the
simplified models used for the trajectory design. Further collec-
tive measures, such as the string stability notion considered in
the framework of vehicle platooning [29], may prove useful to
assess the relevance of the proposed approach to engineering
applications.

IX. CONCLUSION

This paper proposes a design methodology to stabilize iso-
lated relative equilibria in a model of all-to-all coupled identical

particles moving in the plane at unit speed. The stabilizing feed-
backs derive from potentials that reach their minimum in the de-
sired configuration and possess no other identified local minima.
Lyapunov analysis of the closed-loop system thus proves expo-
nential stability of the desired equilibria and suggests almost
global convergence properties.

Stabilization of the phase variables, , is based on min-
imizing or maximizing successive momenta associated to
the phasors, . The -th moment is minimum when
particle phases balance modulo and is maximum when
phases synchronize modulo . For parallel formations,
maximizing the first moment results in synchronization of the
orientations and a spacing potential can be added to (locally)
correct the relative distances between particles. For circular
formations, a spacing potential is proposed that reaches its
minimum when all particles orbit the same point. This spacing
potential is combined with the phase potentials in order to stabi-
lize symmetric pattern circular configurations. The last section
of the paper proposes a low-order parametrized family of stabi-
lizable collectives that can be combined to solve path-planning
or optimization problems at the group level.

The results of the paper rest on two idealistic assumptions:
all-to-all communication and identical individuals. The assump-
tion of all-to-all communication is completely relaxed in a com-
panion paper [30] where we extend the present results to re-
stricted communication topologies. The assumption of identical
individuals is fundamental to the symmetry properties of the
closed-loop vector field, but the exponential stability of isolated
relative equilibria implies some robustness of the corresponding
collective motions to individual variations. It is of interest to
study in future work how the ideally engineered models consid-
ered in this paper may help in capturing gross dynamical proper-
ties of more realistic simulated multi-agent models or empirical
observations of animal groups.
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