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Abstract We present a set of experiments in which
simulated robots are evolved for the ability to aggregate and
move together toward a light target. By developing and using
quantitative indexes that capture the structural properties of
the emerged formations, we show that evolved individuals
display interesting behavioral patterns in which groups of
robots act as a single unit. Moreover, evolved groups of
robots with identical controllers display primitive forms of
situated specialization and play different behavioral functions
within the group according to the circumstances. Overall, the
results presented in the article demonstrate that evolutionary
techniques, by exploiting the self-organizing behavioral
properties that emerge from the interactions between the
robots and between the robots and the environment, are a
powerful method for synthesizing collective behavior.

1 Introduction

The development of autonomous robots through a self-organization process based on
arti�cial evolution is receiving increasing attention. The advantages of this approach
become apparent when one wants to control a system governed by complex dynamics.
An example of such a system is an autonomous robot interacting with a changing and
noisy environment. Another example with even more complex dynamics is a group of
robots interacting among themselves and with the environment. In these cases explicit
design encounters two strong limitations. Firstly, the effects of the decisions taken at
the level of control may be unpredictable and dif�cult to understand. Secondly, explicit
design may be unable to anticipate and exploit self-organizing properties of the system
that are potentially very useful for the solution of the task. Evolutionary methods
synthesize behavior by blindly and randomly varying controllers, and by selecting the
successful ones a posteriori. Indeed, they select the controllers only after having tested
them on the basis of their overall effects and behavior. Furthermore, whenever the
evolutionary process encounters self-organizing properties of the system that might be
useful for the task under focus, it incorporates them in the controllers. For this reason,
evolutionary methods may have important advantages when applied to systems with
complex dynamics.

In this article we describe a set of experiments in which groups of simulated robots
are evolved for the ability to aggregate and move together toward a light target. The
robots use a sound emitter and directional microphones to aggregate and light sensors
to locate the light target. As we will see, evolved individuals display interesting be-
havioral patterns in which groups of robots act as a single unit. Moreover, groups of
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robots with identical evolved controllers display primitive forms of situated specializa-
tion, in which different individuals play different behavioral functions according to the
circumstances.

In the next sections we review the related literature, we present the experimental
framework used and the results obtained, and �nally we discuss the implications of the
results and some future directions of research.

2 Related Work

Despite the possible advantages mentioned above, the use of arti�cial evolution to
synthesize robots able to display collective behavior is still a rather unexplored area.
Some research adopting evolutionary techniques to evolve collective behavior has used
arti�cial creatures. In his seminal work, Reynolds [8] evolved the control system of
a group of simulated creatures placed in an environment with static obstacles and a
manually programmed predator for the ability to avoid obstacles and predation. The
results showed that coordinated motion strategies began to emerge. In an attempt to
study the evolutionary origin of herding, Werner and Dyer [11] coevolved two popu-
lations of predators and prey creatures. By analyzing the result of a single run, the
author observed that after some generations, during which predators evolved an ability
to catch prey, both populations started to create small herds, which repeatedly split and
formed again. In more recent work, Ward et al. [10] evolved groups of arti�cial �sh,
guided by neural networks, which were able to display schooling behaviors. Two pop-
ulations of predator and prey creatures were evolved in a 2D environment containing
randomly distributed food elements. The analysis of the distances between prey, food,
and predator suggests that the emergence of schooling behavior is correlated with the
advantage of �nding food clumps and protection from predation. Finally, Theraulaz
and Bonabeau [9] evolved a population of constructor agents that collectively built a
nest structure by depositing bricks according to their perception of the local environ-
ment and to a set of behavioral rules (see also [2]). Overall, these experiments con�rm
that arti�cial evolution can be successfully applied to synthesize effective collective be-
haviors. Whether these results could be generalized to the synthesis of more realistic
creatures (robots), however, remains to be ascertained, given that these experiments
relied on sensory systems that provide perfect sensory information (e.g., free from
noise) and often unrealistic sensory information (e.g., distances of objects of different
types).

Some pioneering work with robots was conducted by Martinoli [3], who used arti�cial
evolution to synthesize the neural control system of a group of simulated Khepera
robots [4] that were asked to �nd “food items” randomly distributed in an arena. The
robots were provided with 10 infrared sensors, two wheels, and two motors controlling
them. In some cases the evolved individuals displayed interesting collective behaviors
such as exploring the arena in couples. More recently, Quinn et al. [7] evolved simple
mobile robots provided with infrared sensors for the ability to move in space while
keeping close to each other. This work has been done in parallel with ours [1], and
only recently have the two research groups been discovered to be working on closely
related problems. It is interesting that both groups have independently converged on
a form of genetic algorithm explained below, involving teams of homogenous robots.
The results presented here and those of Quinn et al. demonstrate that, contrary to what
was found by Zaera et al. [12], arti�cial evolution is an effective method for automating
the design process of robots able to exhibit collective behaviors. Indeed, explicitly
programming the control systems of robots able to show such behaviors would be
extremely dif�cult if not impossible.
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Figure 1. The environment and the simbots. Lines represent the walls surrounding the arena. Filled circles indicate
the two light bulbs. Open circles represent the simbots. The thin dashed curves indicate the edges of the test area
when the west light target is on; the bold dashed curves, when the east light target is on.

3 The Experimental Framework

The research presented here aimed at evolving the control system of groups of simu-
lated robots (simbots) able to aggregate and move together toward a light target. The
environment is a rectangular arena of 1 £ 2 m surrounded by walls. In this arena there
are two halogen light bulbs of 230 W, each located in the middle of the west and east
walls at a height of 1.5 cm from the ground (Figure 1).

Groups consist of four simulated Khepera robots [4], each provided with eight in-
frared sensors able to detect walls and other robots up to a distance of 45 mm, eight
ambient-light sensors (the same infrared sensors used in a passive mode), and four sim-
ulated directional microphones. Each robot is provided with two motors that control
the speed of the two corresponding wheels, and a simulated speaker that continuously
emits a sound with a �xed amplitude and a frequency that varies randomly within a
�xed range (Figure 2). Microphones and speakers allow simbots to detect each other
at a much greater distance than infrared sensors.

Experiments were conducted in simulation by using an extended version of Evorobot
[5]. To simulate the robot and the environment as accurately as possible, a sampling
procedure was used to compute the activation state of the infrared and ambient light

Figure 2. Left: The Khepera robot (sound speaker and microphones not present). Right: A diagram of the positions
of sensors and motors in the robot’s body. Empty squares and ovals respectively represent the eight infrared sensors
and the four directional microphones. The infrared sensors are also used to measure the ambient light. The four light
sensors (represented by the open circles) are obtained by averaging the activation values of two adjacent ambient
light sensors. The two black � lled segments represent the two wheels controlled by the two motors, and the black
centrally located circle represents the speaker.
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sensors [6]. Walls and Khepera robots were sampled by placing one physical robot in
front of them and by recording the state of the infrared sensors while the robot was
turning 360± at 20 different distances from either the wall or another robot. These
recorded values were used in simulation to set the activation states of the simulated
infrared sensors on the basis of the current angle and distance of the robot with respect
to the walls and the other robots. The same procedure was used to sample the state
of the ambient light sensors for different orientations and distances with respect to one
of the two light bulbs. These recorded values, together with a geometrical simulation
of shadows, were used to set the activation state of the ambient light sensors.

Given that we do not have physical sound sensors available yet, we simulated the
sound amplitude recorded by a directional microphone as follows:

A D
1

1 C .D2=10002/
AF (1)

where A is the amplitude, D is the distance from the sound source in millimeters,
1000 is a constant that guarantees that the maximum amplitude is 0.5 after 1 m, and
AF is an attenuation factor that is proportional to the angular difference between the
microphone orientation and the sound source direction. AF is computed as follows:

AF D 1 ¡ 0:9
®

180
(2)

where ® ranges from 0 to 180± and encodes the smaller angle between the orientation of
the simulated microphone and the direction of the sound source, and 0.9 is a constant
that guarantees that the range of the attenuation factor is [0.1, 1.0].

The total perceived amplitude (TPA), that is, the result of the contribution of differ-
ent sound sources corresponding to different simbots, is computed according to the
following function:

TPA D 2

1 C exp.¡
PN ¡1

i Ai/
¡ 1 (3)

where Ai is the contribution of the sound coming from simbot i of the N ¡ 1 mates
and is computed according to equation (1). It should be noted that sound waves can
add up or cancel out on the basis of their frequency and phase. The coexistence of
different sound sources with slightly different frequencies and phases that originate
from different positions, therefore, tends to produce a semi-irregular wave with peaks
and valleys caused by summation or deletion of waves with different amplitudes and
frequencies. For this reason we assumed that the signal recorded by each microphone
is passed to a �lter that returns a moving average of the maximum peaks recorded
within a given time window. Therefore, in Equation 3, different sound sources sum
less than linearly. At each time step a random value with a uniform distribution that
ranges over the interval [¡0:05, 0.05] is added to all sensors to simulate sensor noise.

The initial population consists of 100 randomly generated genotype strings that en-
code the connection weights of 100 corresponding neural controllers (Figure 3). Each
controller consists of a neural network with 17 sensory neurons that encode the state
of the infrared sensors, light sensors, sound sensors, and a bias unit (i.e., a unit whose
activation state is always 1.0). These sensory neurons are directly connected to two
motor neurons that control the speed of the two wheels. In the genotype each connec-
tion weight is represented with 8 bits that encode a number in the interval [¡10; C10].
Therefore, the total length of the genotype is 34 £ 8 D 272 bits.
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Figure 3. The neural network controller.

Each genotype is used to build four identical neural controllers, and each controller
is used for one of the four simbots that together form a group (the unit of selection).
Therefore, each group is made up of four “clones.” Each group is allowed to live for
4 epochs (each epoch consists of 1500 cycles, and each cycle lasts 100 ms). During
each cycle, for each simbot: (a) the activation state of the sensors is set according to
the procedure described above; (b) the activation state of the two motor neurons is
computed according to the standard logistic function; (c) the desired speed of the two
wheels is set according to the activation states of the motor units.

At the beginning of each epoch the four simbots are placed in randomly selected
positions and orientations within the arena, and only one of the two lights is turned on.
In order to push simbots to move continuously toward a light, when the barycenter of
the simbots’ group (i.e., the average of their position vectors) reaches a distance lower
than 30 cm from the light that is currently on, the light is turned off and the other light
is turned on.

To force the simbots to move together toward the light, we designed a �tness func-
tion with two components: a group compactness component (GCC) that rewards the
simbots for clustering, and a group speed component (GSC) that rewards the simbots
for moving fast towards the light target. The �rst component is computed as follows:

GCC D
PN

i [1 ¡ .SD i=300/]

N
(4)

where SD i is the distance of simbot i from the group’s barycenter. SD i are thresholded
to 300 mm so that distances larger than 300 mm do not contribute to the �tness of the
group. The second component is

GSC D 1 C .¡1GD=7/

2
(5)

where 1GD is the variation of the distance between the group’s barycenter and the light
target, and 7 is a constant value that corresponds to the maximum possible advancement
(in millimeters) of a simbot or a group or simbots during one cycle (100 ms). Notice
that if the group does not move, GSC is equal to 0.5; if the group moves away from the
light target, GSC is between 0 and 0.5; if the group approaches the light target, GSC is
between 0.5 and 1.0.
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The �tness F of a group of simbots is the average of the weighted sum of the two
components during the team’s lifetime and is computed as follows:

F D
PM

t [GCC t £ W C GSC t £ .1 ¡ W /]

M
(6)

where W is a constant in the interval [0.0, 1.0] that determines the relative weights of
the two components of the �tness, and t is the current life cycle, ranging from 1 to M
(M D 6,000).

The best 20 genotypes of each generation (each corresponding to the four identical
neural controllers of one simbot’s group) were reproduced by generating �ve copies
of each genotype. Each bit of each copy was replaced, with a probability of 2%, by a
randomly selected value (mutation). The evolutionary process lasted 100 generations.
The experiment was replicated 10 times by starting with different randomly generated
genotype populations.

4 Results and Discussion

By running a set of experiments in which W was set to 0.75, we observed the emer-
gence of an interesting variety of strategies. Figure 4 shows the �tness of the best group
of simbots of each replication. In all replications, evolved simbots are able to aggregate
spatially and to move toward the light target by keeping their aggregation. The sound
emitter and sound microphones in each simbot are important in achieving this result.
Simulations run without these devices led to results where the simbots explored the
arena randomly until they found a teammate and then stayed close to each other using
the infrared sensors (results not shown). However, in those simulations the overall
performance was rather poor, since if subclusters of two simbots formed, the simbots
of each subcluster had dif�culty in moving together to search for other simbots. An-
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Figure 4. Performance of the 10 best simbots in the 10 replications of the simulation after 100 generations. Data
obtained by testing each individual for 10 epochs. The white and black parts of the histogram respectively represent
the contributions of the compactness and speed components. Notice that the differences between the two com-
ponents are mainly due to the value of the parameter W. The names suggest a description of the type of strategy
that emerged in the corresponding replication (see text).
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other important factor was the use of four directional microphones rather than a single
ordinary microphone. The single microphone forced the simbots to use the shallow
sound gradient by moving in wide circles (results not shown), whereas directional
microphones allowed the simbots to locate the direction of the barycenter of sounds
emitted by the teammates, and to move toward that barycenter along a straight path.

With respect to the ability to move together toward the light target (GSC), signi�cant
differences were observed among different replications. The best performance was
achieved in the �rst replication.

By analyzing this set of experiments and by running other experiments with W set
to 0.5 or 0.8 and=or with groups of two or seven simbots (detailed results not shown),
we observed that all emerged formations and strategies could be categorized in three
qualitatively different classes, which we named Flock, Amoeba, and Rose (Figure 5).

Flock. Simbots form a rather compact group that moves straight toward the light
target. While the group approaches the target, individual simbots tend to maintain

Figure 5. Three prototypical formations: Flock, Amoeba, and Rose, and some of their variants, Amoeba-Track and
the Rose-Disk. The four circles represents the simbots. The lines represent the trajectories of the simbots while
the group is approaching the west light (for clarity, the trajectory of one of the four simbots is displayed with a
darker line). The arrows indicate the direction of the rotation of the group with respect to its barycenter.
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their position with respect to each other and with respect to the target (e.g., a simbot
that happens to occupy the right front position in the group at the beginning of the
light-approaching phase tends to remain in that position). This strategy is the most
effective, in particular with regard to the GSC component (the group approaches the
light target with maximum speed).

Amoeba. Simbots form a group and then move toward the light target by varying
their relative position. This strategy is not very effective from the point of view of the
GCC component but is quite effective from the point of view of the GSC component
(although less effective than the �ock strategy in that individual simbots do not move
straight toward the light). Simbots do not keep the same relative positions while ap-
proaching the light target. For example, a simbot that was initially at the rear of the
group might speed up and reach the front of the group while the other simbots tend
to stay still or merely rotate. Amoeba-Track is a variation of the amoeba strategy. In
this case the group is more compact and the relative movements of the individuals of
the group are more regular, so that the movement of the whole group resembles that
of a track of a Caterpillar tractor.

Rose. Simbots form a very compact group and rotate (and eventually revolve around
the group’s barycenter) while moving toward the light. The shape of the group tends
to vary for groups of different numbers (typically four simbots form a rhombus, but
seven simbots form a rose with six forming a circle around one at the center circle).
Rose-Disk is a variant of Rose in which simbots revolve around the barycenter of the
group but do not rotate. Given that these formations are very compact and stable in
time, this strategy is the most effective from the point of view of the GCC component.
However, it is also very ineffective from the point of view of the GSC component.
Indeed, compactness is achieved through a motor behavior (rotating and=or revolving
around the group’s barycenter) that interferes with the ability to approach the light
rapidly.

To analyze these strategies quantitatively we designed two statistical indexes that
make it possible to characterize the behavior of single simbots and of simbot groups.
The �rst index, named the group stability index, measures how stable a formation is in
time, that is, how nearly the position of each simbot with respect to the other simbots
remains identical across time. For example, if the group of four simbots forms a square,
the index will indicate how long the simbots maintain that formation and how stable
the size of the square remains in time (see Figure 6, top). The group stability index
(GSI) at cycle t is computed as follows:

D t
ij D dist[.x t

i ; y t
i /; .x t

j ; y t
j /]

GSI t D 1 ¡
PN

i

PN
jDiC1 jD t

ij ¡ D t¡1
ij j=7

[N .N ¡ 1/=2]
(7)

where Dt
ij is the Cartesian distance between each pair of simbots i and j at time t ,

N is the number of simbots in the group, N .N ¡ 1/=2 is the number of distances
between the simbots taken into account by the index, j j is the operator that returns
the absolute value of the argument, and 7 is the maximum distance that a simbot can
cover in one cycle. Notice that the index GSI usually ranges over the interval [0, 1] and
only occasionally becomes negative (e.g., when simbots move away from each other
at maximum speed).

The second index, named the group role index, measures how much individual
simbots within the group tend to keep the same position and orientation with respect to
the other simbots and the light target. The index corresponds to the average variation
between two successive lifecycles of the x and y coordinates of each simbot with
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Light target

t t+1

t t+1

Figure 6. Top: an example of how the group stability index (GSI) is computed. The circles represent the simbots,
and the dashed lines indicate the distances between each pair of simbots. The index is based on the average variation
of distances between time t and t C 1. Bottom: an example of how the role index (GRI) is computed. The circles
and the arrows represent the positions of the simbots and the Cartesian reference system at life cycles t and t C 1.
The dashed lines indicate the x and y coordinates of each simbot with respect to the reference system. The index is
based on the average variation of the simbots’ positions indicated by those coordinates between times t and t C 1.

respect to a Cartesian reference system in which the origin is the barycenter of the
group and the y axis is along the line that connects the barycenter to the light target
(see Figure 6, bottom). Moreover, the index is lower if the simbots rotate, because
rotation implies a change in orientation with respect to the light target. The group role
index (GRI) at cycle t is computed as follows:

GRI t D

Á

1 ¡
PN

i dist[.x t
i ; y t

i /; .x t¡1
i ; y t¡1

i /]=7

N

!

.1 ¡ RI t / (8)

where dist[ ] is the distance between the x and y positions of simbot i at times t and
t ¡ 1 (notice that x and y coordinates refer to the Cartesian reference system at time
t), and 7 is the maximum possible distance covered by one simbot during one cycle.
RI t measures the rotation of the simbots. It is computed on the basis of the difference
in speeds of the left and right wheels:

RI t D
PN

i j.RW i ¡ LWi/=7j
N

(9)

where RW i and LW i are the distances respectively covered by the simbot’s right and
left wheels in one cycle. Notice that the GRI index typically ranges over the interval [0,
1] and only occasionally becomes negative (e.g., when one light is turned off and the
other is turned on).

Figure 7 shows the values of the two indexes and of the two �tness components for
the best individuals of the strategies reported in Figure 5 and for two control experi-
ments, named Herd and RoseC, in which W was respectively set to 0 (only the speed
�tness component was present) and to 1 (only the compactness �tness component
was present). In the Herd experiment the simbots go toward the light target without
forming a group; in the RoseC experiment the simbots form a stable, compact, but
motionless rose. The values reported have been computed within the test area (see
Figure 1; average of �ve passages through the area).
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Figure 7. Fitness components and behavioral indexes obtained in the 10 replications of the experiment described in
Figure 4 and in two control experiments, named Herd and RoseC, in which the parameter W was respectively set to
0.0 and 1.0. With regard to speed, a value of 0.5 corresponds to a motionless group, a value below 0.5 corresponds
to a group that moves away from the light, and a value above 0.5 corresponds to a group that approaches the light.

Figure 7 shows that all strategies, and especially Flock and Rose, are as effective,
in terms of compactness (GCC), as the RoseC control condition and much better than
the Herd control condition. In general, a high compactness (GCC) is associated with
a high stability, as shown by the stability index (GSI: in particular, compare Flock and
Rose versus Amoeba). This suggests that simbots can reduce their reciprocal distances
by keeping stable spatial relationships.

Signi�cant differences are observed in the capacity to move toward the light target
(GSC), however. The Flock strategy signi�cantly outperforms all other strategies and
achieves performance similar to the Herd control experiment, in which the simbots can
focus on speed. Amoeba strategies achieve intermediate results, and Rose strategies
rather poor results. GSC correlates with a high group role index (GRI). In fact, to
maximize the movement toward the light, simbots have to turn toward the light and
move straight toward it.

These results imply that the two �tness components (GCC and GSC), by requiring the
simbots to turn both toward the other simbots and toward the light, can interfere with
each other. Apparently, the only way to resolve this interference consists in strategies
where different individuals play different functions, notwithstanding that they have
identical controls and bodies, on the basis of the different input pattern they receive
from the environment (situated specialization). This is exactly what happens in the case
of the Flock strategy. In this case, individuals located in the front of the group with
respect to the light (they perceive the sound only from the back) do not turn toward the
rest of the group, but keep their orientation toward the light, possibly moving backward
without turning to avoid losing the rest of the group. On the contrary, individuals in the
rear part of the group (which tend to be in shadow and to perceive the sound with their
frontal microphones) turn and move toward the other members of the group. Once
simbots form a compact group and start to move toward the light, each individual tries
to maintain its current role: the simbots in front guide the group while the simbots in
the back follow those in front and each is maintaining a proper distance and orientation
with respect to the others. When the light target is reached and it is turned off while the
other light target is turned on, the formation is disrupted, but in few cycles the simbots
closer to the light assume the guide role while the simbots behind other simbots with
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Figure 8. Behavior displayed by the simbots relying on a Flock strategy, located in four different starting positions and
assigned particular orientations. In all cases the light target is located on the west side. The numbers in parentheses
indicate the initial x and y position and the orientation (0 = west, 180 = east) of each simbot. The lines represent
the trajectories of the four simbots, and the circles represent the � nal position occupied by the simbots after some
time has elapsed. The arrows indicate quick changes of the orientation of individual simbots.

regard to the light assume the follower role (cf. [7] on role allocation in a group of
robots with identical neural controllers with internal states).

Figure 8 shows how the simbots that display the Flock strategy play different roles in
different circumstances. Figure 8a shows how the simbot that is closer to the light target
assumes and maintains the function of leader. Indeed, this simbot turns toward the light
and waits the rest of the group before driving the entire group toward the light target.
After turning toward the light, the leader may occasionally move backward to speed
up or maintain the formation of a compact group, but as soon as the rest of the group
gets closer, it starts to move toward the light target. Figure 8b shows another situation
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in which the simbot that is closer to the light target does not turn toward the rest of the
group but keeps its position, awaits the rest of the group, and starts to move toward the
light as soon as the rest of the group gets closer. Figure 8c shows that individuals that
are in the shadow (in this case the second simbot from left) turn and move toward the
rest of the group. Finally, Figure 8d shows that simbots in pairs assume and maintain
the role of leader or follower while approaching the rest of the group.

The positive consequence of situated specialization is that individuals can quickly
form a compact group and then move straight toward the light target. The fact that the
Flock strategy requires that different identical individuals assume and maintain qualita-
tively different functions may also explain why this strategy, which clearly outperforms
the Amoeba and Rose strategies (cf. also Figure 4), emerges only in one out of ten
experiments. Indeed, we can hypothesize that the Amoeba and Rose strategies, being
simpler, are also easier to evolve. To facilitate the emergence of the Flock stragety, W
should be lowered in order to give a greater weight to the speed component of the
�tness. Indeed, in a simulation where W was set to 0.5, the Flock strategy emerged
six times and the Amoeba four times, out of ten replications; in a simulation where W
was set to 0.8, the Rose strategy emerged seven times, the Rose-Disk two times, and
the Amoeba one time, out of ten replications.

5 Conclusions

We have described a set of experiments in which a group of simulated robots endowed
with simple reactive controllers were evolved for the ability to aggregate and to move
together toward a light target. A simple form of sound communication, used by the
robots to locate their teammates, and an algorithm inspired by kin selection that fa-
cilitated the evolution of cooperative behaviors, were two key factors in allowing the
robots to aggregate and move in a coherent fashion. The results obtained demonstrate
that evolutionary techniques, which exploit the self-organizing behavioral patterns that
emerge from the interaction between the robots and between the robots and the envi-
ronment, are a powerful method for synthesizing collective behavior. Indeed, evolved
individuals displayed a variety of interesting behavioral patterns in which a group of
robots seem to act as a single unit (e.g., by forming a circular structure that rotates
around the barycenter of the group and moves toward the light target, or a stable rect-
angular formation that moves straight toward the light target) and in which the behavior
of the whole group emerges from the interactions among rather simple individual be-
haviors.

By analyzing the different types of strategies that emerged in different replications
of the experiment we observed that all strategies can be categorized within three qual-
itatively different classes and that the most effective strategy includes primitive forms
of situated specializations in which robots with identical evolved controllers perform
different behavioral functions according to the circumstances. Such forms of functional
specialization seem to be due to the need to reduce the interference between con�ict-
ing subgoals such as the need to turn and move toward the rest of the group in order
to aggregate and maintain aggregation and the need to move toward the light target.
In future research we plan to investigate more deeply how functional specializations
emerge in these experiments and whether more complex forms of specialization can
be observed in individuals that are also provided with internal neurons and=or are able
to modify their behavior on the basis of experience.
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