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Abstract

This paper investigates a method for decentralized stabilization of vehicle formations using techniques from algebraic
graph theory. The vehicles exchange information according to a pre-specified communication digraph,G. A feedback control
is designed using relative information between a vehicle and its in-neighbors inG. We prove that a necessary and sufficient
condition for an appropriate decentralized linear stabilizing feedback to exist is thatG has a rooted directed spanning tree. We
show the direct relationship between the rate of convergence to formation and the eigenvalues of the (directed) Laplacian of
G. Various special situations are discussed, including symmetric communication graphs and formations with leaders. Several
numerical simulations are used to illustrate the results.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

There is growing interest in the decentralized
control of multiple autonomous vehicles due, in
part, to a number of new important applications.
These include the coordinated control of mini-
satellites, drone planes, and underwater vehicles
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[4,5,7,9–13,20,22–25,29]. One of the main goals is
to achieve a coordinated objective while using only
relative information concerning positions and velo-
city. The objective investigated in this paper is that
of attaining a moving formation. That is, the goal of
the vehicles is to achieve and maintain pre-specified
relative positions and orientations with respect to each
other. Each vehicle is provided information only from
a subset of the group. The specific subset is given
through the set of “neighbors” in the communication
digraph. This digraph need not be related in any way
to the actual position of the vehicles.
The feedback scheme investigated here was pro-

posed by Fax and Murray in[5] and is inspired by the
motion of aggregates of individuals in nature. Flocks
of birds and schools of fish achieve coordinated
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motions without the use of a central controlling mech-
anism [16]. Another simple model is proposed in
[27] that captures the observed motions of self-driven
particles. Both of these models employ feedback
laws in which the motions of nearest-neighbors are
averaged. The notion of a communication digraph is
introduced in[4], and an averaging feedback law is
proposed based on the flow of information. The au-
thors of [23–25] investigate the motions of vehicles
modelled as double integrators. Their goal is for the
vehicles to achieve a common velocity while avoiding
collisions. The control laws involve graph Laplacians
for an associated undirected (neighborhood) graph but
also nonlinear terms resulting from artificial potential
functions. Rather than reaching for a predetermined
“formation”, the vehicles converge to an equilibrium
formation that minimizes all individual potentials.
They also extend their results to the case of switching
neighborhood graphs. Refs.[11,20] contain a special
case of the results presented here (among other re-
sults). In both references the communication graph is
the undirected cycle. In[11] the vehicles are modelled
directly as double integrators. In[20] a more com-
plete, nonlinear model is introduced and then force
and torque feedback is used to linearize the model
before applying the graph-theoretic techniques.
Another area of research which is closely related to

the problems and techniques discussed in this paper
is that of consensus seeking by autonomous agents
[1,15,17–19,21]. We say that agents 1, . . . , n achieve
consensusif their associated variablesx1, . . . , xn

converge to a common value (or, more generally, if
f (x1), . . . , f (xn) converge to a common value for
some given functionf ). The vectorx of variables sat-
isfies a differential (difference) equatioṅx = −Lx(t)

(x(t+1)=−Lx(t)) whereL is (essentially) a weighted
Laplacian of a digraph (the “communication” di-
graph). In [19,21] it is shown that a necessary and
sufficient condition for achieving consensus is that the
communication digraph admits a directed spanning
tree. In [17,18] the authors only prove sufficiency
and assume that the graph is either undirected[18] or
strongly connected[17]. Refs. [17,19,21] show that
under certain conditions consensus can be achieved
even when the communication graph switches over
time. Control to formation is, in a way, a consensus
problem since in order to reach a stable formation the
vehicles must achieve, among other things, the same

velocity. On the other hand, the vehicle dynamics
of the formation problem are, in effect, governed by
second-order equations.
In this paper we prove that the same condition of

the communication graph above is necessary and suf-
ficient for the existence of certain decentralized feed-
back laws that control the vehicles to arbitrary for-
mations. We also provide a relationship between the
rate of convergence to formation and the eigenval-
ues of the (directed) graph Laplacian. We demonstrate
how, for a fixed feedback gain matrix, convergence
can be improved by choosing alternative communica-
tion digraphs. Finally, we explore some special cases
in more detail and illustrate the results with numerical
examples.
We point out that the result of Proposition 3.4 be-

low, already appears in[19,21]. Here we offer a short,
purely graph-theoretic proof.
The paper is organized as follows. In Section 2 we

set up the basic model. The relevant graph theoretic
definitions and results are collected in Section 3. The
main results are proved in Section 4, and illustrative
examples are given in Section 5. In Section 6 we dis-
cuss two special cases—bidirectional communications
and formations with leaders—in which additional re-
finements can be made. Various motions of the forma-
tion are illustrated in Section 7.

2. Model

We assume we are givenN vehicles with the same
dynamics

ẋi=Avehxi+Bvehui, i=1, . . . , N, xi∈R2n, (1)

where the entries ofxi representn configuration vari-
ables for vehiclei and their derivatives, and theui rep-
resent control inputs. For simplicity we will assume
further that the matricesAveh andBveh have the form

Aveh= diag

((
0 1

a121 a122

)
, . . . ,

(
0 1

an
21 an

22

))
,

B = In ⊗
(
0
1

)
(2)

(where⊗ denotes the Kronecker product). This corre-
sponds to the individual configuration variables being
decoupled and the acceleration of each such variable
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being controlled separately. These conditions may be
relaxed. We will refer to the odd-numbered entries of
x= (x1, . . . , xN)T asposition-likevariables and to the
even-numbered entries asvelocity-likevariables. We
will use the notationxp = ((xp)1, . . . , (xp)N)T, xv =
((xv)1, . . . , (xv)N)T to denote the vectors of position-

like and velocity-like variables, sox = xp ⊗
(
1
0

)
+

xv ⊗
(
0
1

)
.

Definition 2.1. A formation is a vector

h = hp ⊗
(
1
0

)
∈ R2nN

(where⊗ denotes the Kronecker product). TheN ve-
hicles arein formation hat time t if there are vec-
tors q,w ∈ Rn such that(xp)i(t) − (hp)i = q and
(xv)i(t) = w, for i = 1, . . . , N . The vehiclescon-
verge to formation hif there existRn-valued functions
q(·), w(·) such that(xp)i(t) − (hp)i − q(t) → 0 and
(xv)i(t) − w(t) → 0, ast → ∞, for i = 1, . . . , N
(wherexp andxv are as indicated above).

Fig. 1 illustrates the interpretation of the vectors in
the definition.
For more convenient mathematical treatment we

introduce the following space associated with each
formation vector.

Definition 2.2. Let h = hp ⊗
(
1
0

)
∈ R2nN , let 1N

denote the all ones vector of sizeN, and letej , j =
1, . . . ,2n denote the standard basis vectors inR2n.
Set W = {1N ⊗ ej : j = 1, . . . ,2n}. We define the
h-formation spaceFh by

Fh = h + spanW = {x| ∃� ∈ R2n: x − h = 1N ⊗ �}.

Notice thatx − h= 1N ⊗ � is equivalent to(xp)i −
(hp)i =q and(xv)i =w where�=q⊗

(
1
0

)
+w⊗

(
0
1

)
.

With this definitionx is in formationh if and only
if x ∈ Fh andx(t) converges to formationh if and
only if the distance fromx(t) to the spaceFh tends
to zero ast → ∞.
To complete the model we are also given a graphG

which captures the communication links between ve-
hicles (see next section for precise definitions of graph
theoretic concepts). Each vertex represents a vehicle

Fig. 1. Vehicles in formation.

and there is a directed edge from one vertex to another
if there is a communication link sending information
from the first vehicle to the second. The second vehicle
would then be able to use this information in a feed-
back formula to adjust its own state. We say that the
first vehicle is a neighbor of the second. For each vehi-
cle i, Ji denotes the set of its neighbors. In this model,
the decentralized nature of the feedback control law is
captured by allowing each vehicle to use only relative
information about its neighbors. More precisely, we
are interested only in controlsui which are functions
of xj −xi andhj −hi for eachj ∈ Ji . Note, however,
that this still requires all vehicles to agree on a global
reference frame with respect to which the differences
xj − xi can be described.
A natural way to combine the relative informa-

tion (as done in[5]) is to define output functionsyi

computed from an average of the relative displace-
ments (and velocities) of the neighboring vehicles as
follows:

yi = (xi − hi) − 1

|Ji |
∑
j∈Ji

(xj − hj ),

i = 1, . . . , N ,
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where |Ji | indicates the number of neighbors to ve-
hicle i. However, we will make a slight modification
here to allow for the possibility that a vehicle might re-
ceive no information and so the corresponding vertex
in the graph would have no neighbors. This situation
occurs naturally if one of the vehicles is a designated
leader around whose motions the others should adjust
theirs. We will define the output functionszi by

zi =
∑
j∈Ji

((xi − hi) − (xj − hj )),

i = 1, . . . , N .

As a result, the corresponding output vectorzcan be
written asz=L(x−h) whereL=LG ⊗I2n andLG is
the (directed) Laplacian matrix of the communication
graphG (see Section 3).
Collecting the equations for all the vehicles into a

single system we obtain

ẋ = Ax + Bu,

z = L(x − h),

with A = IN ⊗ Aveh, B = IN ⊗ Bveh.
We are interested in studying the existence of feed-

back matricesF such that the solutions to

ẋ = Ax + BFL(x − h) (3)

converge to formationh. This is a stabilization problem
involving output feedback. In order to take advantage
of the block structure of the matricesA, B, and L
we will restrict our study to matricesF of the form
F =IN ⊗Fveh (a particular “decentralized” control law
where the same feedback law applies to all vehicles).
In this case, we can write Eq. (3) as follows:

ẋ = IN ⊗ Avehx + LG ⊗ BvehFveh(x − h). (4)

The main purpose of the paper is to show the rela-
tionship between existence of feedback matricesFveh
that guarantee convergence to formation and proper-
ties of the communication graphG.
Even before a more precise definition ofLG we can

show how its eigenvalues play a central role. LetU be
a matrix such that̃LG =U−1LGU is upper triangular.
In particular, the eigenvalues ofLG are the diagonal
entries ofL̃G. A direct calculation using the special

form of A, B, andF gives

(U−1 ⊗ I2n)(A + BFL)(U ⊗ I2n)

= IN ⊗ Aveh+ L̃G ⊗ BvehFveh.

The right-hand side is block upper triangular. Its
diagonal blocks are of the form:

Aveh+ �BvehFveh,

where� is an eigenvalue ofLG. There is one block for
each eigenvalue (counting multiplicity). Therefore, the
eigenvalues ofA+BFL are those ofAveh+�BvehFveh
for � an eigenvalue ofLG.
We now give precise definitions of all graph-

theoretic terms.

3. Algebraic graph theory

For our purposes, adirected graphor digraph G
consists of a finite setV of verticesand a setE ⊆
V × V to be referred to as (directed)edges. We will
assume that the digraph has no loops, that is(x, y) ∈
E impliesx �= y. If the digraph has the property that
(x, y) ∈ E implies (y, x) ∈ E we will say that it
is undirected and just call it a graph. In the vehicle
application this corresponds to having bidirectional
communication.
A (directed)walk in a digraph is a finite sequence

of edges(ak, bk) k = 1, . . . , r such thatbk = ak+1
for k = 1, . . . , r − 1. A walk with distinct vertices
is called a (directed)path. A walk is called a (di-
rected) circuit if in addition br = a1. We say a
digraphG is strongly connectedif for any vertices
i, j ∈ V, there exists a walk inG from i to j. Each
digraph has an associated (undirected) graph obtained
by adding toE every pair(y, x) for which (x, y) is in
E. We say that a digraph is weakly connected if the as-
sociated graph is connected, that is, if there is a walk
in the associated graph connecting any two vertices.
If G is strongly connected, then for anyi, j ∈ V, we

define thedistancebetweeni andj to be the number of
edges in a shortest walk joiningi andj. Thediameter
D of a connected graphG is the maximum distance
between any two vertices ofG.
LetG denote a digraph with vertex setV and edge

setE. Let MatV(R) denote the set of all matrices with
real entries whose rows and columns are indexed by
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the vertices ofG. By the adjacency matrixof G we
mean the matrixQ ∈ MatV(R) with entries

qij =
{
1 if (j, i) ∈ E
0 otherwise

(i, j ∈ V).

When G is undirected, the matrixQ is symmetric.
The in-degree matrixof G is the diagonal matrixD ∈
MatV(R) with diagonal entries

dii = |{j ∈ V : (j, i) ∈ E}| (i ∈ V).

The directed Laplacian ofG is the matrix defined
by [2]

LG = D − Q.

We use the worddirectedto distinguish this matrix
from the most common definition of Laplacian in the
graph theory literature[28] asMGMT

G whereMG is the
incidencematrix ofG. This definition always results in
the same symmetric matrix regardless of whether the
graph is directed or not. We prefer the first definition
since it is the matrixLG which is the most relevant
to this problem. Both definitions agree for undirected
graphs.
If every vertex has nonzero in-degree thenD is

invertible. In this case an alternative definition of a
Laplacian could beL = IN − D−1Q [3,4]. (If D is
not invertible this formula forL can be adapted by
using pseudo-inverses[26].) These two matricesLG

andL have slightly different properties which make
each more advantageous than the other in different cir-
cumstances.
Some relatively simple, but powerful, results about

the spectrum ofLG are the following:

1. For a digraph withN vertices, all the eigenval-
ues of LG have nonnegative real part less than
or equal to 2(N − 1) (use Gershgorin’s theorem).
Moreover, except for the eigenvalue zero, the
real part of all other eigenvalues is positive.

2. Zero is an eigenvalue ofLG and all the ones vector
1 is an associated eigenvector.

3. If G is an undirected and connected graph onN
vertices, thenLG is symmetric and each nonzero
eigenvalue� of LG is real and satisfies (see[14])

N ��� 4

ND
, (5)

whereD denotes the diameter ofG. There is also
a lower bound in terms of the edge-connectivity
e(G) (see[6]): ��2e(G)(1− cos(�/N)).

4. If G is undirected then the least nonzero eigenvalue
�1 of LG grows monotonically with the number
of edges. More precisely, adding edges never de-
creases�1 [6].

We include below as example a list of spectra of
various well known classes of digraphs. An eigenvalue
� with multiplicity k is denoted�k.

Name # ver. Eigenvalues

Complete graphKn n 0, nn−1

Complete bipartite m + n 0,mn−1, nm−1,
Km,n m + n

Out-directed starSn n 0, 1n−1

Undirected starSn n 0, 1n−2, n
Directed pathPn n 0, 1n−1

Undirected pathPn n 2
(
1− cos

(�k
n

))
k = 0, . . . , n − 1

Directed cycleCn n 1− e2�ik/n

k = 0, . . . , n − 1
Undirected cycleCn n 2

(
1− cos

(2�k
n

))
k = 0, . . . , n − 1

n-cubeQn 2n (2k)(
n
k )

k = 0, . . . , n

We will need a special property of the eigenvalue
zero for our purposes. For that we need additional
definitions.

Definition 3.1. A rooted directed treeis a digraphT
with the following properties:

• T has no cycles.
• There exists a vertexv (the root) such that there is
a (directed) path fromv to every other vertex inT.

The following result is classical.

Theorem 3.2(Tutte (1948), see[28] ). Given a(loop-
less) digraph G, let LG = D − Q, where Q is the
adjacency matrix and D is the in-degree matrix. The
number of spanning directed trees of G rooted at ver-
tex vi is the value of each co-factor in the ith row
of LG.
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The following result can be proved using a suitable
expansion of the determinant.

Proposition 3.3. Let M be a matrix andp(x) =
det(xI − M) denote its characteristic polynomial.
The coefficient of x inp(x) is given by the sum of the
principal co-factors of M.

Proposition 3.4. Let G denote a(loopless) digraph.
Then, zero is an eigenvalue of algebraic multiplicity
one for the directed LaplacianLG if and only if G has
a rooted directed spanning tree.

Proof. Since zero is an eigenvalue the polynomial
p(x) has zero constant term. The eigenvalue 0 has al-
gebraic multiplicity greater than 1 if and only if the
coefficient ofx in p(x) is zero. By Tutte’s theorem and
the previous proposition this is equivalent to having
no rooted directed spanning tree.�

Remark 3.5. We will show below that the stabiliz-
ing feedback law proposed in the second section ex-
ists if and only if zero has algebraic multiplicity one.
This shows the exact extent of applicability of this
approach.

For additional graph theoretic terms and results
see[8].

4. Stabilizability

We show first that for the present decentralized feed-
back law to achieve formation stability, the individ-
ual vehicle dynamics must have a particular form. We
recall that we are assuming thatAveh andBveh have
the form indicated in (2).
The following result was proved in[10] for the case

a121 = · · · = an
21 andG a connected undirected graph.

A similar argument applies for our more general case.

Proposition 4.1. If for every formation h there exists
a stabilizing feedback matrixF = IN ⊗Fveh such that
every solution of(4) converges to formation h, then
ai
21 = 0 for i = 1, . . . , n.

One should expect the previous result to hold when-
ever arbitrary formations must be achieved since in

that case theaccelerationsshould not depend on the
absolutepositions but only on their values relative to
the other vehicles. On the other hand, dependence on
velocities is possible since formations might be main-
tained while accelerating and decelerating as long as
all vehicles have the same velocities. We will assume
from now on thatai

21 = 0 for all i.

Remark 4.2. The above statement implies that every
odd-numbered column of the matrixAveh (and by ex-
tension, every such column ofIN ⊗ Aveh) is zero.
In particular, zero is always an eigenvalue ofAveh.

Remark 4.3. If zero is an eigenvalue ofLG of alge-
braic multiplicity 1 then the vehicles are in formation
h if and only if L(x − h) = 0. To see this notice first
that the null space ofLG is spanned by the all one’s
vector1N . Therefore the null space ofL = LG ⊗ I2n
is spanned by1N ⊗ej whereej , j =1, . . . ,2n are the
standard basis vectors inR2n. The conclusion follows
from Definition 2.2.

We will now show thatGhas a rooted directed span-
ning tree if and only if there exist feedback matrices as
described above that achieve formation. We start with
the following result which characterizes convergence
to formation in terms of a spectral property ofLG. A
version of this appeared in[10].

Theorem 4.4. Let G be a digraph with the property
that zero is an eigenvalue of the directed LaplacianLG

of algebraic multiplicity one. Then the matrixAveh+
�BvehFveh is stable(Hurwitz) for each nonzero eigen-
value� ofLG if and only if, for every h, every solution
of (4) converges to formation h.

Proof. As shown earlier the eigenvalues ofA+BFL

are those ofAveh+ �BvehFveh for each� in the spec-
trum ofLG.
The structure of the proof is as follows. First we ex-

pand the system tȯy=My usinghp as a new variable
in a standard form. Then we show that a suitable sub-
space isM-invariant. Thirdly, we show that the map
induced on the quotient space is stable if and only if
Aveh + �BvehFveh is stable for each nonzero eigen-
value� of theLG. Finally, we show that convergence
in the quotient space means convergence to formation
for solutions of (4).
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Since the desired formation is a constant vector, the
formation variablehp satisfiesḣp = 0. We consider
the extended system

ẋ = Ax + BFLx

− BFL

(
InN ⊗

(
1
0

))
hp, (6)

ḣp = 0, (7)

Notice that

h = hp ⊗
(
1
0

)
=
(
InN ⊗

(
1
0

))
hp.

We write the above equations asẏ = My wherey =(
x
hp

)
andM is the(3nN) × (3nN) matrix given by

M =
(

A + BFL −BFL

(
InN ⊗

(
1
0

))
0 0nN

)
.

By our earlier comments about the eigenvalues of
A+BFL, this shows that the spectrum ofM consists
of the eigenvalues of thenN ×nN matrix of zeros and
those ofAveh+�BvehFveh for � in the spectrum ofLG.
LetS be the space having the basis

B=
{(
1N ⊗ ei

0

)
: ei ∈ R2n, i = 1, . . . ,2n

}
∪
{(

ej ⊗
(
1
0

)
ej

)
: ej ∈ RnN , j = 1, . . . , nN

}
.

(8)

Claim. The spaceS is M-invariant.

An element ofS has the form

y =
(
1N ⊗ �

0

)
+
(

� ⊗
(
1
0

)
�

)

with � ∈ R2n and� ∈ RnN . From the basic rules of
multiplication of Kronecker products we get that(
InN ⊗

(
1
0

))
� = � ⊗

(
1
0

)
.

This implies that

BFL

(
� ⊗

(
1
0

))
− BFL

(
InN ⊗

(
1
0

))
� = 0.

Combining this with Eqs. (6) and (7), we obtain

My =
(

IN ⊗ Aveh

(
1N ⊗ � + � ⊗

(
1
0

))
0

)

=
(
1N ⊗ Aveh�

0

)
∈ S.

The last equality follows from Remark 4.2 and the fact

that the vector�⊗
(
1
0

)
has zeros in its even numbered

rows.
This calculation also shows that the matrix of the

restriction of the transformation induced byM onS
relative to the basis above is exactly(

Aveh 0
0 0nN

)
.

We now note that from the definitions ofS andFh

we have that(
x

hp

)
∈ S

⇔ ∃� ∈ R2n,� ∈ RnN : x = 1N ⊗ � + � ⊗
(
1
0

)
,

hp = � ⇔ x ∈ Fh.

Since 0 is an eigenvalue ofLG of (algebraic) mul-
tiplicity 1, then the eigenvalues ofA+BFL are those
of Aveh together with those ofAveh + �BvehFveh for
eachnonzero� in the spectrum ofLG. Therefore, the
matrixM induces a linear transformation on the quo-
tient spaceR2nN/S whose eigenvalues are those of
Aveh+ �BvehFveh for � a nonzeroeigenvalue ofLG.
We conclude that the quotient dynamics are stable

if and only if Aveh + �BvehFveh is Hurwitz for each
� �= 0 in the spectrum ofLG. Moreover, stability of
the quotient dynamics is equivalent toy + S → S

whenevery =
(

x
hp

)
andẏ =My. From the character-

ization ofS this means that each solutionx(t) of (4)
converges to formation.�

We now want to show that stabilizing feedback ma-
trices indeed exist. For this we need some prelimi-
nary calculations expressing the eigenvalues ofAveh+
�BvehFveh in terms of�. It will suffice if we can find
feedback matrices of the formFveh = In ⊗ (f1, f2).
We use Routh’s criterion to develop conditions on the
feedback coefficients (gains)f1, f2 to guarantee con-
vergence to formation.
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Let q(x) = x2 + sx + p, be a polynomial where
s = s1 + s2i andp = p1 + p2i are complex numbers.
If � is a root ofq(x) then �̄ is a root ofr(x) = x2 +
s̄x + p̄. Thereforeq(x) is stable if and only ifh(x)=
q(x)r(x) is.Applying Routh’s criterion toh(x) (which
has real coefficients) results in the following necessary
and sufficient conditions for stability ofq(x):

s1>0 2p1 + s21 + s22 >0,

s1p1 + s2p2>0, p1s
2
1 + p2s1s2 − p2

2 >0.

We apply these conditions to the specific case at
hand.We are interested in conditions on the real scalars
f1 andf2 that would make the characteristic polyno-
mial of A + �BF have roots with negative real part.
As before, for the entire system letu=FL(x − h),

whereF = InN ⊗ (f1, f2) andL = LG ⊗ In. The sta-
bility problem reduces to findingf1 andf2 such that
A+�BF is Hurwitz for each nonzero eigenvalue� of
LG. Notice that those eigenvalues have positive real
part (see Section 3). To simplify the notation we as-
sume further that each coordinate has the exact same
dynamic equations. (The general case can be treated
similarly with one set of inequalities for each coordi-
nate.) We get

A + �BF = InN ⊗
((

0 1
0 a22

)
+ �

(
0
1

)
(f1, f2)

)
= InN ⊗

(
0 1

�f1 a22 + �f2

)
.

The eigenvalues ofA + �BF are the roots of poly-
nomialq(x)=x2+ (−a22−�f2)x + (−�f1). Writing
� = � + �i and using the above formulas we obtain
the following necessary and sufficient conditions for
the polynomial to be stable:

−a22 − �f2>0, (9)

−2�f1 + (a22 + �f2)2 + �2f 2
2 >0, (10)

a22�f1 + (�2 + �2)f1f2>0, (11)

− �f1(a22 + �f2)2 − �2f1f2(a22 + �f2)
− �2f 2

1 >0. (12)

Since�>0, looking at the signs of the coefficients
of f1 andf2 it is easy to see that all inequalities are

satisfied by choosingf1<0, f2<0 and f2 large
enough in absolute value. We have shown the follow-
ing.

Proposition 4.5. The gainsf1, f2 stabilize the for-
mation if and only if they satisfy the four inequalities
above. Moreover, the system of inequalities always has
solutions. More specifically, one such stabilizing pair
can be found by choosingf1<0 and f2<0 with f2
sufficiently large in absolute value.

We can make this more explicit in the casea22=0,
which corresponds to each coordinate being modelled
as a double integrator. The conditions become simply:

f1<0, (13)

f2<0, (14)

f 2
2

f1
< − �2

�(�2 + �2)
, (15)

which can be easily satisfied for somef1, f2.
We now present the main results of the paper.

Theorem 4.6. Consider the control system given by
(4).There exists a matrixFveh such that for every for-
mation h the solution to(4) converges to formation h if
and only if zero has multiplicity one as an eigenvalue
of the directed graph LaplacianLG.

Proof. The sufficiency follows from Theorem 4.4 and
Proposition 4.5.
For the necessity assume that zero is an eigenvalue

of LG of multiplicity k >1.We proceed as in the proof
of Theorem 4.4 to construct the matrixM, the basis
B, and the spaceS. The difference is that nowS is
a proper subset of{(

x

hp

)
: L(x − h) = 0

}
.

Convergence to formation is still equivalent to conver-
gence in the quotient space. However, regardless of
Fveh the spectrum of the quotient map now includes
at leastk −1 copies of the eigenvalues ofAveh one of
which is zero (see Remark 4.2). This implies that the
quotient dynamics cannot be stabilized with the above
type of feedback laws.�
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Combining Proposition 3.4 with the previous theo-
rem gives the following.

Corollary 4.7. Consider the control system given by
(4). There exists a matrixFveh such that for every
formation h the solution to(4) converges to formation
h if and only if the digraph G has a rooted directed
spanning tree.

5. Examples

We illustrate the main results with several numer-
ical examples. First we assume thata22 = 0 so each
coordinate is modelled as a double integrator. In all
these examples the desired formation is specified as
the vertices of a regular pentagon. The initial posi-
tion of the vehicles is marked with an ‘x’ and all
vehicles are lined up in a row at the start. The final
positions of the vehicles are marked with circles.
Fig. 2 shows convergence to formation using the
same feedback matrix but three different digraphs,
the (directed) 5-cycle, the (directed) 5-path, and the
complete graphK5. The formation drifts in space
at a constant speed because vehicle 1 has an initial
nonzero velocity. Notice that while the cycle has one
edge more than the path, the former achieves forma-
tion more slowly than the latter. The corresponding
(approximate) spectra ofA + BFL are (without
counting multiplicities):{0,−0.22± 1.88i,−0.81±
0.45i,−1.21 ± 0.60i,−1.51 ± 1.48i} for the cycle,
{0,−0.75±0.97i} for the path, and{0,−1.19,−6.31}
for K5. We will see below that for undirected graphs
convergence cannot deteriorate when more edges
are added.
In Fig. 3 the same communication digraph is used

(the directed cycle) with different feedback matrices.

6. Special cases

We discuss here two categories of graphs which
have special interest in applications.

6.1. Bidirectional communications

If communication is bidirectional, then whenever
vehicle i receives information from vehiclej, vehicle
j also receives information from vehiclei. This means

that the adjacency matrix of the communication graph
is symmetric and so all its eigenvalues are real.
The discriminant of the characteristic polynomial of

the matrixAveh+ �BvehFveh is (a22 + �f2)2 + 4�f1.
Thus, for a fixedf2, choosingf1 so that

(a22 + �f2)2

4�
< − f1

for every nonzero eigenvalue� of LG guarantees com-
plex (nonreal) roots of the characteristic polynomial,
thereby providing the fastest rate of convergence. Thus
we have proved the following.

Proposition 6.1. Assume G is undirected. Forf1 and
f2 as above, the rate of convergence to formation is
(a22+�1f2)/2,where�1 is the smallest nonzero eigen-
value ofLG.

In this case, where the graphs are undirected, the
monotonicity property of�1 (see Section 3) and
the above inequality show that iff2 is fixed the
convergence to formation cannot deteriorate by adding
edges.

Remark 6.2. For a fixed numberN of vehicles, sta-
bilizing gainsf1 andf2 can be chosen independently
of the graph. This follows immediately from the
inequalities (5).

6.2. Formations with leaders

A special situation occurs when one of the vehicles
does not receive information from any of the others.
Essentially this means that the others are forced to
arrange their positions in response to the motion of
that vehicle. This makes such a vehicle a de facto
leader. The motion of the overall formation is dictated
by that of the leader. Since we are always assuming
that the communication digraph has a directed rooted
spanning tree, there can be at most one such leader.
Since the in-degree of the corresponding vertex is zero,
the corresponding row of the adjacency matrix is zero
and the matrixD is not invertible.
In the following figures the initial position of the

vehicles is marked with an “x” and the desired for-
mation consists of the vertices of a regular pentagon.
The leader is marked with a diamond. The communi-
cation digraph is a directed path. InFig. 4 the leader
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Fig. 2. Form left: (directed) cycle, (directed) path, and complete graph.
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Fig. 3. Cycle with different feedback gains:f1 andf2 are more negative on the right.
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Fig. 4. Formations with leaders. Stronger feedback laws from left to right. The leader is indicated with a diamond.

has zero initial velocities and therefore remains fixed
in its position. InFig. 5 the leader has an initial ve-
locity (in the direction(1,1)) and therefore the whole

formation drifts in that direction. Notice how the var-
ious vehicles have to adjust their own path to achieve
the formation.
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Fig. 6. Effect ofa22. From left to righta22 = 0, a22<0, a22>0.

7. Moving in formation

Fig. 6 illustrates the effect of thea22 term in the
resulting formations. While these examples use the
same 2× 2 matrix for each controlled quantity in a
single vehicle, the effect of different values for each
of them should be clear from these pictures. The dots
are plotted at equal time intervals. The model still
assumes that all the vehicles have the same dynamics.
For a22 = 0 the vehicles achieve a constant velocity.
For a22<0 the vehicles eventually stop. Fora22>0
the vehicles uniformly accelerate.

8. Concluding remarks

Wehave demonstrated the close connection between
spectral graph theory and one of the current methods of
control of vehicle formations. We have made explicit
how to choose stabilizing feedback gains in terms
of the eigenvalues of the directed Laplacian of the
communication digraph. Furthermore, for undirected

graphs we have derived an expression for the rate of
convergence to formation that is a linear function of
the smallest positive eigenvalue of the Laplacian.
We have used throughout the LaplacianD − Q. A

similar approach could be applied to the Laplacian
I − D−1Q (whenD is invertible). The difference is
that the matrixD, in effect, produces different scalings
for the different vehicles. In the case of in-regular di-
graphs, the matrixD is a scalar multiple ofI and the
resulting gains are equivalent. The question of find-
ing bounds for�1 whenG is undirected is well stud-
ied. For the directed case we find that (fora22 = 0)
the quantity�2/[�(�2 + �2)] is the key indicator of
stability margins.
Some generalizations seem possible. We expect

that using a weighted communication digraph will
equally allow for convergence to formation. The dif-
ferent weights will cause the net effect of the feedback
laws to be different for each vehicle. A more signif-
icant generalization would be to allow the digraph
to change. The techniques from[9] suggest a way
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to deal with the problem although the flexibility in
the choice of formations and the use of more general
Laplacians complicate the convergence studies.
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