
Optimal and Efficient Path Planning for Partially-Known Environments

Anthony Stentz

The Robotics Institute; Cmegie Mellon University; Pittsburgh, PA 15213

Abstract

The task of planning trajectories for a mobile robot has
received considerable attention in the research literature.
Most of the work assumes the robot has a complete and
accurate model of its environment before it begins to
move; less attention has been paid to the problem of
partially known environments. This situation occurs for
an exploratory robot or one that must move to a goal
location without the benejit of ajloorplan or terrain map.
Existing approaches plan an initial path based on known
information and then modijj the plan locally or replan the
entire path as the robot discovers obstacles with its
sensors, sacrgcing optimulity or computational efJiciency
respectively. This paper introduces a new algorithm, D*,
capable of planning paths in unknown, partially known,
and changing environments in an efticient, optimal, and
complete manner:

1 .O Introduction
The research literature has addressed extensively the

motion planning problem for one or more robots moving
through a field of obstacles to a goal. Most of this work
assumes that the environment is completely known before
the robot begins its traverse (see Latombe [41 for a good
survey). The optimal algorithms in this literature search a
state space (e.g., visibility graph, grid cells) using the dis-
tance transform [2] or heuristics [8] to find the lowest cost
path from the robot’s start state to the goal state. Cost can
be defined to be distance travelled, energy expended, time
exposed to danger, etc.

Unfortunately, the robot may have partial or no
information about the environment before it begins its
traverse but is equipped with a sensor that is capable of
measuring the environment as it moves. One approach to
path planning in this scenario is to generate a “global”
path using the known information and then attempt to
“locally” circumvent obstacles on the route detected by
the sensors [l l . If the route is completely obstructed, a

new global path is planned. Lumelsky [71 initially assumes
the environment to be devoid of obstacles and moves the
robot directly toward the goal. If an obstacle obstructs the
path, the robot moves around the perimeter until the point
on the obstacle nearest the goal is found. The robot then
proceeds to move directly toward the goal again. Pirzadeh
[9] adopts a strategy whereby the robot wanders about the
environment until it discovers the goal. The robot
repeatedly moves to the adjacent location with lowest cost
and increments the cost of a location each time it visits it to
penalize later traverses of the same space. Korf [31 uses
initial map information to estimate the cost to the goal for
each state and efficiently updates it with backtracking costs
as the robot moves through the environment.

While these approaches are complete, they are also
suboptimal in the sense that they do not generate the
lowest cost path given the sensor information as it is
acquired and assuming all known, a priori information is
correct. It is possible to generate optimal behavior by
computing an optimal path from the known map
information, moving the robot along the path until either it
reaches the goal or its sensors detect a discrepancy
between the map and the environment, updating the map,
and then replanning a new optimal path from the robot’s
current location to the goal. Although this brute-force,
replanning approach is optimal, it can be grossly
inefficient, particularly in expansive environments where
the goal is far away and little map information exists.
Zelinsky [15] increases efficiency by using a quad-tree
[131 to represent free and obstacle space, thus reducing the
number of states to search in the planning space. For
natural terrain, however, the map can encode robot
traversability at each location ranging over a continuum,
thus rendering quad-trees inappropriate or suboptimal.

This paper presents a new algorithm for generating
optimal paths for a robot operating with a sensor and a map
of the environment. The map can be complete, empty, or
contain partial information about the environment. For

1050-4729194 $03.00 0 1994 IEEE
3310

regions of the environment that are unknown, the map
may contain approximate information, stochastic models
for occupancy, or even a heuristic estimates. The
algorithm is functionally equivalent to the brute-force,
optimal replanner, but it is far more efficient.

The algorithm is formulated in terms of an optimal
find-path problem within a directed graph, where the arcs
are labelled with cost values that can range over a
continuum. The robot's sensor is able to measure arc costs
in the vicinity of the robot, and the known and estimated
arc values comprise the map. Thus, the algorithm can be
used for any planning representation, including visibility
graphs [5] and grid cell structures. The paper describes
the algorithm, illustrates its operation, presents informal
proofs of its soundness, optimality, and completeness, and
then concludes with an empirical comparison of the
algorithm to the optimal replanner.

2.0 The D* Algorithm
The name of the algorithm, D*, was chosen because it

resembles A* [8], except that it is dynamic in the sense
that arc cost parameters can change during the problem-
solving process. Provided that robot motion is properly
coupled to the algorithm, D* generates optimal trajecto-
ries. This section begins with the definitions and notation
used in the algorithm, presents the D* algorithm, and
closes with an illustration of its operation.

2.1 Definitions
The objective of a path planner is to move the robot

from some location in the world to a goal location, such
that it avoids all obstacles and minimizes a positive cost
metric (e.g., length of the traverse). The problem space
can be formulated as a set of states denoting robot loca-
tions connected by directional arcs, each of which has an
associated cost. The robot starts at a particular state and
moves across arcs (incurring the cost of traversal) to other
states until it reaches the goal state, denoted by G . Every
state X except G has a backpointer to a next state Y
denoted by b(X) = Y . D* uses backpointers to represent
paths to the goal. The cost of traversing an arc from state
Y to state X is a positive number given by the arc cost
function c(X, Y) . If Y does not have an arc to X , then
c(X, Y) is undefined. Two states X and Y are neighbors in
the space if c(X, U) or c(Y, X) is defined.

Like A*, D* maintains an OPEN list of states. The
OPEN list is used to propagate information about changes
to the arc cost function and to calculate path costs to states
in the space. Every state X has an associated tag r (X) ,
such that r (X) = NEW if X has never been on the OPEN
list, t(X) = OPEN if X is currently on the OPEN list, and

t(X) = CLOSED if X is no longer on the OPEN list. For
each state X , D* maintains an estimate of the sum of the
arc costs from X to G given by the path cost function
h(G, X) . Given the proper conditions, this estimate is
equivalent to the optimal (minimal) cost from state X to
G , given by the implicit function o(G, X) . For each state X
on the OPEN list (i.e., r (X) = OPEN), the key function,
k(G, X) , is defined to be equal to the minimum of h(G, X)
before modification and all values assumed by h(G, X)
since X was placed on the OPEN list. The key function
classifies a state X on the OPEN list into one of two types:
a RAISE state if k(G, X) < h(G, X) , and a LOWER State if
k(G, X) = h(G, X) . D* uses RAISE states on the OPEN list
to propagate information about path cost increases (e.g.,
due to an increased arc cost) and LOWER states to
propagate information about path cost reductions (e.g.,
due to a reduced arc cost or new path to the goal). The
propagation takes place through the repeated removal of
states from the OPEN list. Each time a state is removed
from the list, it is expanded to pass cost changes to its
neighbors. These neighbors are in turn placed on the
OPEN list to continue the process.

States on the OPEN list are sorted by their key function
value. The parameter kmin is defined to be min(k(X)) for
a l l X such that r (X) = O P E N . The parameter kmin
represents an important threshold in D*: path costs less
than or equal to kmin are optimal, and those greater than
kmin may not be optimal. The parameter kold is defined to
be equal to kmin prior to most recent removal of a state
from the OPEN list. If no states have been removed, kold
is undefined.

An ordering of states denoted by IX,,X,} is defined to
be a sequence if b(Xi+ ,) = X i for all i such that 1 < i < N
and X i # X j for all (ij) such that 15 i < j l N . Thus, a
sequence defines a path of backpointers from X N to X , . A
sequence IX,,X,) is def ined to be monotonic if
(r(Xi) = CLOSED and h(G, X i) < h(G, X i + or
(? (X i) = OPEN and k(G, X i) < h(G, X i + ,)) for all i such
that 1 5 i < N . D* constructs and maintains a monotonic
sequence { G,X} , representing decreasing current or lower-
bounded path costs, for each state X that is or was on the
OPEN list. Given a sequence of states {X , ,XN} , state X i is
an ancestor of state Xi if 1 < i < j 5 N and a descendant of
Xi if 1 < j < i l N .

For all two-state functions involving the goal state, the
following shorthand notation is used: AX) S A G , X) .
Likewise, for sequences the notation (X } = {G,X) is used.
The notation A") is used to refer to a function independent
of its domain.

3311

2.2 Algorithm Description
The D* algorithm consists primarily of two functions:

PROCESS - STATE is used to compute optimal path costs
to the goal, and MODIFY - COST is used to change the
arc cost function c(O) and enter affected states on the
OPEN list. Initially, f(O) is set to NEW f o r d States, h(G)
is set to zero, and G is placed on the OPEN list. The first
function, PROCESS- STATE, is repeatedly called until
the robot's state, X , is removed from the OPEN list (i.e.,
t(X) = C L O S E D) or a value of -1 is returned, at which
point either the sequence { X } has been computed or does
not exist respectively. The robot then proceeds to follow
the backpointers in the sequence { X) until it either
reaches the goal or discovers an error in the arc cost func-
tion c(") (e.g., due to a detected obstacle). The second
function, MUDIFY- COST, is immediately called to cor-
rect c(O) and place affected states on the OPEN list. Let Y
be the robot's state at which it discovers an error in c (O) .

By calling PROCESS - STATE until it returns kmin 2 h(Y),
the cost changes are propagated to state Y such that
h(Y) = o(Y). At this point, a possibly new sequence { Y)
has been constructed, and the robot continues to follow
the backpointers in the sequence toward the goal.

PROCESS - STATE and MODIFY - COST.

T h e a lgor i thms for PROCESS-STATE and
MODIFY - COST are presented below. The embedded
routines are MIN - STATE, which returns the state on the
OPEN list with minimum k(O) value (N U L L if the list is
empty); G E T - KMIN, which returns kmin for the OPEN
list (-1 if the list is empty); DELETE(X), which deletes
state X from the OPEN list and sets t (X) = CLOSED; and
INSERT(X, h,,,,), which computes k(X) = h,,,,, if
f (X) = N E W , k(X) = min(k(X), h,,,) if t(X) = O P E N , and
k(X) = min(h(X), h,,,) if t (X) = CLOSED, se ts
h(X) = hnew and r(X) = OPEN, and places or re-positions
state X on the OPEN list sorted by k (O) .

In function PROCESS - STATE at lines L l through L3,
the state X with the lowest k(") value is removed from the
OPEN list. If X is a LOWER state (i.e., k(X) = h(X)) , its
path cost is optimal since h(X) is equal to the old k m i n . At
lines L8 through L13, each neighbor Y of X is examined
to see if its path cost can be lowered. Additionally,
neighbor states that are NEW receive an initial path cost
value, and cost changes are propagated to each neighbor
Y that has a backpointer to X , regardless of whether the
new cost is greater than or less than the old. Since these
states are descendants of X , any change to the path cost of
X affects their path costs as well. The backpointer of Y is
redirected (if needed) so that the monotonic sequence
{ Y } is constructed. All neighbors that receive a new path

cost are placed on the OPEN list, so that they will
propagate the cost changes to their neighbors.

If X is a RAISE state, its path cost may not be optimal.
Before X propagates cost changes to its neighbors, its
optimal neighbors are examined at lines L4 through L7 to
see if h(X) can be reduced. At lines L15 through L18, cost
changes are propagated to NEW states and immediate
descendants in the same way as for LOWER states. If X is
able to lower the path cost of a state that is not an
immediate descendant (lines L20 and L21), X is placed
back on the OPEN list for future expansion. It is shown in
the next section that this action is required to avoid
creating a closed loop in the backpointers. If the path cost
of X is able to be reduced by a suboptimal neighbor (lines
L23 through L25), the neighbor is placed back on the
OPEN list. Thus, the update is "postponed" until the
neighbor has an optimal path cost.

Function: PROCESS-STATE ()

L2 if X = NULL then return -1

L4 if kold < h(X) then
L5
L6
L7
L8
L9
L10
L11
L12

L14 else
L15
L16
L17
L18
L19 else
L20 ifb(Y)#Xandh(Y)>h(X)+c(X,Y) then
L21 INSERT(X, h(X))
L22 else
L23 i fb (Y)#Xandh(X)>h(Y)+c(Y,X) and
L24 r (Y) = CLOSED and h(Y) > kold then
L25 INSERT(Y, h(Y))

L1 X = MZN-STATE()

L3 ko[d = GET - KMIN() ; DELETE(X)

for each neighbor Y of X :
if h(Y) S kold and h(X) > h(Y) + c(Y, X) then

b(X) = Y ; h(X) = h(Y)+c(Y ,X)
if kold = h(X) then

for each neighbor Y of X :
if t(Y) = NEW or

(b(Y) = X and h(Y) f h(X) +c(X, Y)) or
(b(r) f X and h(Y) > h(X) + c(X, Y)) then

L13 b(Y) = X ; INSERqY, h(X) + c(X, Y))

for each neighbor Y of X :
if t(Y) = NEW or

(b(Y) = X and h(Y) #h(X) + c(X, Y)) then
b(Y) = X ; INSERT(Y, h(X) + c(X, Y))

L26 return G E T - KMIN ()

3312

In function MODIFY - COST, the arc cost function is
updated with the changed value. Since the path cost for
state Y will change, X is placed on the OPEN list. When
X is expanded via PROCESS - STATE, it computes a new
h(Y) = h(X)+c(X, Y) and places Y on the OPEN list.
Additional state expansions propagate the cost to the
descendants of Y .

Function: MODIFY-COST (X, Y, cval)
L1 c(X, Y) = cval
L2
L3 return G E T - K M I N ()

if t (x) = CLOSED then INSERT(X, h(X))

2.3 Illustration of Operation

operation of the algorithm. The RAISE states (i.e.,
k(X) < h(X)) propagate cost increases, and the LOWER
states (i.e., k(x) = h(X)) propagate cost reductions. When
the cost of traversing an arc is increased, an affected
neighbor state is placed on the OPEN list, and the cost
increase is propagated via RAISE states through all state
sequences containing the arc. As the RAISE states come
in contact with neighboring states of lower cost, these
LOWER states are placed on the OPEN list, and they sub-
sequently decrease the cost of previously raised states
wherever possible. If the cost of traversing an arc is
decreased, the reduction is propagated via LOWER states
through all state sequences containing the arc, as well as
neighboring states whose cost can also be lowered.

The role of RAISE and LOWER states is central to the

The planning space consists of a 50 x 50 grid of cells.
Each cell represents a state and is connected to its eight
neighbors via bidirectional arcs. The arc cost values are
small for the EMPTY cells and prohibitively large for the
OBSTACLE cells.’ The robot is point-sized and is
equipped with a contact sensor. Figure 1 shows the results
of an optimal path calculation from the goal to all states in
the planning space. The two grey obstacles are stored in
the map, but the black obstacle is not. The arrows depict
the backpointer function; thus, an optimal path to the goal
for any state can be obtained by tracing the arrows from
the state to the goal. Note that the arrows deflect around
the grey, known obstacles but pass through the black,
unknown obstacle.

Figure 2: LOWER States Sweep into Well

Figure 1: Backpointers Based on Initial Propagation

The robot starts at the center of the left wall and
follows the backpointers toward the goal. When it reaches
the unknown obstacle, it detects a discrepancy between
the map and world, updates the map, colors the cell light
grey, and enters the obstacle cell on the OPEN list.
Backpointers are redirected to pull the robot up along the
unknown obstacle and then back down. Figure 2
illustrates the information propagation after the robot has
discovered the well is sealed. The robot’s path is shown in
black and the states on the OPEN list in grey. RAISE
states move out of the well transmitting path cost
increases. These states activate LOWER states around the

Figure 1 through Figure 3 illustrate the operation of the
algorithm for a “potential well” path planning problem.

1. The arc cost value of OBSTACLE must be chosen to be
greater than the longest possible sequence of EMPTY cells SO

that a simple threshold can be used on the path cost to determine
if the optimal path to the goal must pass through an obstacle.

9313

“lip” of the well which sweep around the upper and lower
obstacles and redirect the backpointers out of the well.

Figure 3 Final Backpointer Configuration

This process is complete when the LOWER states reach
the robot’s cell, at which point the robot moves around the
lower obstacle to the goal (Figure 3). Note that after the
traverse, the backpointers are only partially updated.
Backpointers within the well point outward, but those in
the left half of the planning space still point into the well.
All states have a path to the goal, but optimal paths are
computed to a limited number of states. This effect
illustrates the efficiency of D*. The backpointer updates
needed to guarantee an optimal path for the robot are
limited to the vicinity of the obstacle.

Figure 4 illustrates path planning in fractally generated
terrain. The environment is 450 x 450 cells. Grey regions
are fives times more difficult to traverse than white
regions, and the black regions are untraversible. The black
curve shows the robot’s path from the lower left comer to
the upper right given a complete, a priori map of the
environment. This path is referred to as omniscient
optimal. Figure 5 shows path planning in the same terrain
with an optimistic map (all white). The robot is equipped
with a circular field of view with a 20-cell radius. The
map is updated with sensor information as the robot
moves and the discrepancies are entered on the OPEN list
for processing by D*. Due to the lack of a priori map
information, the robot drives below the large obstruction
in the center and wanders into a deadend before
backtracking around the last obstacle to the goal. The
resultant path is roughly twice the cost of omniscient

optimal. This path is optimal, however, given the
information the robot had when it acquired it.

Figure 4: Path Planning with a Complete Map

Figure 5: Path Planning with an Optimistic Map

Figure 6 illustrates the same problem using coarse map
information, created by averaging the arc costs in each
square region. This map information is accurate enough to
steer the robot to the correct s ide of the central
obstruction, and the resultant path is only 6% greater in
cost than omniscient optimal.

3314

Figure 6: Path Planning with a Coarse-Resolution Map regardless of the pattern of access for functions
MODIFY- COST and PROCESS-STATE.

3.0 Soundness, Optimality, and
Completeness

After all states X have been initialized to t (x) = NEW
and G has been entered onto the OPEN list, the function
PROCESS - STATE is repeatedly invoked to construct
state sequences. The function MODIFY- COST is
invoked to make changes to c(O) and to seed these
changes on the OPEN list. D* exhibits the following
properties:

Property 1: If t (X)+NEW, then the sequence { X } is
constructed and is monotonic.

Property 2: When the value kmin re turned by
PROCESS-STATE e q u a l s or exceeds h(X), then
h(X) = 48.

Property 3: If a path from X to G exists, and the search
space contains a finite number of states, (X } will be
cons t ruc ted a f te r a f in i te number of ca l l s to
PROCESS-STATE. If a path does not ex is t ,
PROCESS- STATE will return -1 with r(X) = NEW.

Property 1 is a soundness property: once a state has
been visited, a finite sequence of backpointers to the goal
has been constructed. Property 2 is an optimality property.
It defines the conditions under which the chain of
backpointers to the goal is optimal. Property 3 is a
completeness property: if a path from X to G exists, it
will be constructed. If no path exists, it will be reported in
a finite amount of time. All three properties hold

For brevity, the proofs for the above three properties
are informal. See Stentz [14] for the detailed, formal
proofs . Cons ider Proper ty 1 f i rs t . Whenever
PROCESS - STATE visits a NEW state, it assigns b(") to
point to an existing state sequence and sets h(") to
preserve monotonicity. Monotonic sequences are
subsequently manipulated by modifying the functions
t (") , h (O) , k (O) , and b("). When a state X is placed on the
OPEN l is t (i . e . , r(X) = O P E N) , k(X) i s se t to h(X)
preserve monotonicity for states with backpointers to X .
Likewise, when a state X is removed from the list, the h (O)
values of its neighbors are increased if needed to preserve
monotonicity. The backpointer of a state X , b(X), can only
be reassigned to Y if h(Y) < h(X) and if the sequence { Y)
contains no RAISE states. Since (Y } contains no RAISE
states, the h(O) value of every state in the sequence must
be less than MY). Thus, X cannot be an ancestor of Y , and
a closed loop in the backpointers cannot be created.
Therefore, once a state X has been visited, the sequence
{ X } has been constructed. Subsequent modifications

ensure that a sequence { X } still exists.

Consider Property 2. Each time a state is inserted on or
removed from the OPEN list, D* modifies h(") values so
that k(X) 5 h(Y) + c(Y, X) for each pair of states (X , Y) such
that X is OPEN and Y is CLOSED. Thus, when X is
chosen for expansion (i.e., kmin = k (X)) , the CLOSED
neighbors of X cannot reduce h(X) below k m i n , nor can
the OPEN neighbors, since their h(') values must be
greater than k m i n . States placed on the OPEN list during
the expansion of X must have k (O) values greater than
k(X) ; thus, kmin increases or remains the same with each
invocation of PROCESS-STATE. If states with h (O)

values less than or equal to kold are optimal, then states
with h(O) values between (inclusively) kold and kmin are
optimal, since no states on the OPEN list can reduce their
path costs. Thus, states with h(") values less than or equal
to kmin are optimal. By induction, PROCESS- STATE
constructs optimal sequences to all reachable states. If the
a rc cos t c(X,Y) is modi f ied , the func t ion
MODIFY- COST places X on the OPEN list, after which
kmin is less than or equal to h(X). Since no state Y with
h(Y) S h(X) can be affected by the modified arc cost, the
property still holds.

Consider Property 3 . Each time a state is expanded via
PROCESS - STATE, it places its NEW neighbors on the
OPEN list. Thus, if the sequence { X } exists, it will be
constructed unless a state in the sequence, Y , is never
selected for expansion. But once a state has been placed

3315

on the OPEN list, its No) value cannot be increased.
Thus, due to the monotonicity of k,,,;,,, the state Y will
eventually be selected for expansion.

4.0 Experimental Results
D* was compared to the optimal replanner to verify its

optimality and to determine its performance improve-
ment. The optimal replanner initially plans a single path
from the goal to the start state. The robot proceeds to fol-
low the path until its sensor detects an error in the map.
The robot updates the map, plans a new path from the
goal to its current location, and repeats until the goal is
reached. An optimistic heuristic function b(x) is used to
focus the search, such that $(A‘) equals the “straight-line”
cost of the path from X to the robot’s location assuming
all cells in the path are EMPTY. The replanner repeatedly
expands states on the OPEN list with the minimum
g (X) + h(X) value. Since b(X) is a lower bound on the
actual cost from X to the robot for all X, the replanner is
optimal [8].

The two algorithms were compared on planning
problems of varying size. Each environment was square,
consisting of a start state in the center of the left wall and
a goal state in center of the right wall. Each environment
consisted of a mix of map obstacles (i.e., available to
robot before traverse) and unknown obstacles measurable
by the robot ’s sensor . The sensor used was
omnidirectional with a 10-cell radial field of view. Figure
7 shows an environment model with 100,OOO states. The
map obstacles are shown in grey and the unknown
obstacles in black.

Table 1 shows the results of the comparison for
environments of size 1000 through 1,000,000 cells. The
runtimes in CPU time for a Sun Microsystems SPARC-IO
processor are listed along with the speed-up factor of D*
over the optimal replanner. For both algorithms, the
reported runtime is the total CPU time for all replanning
needed to move the robot from the start state to the goal
state, after the initial path has been planned. For each
environment size, the two algorithms were compared on
five randomly-generated environments, and the runtimes
were averaged. The speed-up factors for each
environment size were computed by averaging the speed-
up factors for the five trials.

The runtime for each algorithm is highly dependent on
the complexity of the environment, including the number,
size, and placement of the obstacles, and the ratio of map
to unknown obstacles. The results indicate that as the
environment increases in size, the performance of D*
over the optimal replanner increases rapidly. The intuition

for this result is that D* replans locally when it detects an
unknown obstacle, but the optimal replanner generates a
new global trajectory. As the environment increases in
size, the local trajectories remain constant in complexity,
but the global trajectories increase in complexity.

Figure 7: Typical Environment for Algorithm Comparison

Table 1 : Comparison of D* to Optimal Replanner

10,000 100.000 1,000,000

Replanner 427 msec 14.45 sec 10.86 mio 50.82 min

261 msec 1.69 sec 10.93 sec 16.83 sec
I I I 3

I Speed-up I 1.67 I 10.14 I 56.30-

5.0 Conclusions

5.1 Summary
This paper presents D*, a provably optimal and effi-

cient path planning algorithm for sensor-equipped robots.
The algorithm can handle the full spectrum of a priori map
information, ranging from complete and accurate map
information to the absence of map information. D* is a
very general algorithm and can be applied to problems in
artificial intelligence other than robot motion planning. In
its most general form, D* can handle any path cost opti-
mization problem where the cost parameters change dur-
ing the search for the solution. D* is most efficient when
these changes are detected near the current starting point
in the search space, which is the case with a robot
equipped with an on-board sensor.

3316

See Stentz [141 for an extensive description of related
applications for D*, including planning with robot shape,
field of view considerations, dead-reckoning error,
changing environments, occupancy maps, potential fields,
natural terrain, multiple goals, and multiple robots.

5.2 Future Work

research has addressed the exploration and map building
problems [6][9][10][11][15] in addition to the path finding
problem. Using a strategy of raising costs for previously
visited states, D* can be extended to support exploration
tasks.

For unknown or partially-known terrains, recent

Quad trees have limited use in environments with cost
values ranging over a continuum, unless the environment
includes large regions with constant traversability costs.
Future work will incorporate the quad tree representation
for these environments as well as those with binary cost
values (e.g., OBSTACLE and EMPTY) in order to reduce
memory requirements [151.

Work is underway to integrate D* with an off-road
obstacle avoidance system [12] on an outdoor mobile
robot. To date, the combined system has demonstrated the
ability to find the goal after driving several hundred
meters in a cluttered environment with no initial map.

Acknowledgments

“Perception for Outdoor Navigation” (contract number
DACA76-89-C-0014, monitored by the US Army TEC)
and “Unmanned Ground Vehicle System” (contract num-
ber DAAE07-90-C-R059, monitored by TACOM).

This research was sponsored by ARF’A, under contracts

The author thanks Alonzo Kelly and Paul Keller for
graphics software and ideas for generating fractal terrain.

References
[l] Goto, Y., Stentz, A., “Mobile Robot Navigation: The CMU
System,” IEEE Expert, Vol. 2, No. 4, Winter, 1987.
[2] Jarvis, R. A., “Collision-Free Trajectory Planning Using the
Distance Transforms,” Mechanical Engineering Trans. of the
Institution of Engineers, Australia, Vol. ME10, No. 3, Septem-
ber, 1985.
[3] Korf, R. E., “Real-Tiie Heuristic Search: First Results,”
Proc. Sixth National Conference on Artificial Intelligence, July,
1987.
[4] Latombe, J.-C., “Robot Motion Planning”, Kluwer Aca-
demic Publishers, 1991.
[5] Lozano-Perez, T., “Spatial Planning: A Configuration Space
Approach”, IEEE Transactions on Computers, Vol. C-32, No. 2,
February, 1983.

[6] Lumelsky, V. J., Mukhopadhyay, S., Sun, K., “Dynamic Path
Planning in Sensor-Based Terrain Acquisition”, IEEE Transac-
tions on Robotics and Automation, Vol. 6, No. 4, August, 1990.
[7] Lumelsky, V. J., Stepanov, A. A., “Dynamic Path Planning
for a Mobile Automaton with Limited Information on the Envi-
ronment”, IEEE Transactions on Automatic Control, Vol. AC-
31, No. 11, November, 1986.
[8] Nilsson, N. J., “Principles of Artificial Intelligence”, Tioga
Publishing Company, 1980.
[9] Pinadeh, A., Snyder, W., “A Unified Solution to Coverage
and Search in Explored and Unexplored Terrains Using Indirect
Control”, Proc. of the IEEE International Conference on Robot-
ics and Automation, May, 1990.
[101 Rao, N. S. V., “An Algorithmic Framework for Navigation
in Unknown Terrains”, IEEE Computer, June, 1989.
[l l] Rao, N.S.V., Stoltzfus, N., Iyengar, S. S., “A ‘Retraction’
Method for Learned Navigation in Unknown Terrains for a Cir-
cular Robot,’’ IEEE Transactions on Robotics and Automation,
Vol. 7, No. 5, October, 1991.
[121 Rosenblatt, J. K., Langer, D., Hebert, M., “An Integrated
System for Autonomous Off-Road Navigation,” Proc. of the
IEEE International Conference on Robotics and Automation,
May, 1994.
[13] Samet, H., “An Overview of Quadtrees, Octrees and
Related Hierarchical Data Structures,” in NATO AS1 Series, Vol.
F40, Theoretical Foundations of Computer Graphics, Berlin:
Springer-Verlag, 1988.
[141 Stentz, A., “Optimal and Efficient Path Planning for
Unknown and Dynamic Environments,” Carnegie Mellon
Robotics Institute Technical Report CMU-RI-TR-93-20, August,
1993.
[151 Zelinsky, A., “A Mobile Robot Exploration Algorithm”,
IEEE Transactions on Robotics and Automation, Vol. 8, NO. 6,
December. 1992.

3317

