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Abstract 

The task of planning trajectories for a mobile robot has 
received considerable attention in the research literature. 
Most of the work assumes the robot has a complete and 
accurate model of its environment before it begins to 
move; less attention has been paid to the problem of 
partially known environments. This situation occurs for 
an exploratory robot or one that must move to a goal 
location without the benejit of ajloorplan or terrain map. 
Existing approaches plan an initial path based on known 
information and then modijj the plan locally or replan the 
entire path as the robot discovers obstacles with its 
sensors, sacrgcing optimulity or computational efJiciency 
respectively. This paper introduces a new algorithm, D*, 
capable of planning paths in unknown, partially known, 
and changing environments in an efticient, optimal, and 
complete manner: 

1 .O Introduction 
The research literature has addressed extensively the 

motion planning problem for one or more robots moving 
through a field of obstacles to a goal. Most of this work 
assumes that the environment is completely known before 
the robot begins its traverse (see Latombe [41 for a good 
survey). The optimal algorithms in this literature search a 
state space (e.g., visibility graph, grid cells) using the dis- 
tance transform [2] or heuristics [8] to find the lowest cost 
path from the robot’s start state to the goal state. Cost can 
be defined to be distance travelled, energy expended, time 
exposed to danger, etc. 

Unfortunately, the robot may have partial or no 
information about the environment before it begins its 
traverse but is equipped with a sensor that is capable of 
measuring the environment as it moves. One approach to 
path planning in this scenario is to generate a “global” 
path using the known information and then attempt to 
“locally” circumvent obstacles on the route detected by 
the sensors [ l l .  If the route is completely obstructed, a 

new global path is planned. Lumelsky [71 initially assumes 
the environment to be devoid of obstacles and moves the 
robot directly toward the goal. If an obstacle obstructs the 
path, the robot moves around the perimeter until the point 
on the obstacle nearest the goal is found. The robot then 
proceeds to move directly toward the goal again. Pirzadeh 
[9] adopts a strategy whereby the robot wanders about the 
environment until it  discovers the goal. The robot 
repeatedly moves to the adjacent location with lowest cost 
and increments the cost of a location each time it visits it to 
penalize later traverses of the same space. Korf [31 uses 
initial map information to estimate the cost to the goal for 
each state and efficiently updates it with backtracking costs 
as the robot moves through the environment. 

While these approaches are complete, they are also 
suboptimal in the sense that they do not generate the 
lowest cost path given the sensor information as it is 
acquired and assuming all known, a priori information is 
correct. It is possible to generate optimal behavior by 
computing an optimal path from the known map 
information, moving the robot along the path until either it 
reaches the goal or its sensors detect a discrepancy 
between the map and the environment, updating the map, 
and then replanning a new optimal path from the robot’s 
current location to the goal. Although this brute-force, 
replanning approach is optimal, it can be grossly 
inefficient, particularly in expansive environments where 
the goal is far away and little map information exists. 
Zelinsky [15] increases efficiency by using a quad-tree 
[ 131 to represent free and obstacle space, thus reducing the 
number of states to search in the planning space. For 
natural terrain, however, the map can encode robot 
traversability at each location ranging over a continuum, 
thus rendering quad-trees inappropriate or suboptimal. 

This paper presents a new algorithm for generating 
optimal paths for a robot operating with a sensor and a map 
of the environment. The map can be complete, empty, or 
contain partial information about the environment. For 
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regions of the environment that are unknown, the map 
may contain approximate information, stochastic models 
for occupancy, or even a heuristic estimates. The 
algorithm is functionally equivalent to the brute-force, 
optimal replanner, but it is far more efficient. 

The algorithm is formulated in terms of an optimal 
find-path problem within a directed graph, where the arcs 
are labelled with cost values that can range over a 
continuum. The robot's sensor is able to measure arc costs 
in the vicinity of the robot, and the known and estimated 
arc values comprise the map. Thus, the algorithm can be 
used for any planning representation, including visibility 
graphs [5] and grid cell structures. The paper describes 
the algorithm, illustrates its operation, presents informal 
proofs of its soundness, optimality, and completeness, and 
then concludes with an empirical comparison of the 
algorithm to the optimal replanner. 

2.0 The D* Algorithm 
The name of the algorithm, D*, was chosen because it 

resembles A* [8], except that it is dynamic in the sense 
that arc cost parameters can change during the problem- 
solving process. Provided that robot motion is properly 
coupled to the algorithm, D* generates optimal trajecto- 
ries. This section begins with the definitions and notation 
used in the algorithm, presents the D* algorithm, and 
closes with an illustration of its operation. 

2.1 Definitions 
The objective of a path planner is to move the robot 

from some location in the world to a goal location, such 
that it avoids all obstacles and minimizes a positive cost 
metric (e.g., length of the traverse). The problem space 
can be formulated as a set of states denoting robot loca- 
tions connected by directional arcs, each of which has an 
associated cost. The robot starts at a particular state and 
moves across arcs (incurring the cost of traversal) to other 
states until it reaches the goal state, denoted by G .  Every 
state X except G has a backpointer to a next state Y 
denoted by b(X) = Y .  D* uses backpointers to represent 
paths to the goal. The cost of traversing an arc from state 
Y to state X is a positive number given by the arc cost 
function c(X, Y) . If Y does not have an arc to X ,  then 
c(X, Y) is undefined. Two states X and Y are neighbors in 
the space if c(X, U) or c(Y, X )  is defined. 

Like A*, D* maintains an OPEN list of states. The 
OPEN list is used to propagate information about changes 
to the arc cost function and to calculate path costs to states 
in the space. Every state X has an associated tag r ( X ) ,  
such that r (X)  = NEW if X has never been on the OPEN 
list, t(X) = OPEN if X is currently on the OPEN list, and 

t(X) = CLOSED if X is no longer on the OPEN list. For 
each state X ,  D* maintains an estimate of the sum of the 
arc costs from X to G given by the path cost function 
h(G, X ) .  Given the proper conditions, this estimate is 
equivalent to the optimal (minimal) cost from state X to 
G ,  given by the implicit function o(G, X )  . For each state X 
on the OPEN list (i.e., r ( X )  = OPEN),  the key function, 
k(G, X )  , is defined to be equal to the minimum of h(G, X )  
before modification and all values assumed by h(G, X )  
since X was placed on the OPEN list. The key function 
classifies a state X on the OPEN list into one of two types: 
a RAISE state if k(G, X )  < h(G, X ) ,  and a LOWER State if 
k(G, X )  = h(G, X ) .  D* uses RAISE states on the OPEN list 
to propagate information about path cost increases (e.g., 
due to an increased arc cost) and LOWER states to 
propagate information about path cost reductions (e.g., 
due to a reduced arc cost or new path to the goal). The 
propagation takes place through the repeated removal of 
states from the OPEN list. Each time a state is removed 
from the list, it is expanded to pass cost changes to its 
neighbors. These neighbors are in turn placed on the 
OPEN list to continue the process. 

States on the OPEN list are sorted by their key function 
value. The parameter kmin is defined to be min(k(X)) for 
a l l  X such that r ( X )  = O P E N .  The parameter kmin 
represents an important threshold in D*: path costs less 
than or equal to kmin are optimal, and those greater than 
kmin may not be optimal. The parameter kold is defined to 
be equal to kmin prior to most recent removal of a state 
from the OPEN list. If no states have been removed, kold  
is undefined. 

An ordering of states denoted by IX,,X,} is defined to 
be a sequence if b(Xi+ ,) = X i  for all i such that 1 < i < N 
and X i # X j  for all (ij) such that 15 i < j l N .  Thus, a 
sequence defines a path of backpointers from X N  to X ,  . A 
sequence IX,,X,) is  def ined to be monotonic  if 
( r(Xi) = CLOSED and h(G, X i )  < h(G, X i +  or  
( ? ( X i )  = OPEN and k(G, X i )  < h(G, X i +  ,)) for all i such 
that 1 5 i < N .  D* constructs and maintains a monotonic 
sequence { G,X} ,  representing decreasing current or lower- 
bounded path costs, for each state X that is or was on the 
OPEN list. Given a sequence of states {X , ,XN} ,  state X i  is 
an ancestor of state Xi if 1 < i < j 5 N and a descendant of 
Xi if 1 < j < i l N .  

For all two-state functions involving the goal state, the 
following shorthand notation is used: AX) S A G ,  X ) .  
Likewise, for sequences the notation ( X }  = {G,X)  is used. 
The notation A") is used to refer to a function independent 
of its domain. 
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2.2 Algorithm Description 
The D* algorithm consists primarily of two functions: 

PROCESS - STATE is used to compute optimal path costs 
to the goal, and MODIFY - COST is used to change the 
arc cost function c(O) and enter affected states on the 
OPEN list. Initially, f(O) is set to NEW f o r d  States, h(G) 
is set to zero, and G is placed on the OPEN list. The first 
function, PROCESS-  STATE, is repeatedly called until 
the robot's state, X ,  is removed from the OPEN list (i.e., 
t(X) = C L O S E D )  or a value of -1 is returned, at which 
point either the sequence { X }  has been computed or does 
not exist respectively. The robot then proceeds to follow 
the backpointers in the sequence { X )  until it either 
reaches the goal or discovers an error in the arc cost func- 
tion c(") (e.g., due to a detected obstacle). The second 
function, MUDIFY-  COST,  is immediately called to cor- 
rect c(O) and place affected states on the OPEN list. Let Y 
be the robot's state at which it discovers an error in c ( O ) .  

By calling PROCESS - STATE until it returns kmin 2 h(Y), 
the cost changes are propagated to state Y such that 
h(Y) = o(Y). At this point, a possibly new sequence { Y )  
has been constructed, and the robot continues to follow 
the backpointers in the sequence toward the goal. 

PROCESS - STATE and MODIFY - COST.  

T h e  a lgor i thms for  PROCESS-STATE and 
MODIFY - COST are presented below. The embedded 
routines are MIN - STATE, which returns the state on the 
OPEN list with minimum k(O) value ( N U L L  if the list is 
empty); G E T -  KMIN,  which returns kmin for the OPEN 
list (-1 if the list is empty); DELETE(X), which deletes 
state X from the OPEN list and sets t (X)  = CLOSED; and 
INSERT(X, h,,,,), which computes  k(X) = h,,,,, if 
f ( X )  = N E W ,  k(X)  = min(k(X), h,,,) if t(X) = O P E N ,  and 
k(X)  = min(h(X), h,,,) if t ( X )  = CLOSED, se ts  
h(X) = hnew and r(X) = OPEN,  and places or re-positions 
state X on the OPEN list sorted by k ( O ) .  

In function PROCESS - STATE at lines L l  through L3, 
the state X with the lowest k(") value is removed from the 
OPEN list. If X is a LOWER state (i.e., k(X)  = h(X)) ,  its 
path cost is optimal since h(X) is equal to the old k m i n .  At 
lines L8 through L13, each neighbor Y of X is examined 
to see if its path cost can be lowered. Additionally, 
neighbor states that are NEW receive an initial path cost 
value, and cost changes are propagated to each neighbor 
Y that has a backpointer to X ,  regardless of whether the 
new cost is greater than or less than the old. Since these 
states are descendants of X ,  any change to the path cost of 
X affects their path costs as well. The backpointer of Y is 
redirected (if needed) so that the monotonic sequence 
{ Y }  is constructed. All neighbors that receive a new path 

cost are placed on the OPEN list, so that they will 
propagate the cost changes to their neighbors. 

If X is a RAISE state, its path cost may not be optimal. 
Before X propagates cost changes to its neighbors, its 
optimal neighbors are examined at lines L4 through L7 to 
see if h(X) can be reduced. At lines L15 through L18, cost 
changes are propagated to NEW states and immediate 
descendants in the same way as for LOWER states. If X is 
able to lower the path cost of a state that is not an 
immediate descendant (lines L20 and L21), X is placed 
back on the OPEN list for future expansion. It is shown in 
the next section that this action is required to avoid 
creating a closed loop in the backpointers. If the path cost 
of X is able to be reduced by a suboptimal neighbor (lines 
L23 through L25), the neighbor is placed back on the 
OPEN list. Thus, the update is "postponed" until the 
neighbor has an optimal path cost. 

Function: PROCESS-STATE () 

L2 if X = NULL then return -1 

L4 if kold < h(X) then 
L5 
L6 
L7 
L8 
L9 
L10 
L11 
L12 

L14 else 
L15 
L16 
L17 
L18 
L19 else 
L20 ifb(Y)#Xandh(Y)>h(X)+c(X,Y) then 
L21 INSERT(X, h(X)) 
L22 else 
L23 i fb (Y)#Xandh(X)>h(Y)+c(Y,X)  and 
L24 r ( Y )  = CLOSED and h(Y) > kold then 
L25 INSERT(Y, h(Y)) 

L1 X = MZN-STATE( ) 

L3 ko[d = GET - KMIN( ) ; DELETE(X) 

for each neighbor Y of X :  
if h(Y) S kold and h(X) > h(Y) + c(Y, X )  then 

b(X) = Y ;  h(X) = h(Y)+c(Y ,X)  
if kold = h(X) then 

for each neighbor Y of X :  
if t(Y) = NEW or 

(b(Y) = X and h(Y) f h(X) +c(X,  Y)) or 
( b(r) f X and h( Y) > h(X) + c(X, Y) ) then 

L13 b(Y) = X ;  INSERqY,  h(X) + c(X, Y)) 

for each neighbor Y of X :  
if t(Y) = NEW or 

(b(Y)  = X and h(Y) #h(X) + c(X, Y)) then 
b(Y) = X ;  INSERT(Y, h(X) + c(X, Y)) 

L26 return G E T -  KMIN ( ) 
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In function MODIFY - COST,  the arc cost function is 
updated with the changed value. Since the path cost for 
state Y will change, X is placed on the OPEN list. When 
X is expanded via PROCESS - STATE, it computes a new 
h(Y) = h(X)+c(X,  Y) and places Y on the OPEN list. 
Additional state expansions propagate the cost to the 
descendants of Y .  

Function: MODIFY-COST (X, Y, cval) 
L1 c(X, Y) = cval 
L2 
L3 return G E T - K M I N (  ) 

if t ( x )  = CLOSED then INSERT(X, h(X)) 

2.3 Illustration of Operation 

operation of the algorithm. The RAISE states (i.e., 
k(X) < h(X))  propagate cost increases, and the LOWER 
states (i.e., k(x )  = h(X)) propagate cost reductions. When 
the cost of traversing an arc is increased, an affected 
neighbor state is placed on the OPEN list, and the cost 
increase is propagated via RAISE states through all state 
sequences containing the arc. As the RAISE states come 
in contact with neighboring states of lower cost, these 
LOWER states are placed on the OPEN list, and they sub- 
sequently decrease the cost of previously raised states 
wherever possible. If the cost of traversing an arc is 
decreased, the reduction is propagated via LOWER states 
through all state sequences containing the arc, as well as 
neighboring states whose cost can also be lowered. 

The role of RAISE and LOWER states is central to the 

The planning space consists of a 50 x 50 grid of cells. 
Each cell represents a state and is connected to its eight 
neighbors via bidirectional arcs. The arc cost values are 
small for the EMPTY cells and prohibitively large for the 
OBSTACLE cells.’ The robot is point-sized and is 
equipped with a contact sensor. Figure 1 shows the results 
of an optimal path calculation from the goal to all states in 
the planning space. The two grey obstacles are stored in 
the map, but the black obstacle is not. The arrows depict 
the backpointer function; thus, an optimal path to the goal 
for any state can be obtained by tracing the arrows from 
the state to the goal. Note that the arrows deflect around 
the grey, known obstacles but pass through the black, 
unknown obstacle. 

Figure 2: LOWER States Sweep into Well 

Figure 1: Backpointers Based on Initial Propagation 

The robot starts at the center of the left wall and 
follows the backpointers toward the goal. When it reaches 
the unknown obstacle, it detects a discrepancy between 
the map and world, updates the map, colors the cell light 
grey, and enters the obstacle cell on the OPEN list. 
Backpointers are redirected to pull the robot up along the 
unknown obstacle and then back down. Figure 2 
illustrates the information propagation after the robot has 
discovered the well is sealed. The robot’s path is shown in 
black and the states on the OPEN list in grey. RAISE 
states move out of the well transmitting path cost 
increases. These states activate LOWER states around the 

Figure 1 through Figure 3 illustrate the operation of the 
algorithm for a “potential well” path planning problem. 

1. The arc cost value of OBSTACLE must be chosen to be 
greater than the longest possible sequence of EMPTY cells SO 

that a simple threshold can be used on the path cost to determine 
if the optimal path to the goal must pass through an obstacle. 
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“lip” of the well which sweep around the upper and lower 
obstacles and redirect the backpointers out of the well. 

Figure 3 Final Backpointer Configuration 

This process is complete when the LOWER states reach 
the robot’s cell, at which point the robot moves around the 
lower obstacle to the goal (Figure 3). Note that after the 
traverse, the backpointers are only partially updated. 
Backpointers within the well point outward, but those in 
the left half of the planning space still point into the well. 
All states have a path to the goal, but optimal paths are 
computed to a limited number of states. This effect 
illustrates the efficiency of D*. The backpointer updates 
needed to guarantee an optimal path for the robot are 
limited to the vicinity of the obstacle. 

Figure 4 illustrates path planning in fractally generated 
terrain. The environment is 450 x 450 cells. Grey regions 
are fives times more difficult to traverse than white 
regions, and the black regions are untraversible. The black 
curve shows the robot’s path from the lower left comer to 
the upper right given a complete, a priori map of the 
environment. This path is referred to as omniscient 
optimal. Figure 5 shows path planning in the same terrain 
with an optimistic map (all white). The robot is equipped 
with a circular field of view with a 20-cell radius. The 
map is updated with sensor information as the robot 
moves and the discrepancies are entered on the OPEN list 
for processing by D*. Due to the lack of a priori map 
information, the robot drives below the large obstruction 
in the center and wanders into a deadend before 
backtracking around the last obstacle to the goal. The 
resultant path is roughly twice the cost of omniscient 

optimal. This path is optimal, however, given the 
information the robot had when it acquired it. 

Figure 4: Path Planning with a Complete Map 

Figure 5: Path Planning with an Optimistic Map 

Figure 6 illustrates the same problem using coarse map 
information, created by averaging the arc costs in each 
square region. This map information is accurate enough to 
steer the robot to the correct s ide of the central 
obstruction, and the resultant path is only 6% greater in 
cost than omniscient optimal. 
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Figure 6: Path Planning with a Coarse-Resolution Map regardless of the pattern of access for  functions 
MODIFY- COST and PROCESS-STATE. 

3.0 Soundness, Optimality, and 
Completeness 

After all states X have been initialized to t (x )  = NEW 
and G has been entered onto the OPEN list, the function 
PROCESS - STATE is repeatedly invoked to construct 
state sequences. The function MODIFY- COST is 
invoked to make changes to c(O) and to seed these 
changes on the OPEN list. D* exhibits the following 
properties: 

Property 1: If t (X )+NEW,  then the sequence { X }  is 
constructed and is monotonic. 

Property  2: When the  value kmin re turned by 
PROCESS-STATE e q u a l s  or  exceeds  h(X), then 
h(X) = 48. 

Property 3: If a path from X to G exists, and the search 
space contains a finite number of states, ( X }  will be 
cons t ruc ted  a f te r  a f in i te  number  of ca l l s  to 
PROCESS-STATE. If a path does  not  ex is t ,  
PROCESS- STATE will return -1  with r(X) = NEW. 

Property 1 is a soundness property: once a state has 
been visited, a finite sequence of backpointers to the goal 
has been constructed. Property 2 is an optimality property. 
It defines the conditions under which the chain of 
backpointers to the goal is optimal. Property 3 is a 
completeness property: if a path from X to G exists, it 
will be constructed. If no path exists, it will be reported in 
a finite amount of time. All three properties hold 

For brevity, the proofs for the above three properties 
are informal. See Stentz [14] for the detailed, formal 
proofs .  Cons ider  Proper ty  1 f i rs t .  Whenever  
PROCESS - STATE visits a NEW state, it assigns b(") to 
point to an existing state sequence and sets h(") to 
preserve monotonicity. Monotonic sequences are 
subsequently manipulated by modifying the functions 
t ( " ) ,  h ( O ) ,  k ( O ) ,  and b(").  When a state X is placed on the 
OPEN l is t  ( i . e . ,  r(X) = O P E N ) ,  k(X) i s  se t  to  h(X) 
preserve monotonicity for states with backpointers to X .  
Likewise, when a state X is removed from the list, the h ( O )  
values of its neighbors are increased if needed to preserve 
monotonicity. The backpointer of a state X ,  b(X), can only 
be reassigned to Y if h(Y) < h(X) and if the sequence { Y )  
contains no RAISE states. Since ( Y }  contains no RAISE 
states, the h(O) value of every state in the sequence must 
be less than MY). Thus, X cannot be an ancestor of Y ,  and 
a closed loop in the backpointers cannot be created. 
Therefore, once a state X has been visited, the sequence 
{ X }  has been constructed. Subsequent modifications 

ensure that a sequence { X }  still exists. 

Consider Property 2. Each time a state is inserted on or 
removed from the OPEN list, D* modifies h(") values so 
that k(X) 5 h( Y) + c( Y, X )  for each pair of states ( X ,  Y) such 
that X is OPEN and Y is CLOSED. Thus, when X is 
chosen for expansion (i.e., kmin = k ( X ) ) ,  the CLOSED 
neighbors of X cannot reduce h(X) below k m i n ,  nor can 
the OPEN neighbors, since their h(') values must be 
greater than k m i n .  States placed on the OPEN list during 
the expansion of X must have k ( O )  values greater than 
k(X) ; thus, kmin increases or remains the same with each 
invocation of PROCESS-STATE. If states with h ( O )  

values less than or equal to kold are optimal, then states 
with h(O) values between (inclusively) kold and kmin are 
optimal, since no states on the OPEN list can reduce their 
path costs. Thus, states with h(") values less than or equal 
to kmin are optimal. By induction, PROCESS- STATE 
constructs optimal sequences to all reachable states. If the 
a rc  cos t  c(X,Y) is  modi f ied ,  the  func t ion  
MODIFY- COST places X on the OPEN list, after which 
kmin is less than or equal to h(X). Since no state Y with 
h(Y) S h(X) can be affected by the modified arc cost, the 
property still holds. 

Consider Property 3 .  Each time a state is expanded via 
PROCESS - STATE, it places its NEW neighbors on the 
OPEN list. Thus, if the sequence { X }  exists, it will be 
constructed unless a state in the sequence, Y ,  is never 
selected for expansion. But once a state has been placed 
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on the OPEN list, its No)  value cannot be increased. 
Thus, due to the monotonicity of k,,,;,,, the state Y will 
eventually be selected for expansion. 

4.0 Experimental Results 
D* was compared to the optimal replanner to verify its 

optimality and to determine its performance improve- 
ment. The optimal replanner initially plans a single path 
from the goal to the start state. The robot proceeds to fol- 
low the path until its sensor detects an error in the map. 
The robot updates the map, plans a new path from the 
goal to its current location, and repeats until the goal is 
reached. An optimistic heuristic function b(x)  is used to 
focus the search, such that $(A‘) equals the “straight-line” 
cost of the path from X to the robot’s location assuming 
all cells in the path are EMPTY.  The replanner repeatedly 
expands states on the OPEN list with the minimum 
g ( X )  + h(X) value. Since b(X)  is a lower bound on the 
actual cost from X to the robot for all X, the replanner is 
optimal [8]. 

The two algorithms were compared on planning 
problems of varying size. Each environment was square, 
consisting of a start state in the center of the left wall and 
a goal state in center of the right wall. Each environment 
consisted of a mix of map obstacles (i.e., available to 
robot before traverse) and unknown obstacles measurable 
by the robot ’s  sensor .  The sensor  used was 
omnidirectional with a 10-cell radial field of view. Figure 
7 shows an environment model with 100,OOO states. The 
map obstacles are shown in grey and the unknown 
obstacles in black. 

Table 1 shows the results of the comparison for 
environments of size 1000 through 1,000,000 cells. The 
runtimes in CPU time for a Sun Microsystems SPARC-IO 
processor are listed along with the speed-up factor of D* 
over the optimal replanner. For both algorithms, the 
reported runtime is the total CPU time for all replanning 
needed to move the robot from the start state to the goal 
state, after the initial path has been planned. For each 
environment size, the two algorithms were compared on 
five randomly-generated environments, and the runtimes 
were averaged.  The speed-up factors  for each 
environment size were computed by averaging the speed- 
up factors for the five trials. 

The runtime for each algorithm is highly dependent on 
the complexity of the environment, including the number, 
size, and placement of the obstacles, and the ratio of map 
to unknown obstacles. The results indicate that as the 
environment increases in size, the performance of D* 
over the optimal replanner increases rapidly. The intuition 

for this result is that D* replans locally when it detects an 
unknown obstacle, but the optimal replanner generates a 
new global trajectory. As the environment increases in 
size, the local trajectories remain constant in complexity, 
but the global trajectories increase in complexity. 

Figure 7: Typical Environment for Algorithm Comparison 

Table 1 : Comparison of D* to Optimal Replanner 

10,000 100.000 1,000,000 

Replanner 427 msec 14.45 sec 10.86 mio  50.82 min 

261 msec 1.69 sec 10.93 sec 16.83 sec 
I I I 3 

I Speed-up I 1.67 I 10.14 I 56.30- 

5.0 Conclusions 

5.1 Summary 
This paper presents D*, a provably optimal and effi- 

cient path planning algorithm for sensor-equipped robots. 
The algorithm can handle the full spectrum of a priori map 
information, ranging from complete and accurate map 
information to the absence of map information. D* is a 
very general algorithm and can be applied to problems in 
artificial intelligence other than robot motion planning. In 
its most general form, D* can handle any path cost opti- 
mization problem where the cost parameters change dur- 
ing the search for the solution. D* is most efficient when 
these changes are detected near the current starting point 
in the search space, which is the case with a robot 
equipped with an on-board sensor. 
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See Stentz [ 141 for an extensive description of related 
applications for D*, including planning with robot shape, 
field of view considerations, dead-reckoning error, 
changing environments, occupancy maps, potential fields, 
natural terrain, multiple goals, and multiple robots. 

5.2 Future Work 

research has addressed the exploration and map building 
problems [6][9][10][11][15] in addition to the path finding 
problem. Using a strategy of raising costs for previously 
visited states, D* can be extended to support exploration 
tasks. 

For unknown or partially-known terrains, recent 

Quad trees have limited use in environments with cost 
values ranging over a continuum, unless the environment 
includes large regions with constant traversability costs. 
Future work will incorporate the quad tree representation 
for these environments as well as those with binary cost 
values (e.g., OBSTACLE and EMPTY)  in order to reduce 
memory requirements [ 151. 

Work is underway to integrate D* with an off-road 
obstacle avoidance system [12] on an outdoor mobile 
robot. To date, the combined system has demonstrated the 
ability to find the goal after driving several hundred 
meters in a cluttered environment with no initial map. 
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