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a b s t r a c t

Manipulation of friction at the nanoscale has been traditionally approached by chemical means

(lubrication). Recent friction force microscopy (FFM) experiments demonstrated that it can be done

mechanically by applying vibration to accessible elements of the system. This paper provides analytic

understanding on why vibration can reduce friction based on a 1D model imitating the FFM tip moving

on a substrate. Open-loop stability is first studied, and a feedback vibration control is then designed

using the accessible variable. Comparing to the open-loop system, friction force is significantly reduced

in the closed-loop system. Numerical simulations show satisfactory performances.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Friction control at the atomic-scale

Friction and wear is estimated to cost the US economy 6% of
the gross national product (Persson, 2000). The study of nanoscale
friction potentially has technological impacts in reducing energy
loss in machines, in MEMS, and in the development of durable
and low-friction surfaces and ultra thin lubrication films. Control
of frictional properties, traditionally, is achieved by chemical
means, supplementing base lubricants by so-called friction modi-
fier additives, see Dudko, Filippov, Klafter, and Urbakh (2002) and
the references therein. Recently, a different approach has attracted
considerable interest, which is to control the system mechanically
by applying small perturbations to accessible elements and para-
meters of the sliding system, see Braiman, Barhen, and Protopopescu
(2003), Heuberger, Drummond, and Israelachvili (1998) and the
references therein. The effect of small perturbations on frictional
dynamics is a consequence of the highly nonlinear nature of the
dynamic system (Urbakh, Klafter, Gourdon, & Israelachvili, 2004).

Using a surface force apparatus (SFA) modified to measure
friction forces while inducing vibrations of one of the sliding
surfaces, load- and frequency-dependent transitions between
varieties of dynamical friction states can be observed which
reveal regimes of extremely low friction (Heuberger et al., 1998).

Friction properties are studied when one of the sliding surfaces is
subjected to oscillations using an atomic force microscope (AFM)
in Zaloj, Urbakh, and Klafter (1999), Tshiprut, Filippov, and
Urbakh (2005), Socoliuc, Bennewitz, Gnecco, and Meyer (2004)
and Socoliuc et al. (2006). As in the surface-force apparatus
experiment (Heuberger et al., 1998), a significant reduction in
the friction force and extremely low friction are observed.
Recently, Jeon, Thundat, and Braiman (2006, 2007) employed a
1D frictional model to explain why vibration can reduce friction.
In Jeon et al. (2007), numerical simulations are conducted on the
effect of vibration parameters, and the results are compared with
AFM experimental data. Despite successful experiments and
recent simulation evidence, analytic understanding of the
dynamic model and theoretical guidance on how to choose
vibration parameters are missing (Guo, Qu, Braiman, Zhang, &
Barhen, 2008). In this paper, the effect of in-plane vibration
control on nanoscale friction is studied analytically using control
theoretical methods.

1.2. Related work in vibration control

Vibrational control has been studied in controls community
since the stabilization effect of an inverted pendulum by vibrating
its support was observed and explained in Bogoliubov and
Mitropolsky (1961). Initial work on developing a general theory of
vibrational control was done in Meerkov (1980), which is followed
by a series of work, for example, Bellman, Bentsman, and Meerkov
(1986), Bentsman (1987), Shapiro and Zinn (1997), and Bullo
(2002). Stabilizing effect of the dither signal, a high frequency
signal introduced into a nonlinear system for the purpose of
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augmenting stability or quenching undesirable jump-phenomena
(Zames & Shneydor, 1977), was studied in macroscale systems with
friction since the 1950s, see the recent paper (Pervozvanski & de
Wit, 2002) and the references therein. However, friction dynamics
in the macroscopic and microscopic systems have different proper-
ties, and friction control at the nanoscale poses new control
challenges.

Frictional dynamics in macroscopic systems is adequately
described by the motion of the center of mass since the effect of
the atomistic motion on the motion of the center mass is
insignificant relatively to the effect of all the applied forces. For
microscopic size objects moving on the surface, the effect of the
atomistic motion on center of mass dynamics may be significant
and needs to be taken into consideration. This effect is in
particular significant for microscopic size objects where the
interparticle interaction of the atoms in a micro-cantilever is of
the same order of magnitude as the interaction between the
atoms of the cantilever with the atoms of the sliding surface.
Therefore, our description of the motion of a micro-cantilever
involves a set of coupled ordinary differential equations for each
sliding atom on the surface, and the center of mass positions/
velocities are calculated based on the positions/velocities of each
individual particle. Consequently, it makes the control problem
more complex and requires a different approach compared to
control of a macroscopic object. Moreover, one can only apply
control to the center of mass of the micro-cantilever, not to each
individual particle. New experimental techniques, such as AFM
and its modification known as friction force microscope (FFM),
now allow well-defined experiments to be performed on
well-characterized model system for the study of nanoscale
friction (Klafter & Urbakh, 2007). In this paper, new feedback
vibration control strategies are proposed to control friction based
on an FFM model.

1.3. Contribution of the paper

In this paper, a dynamic model of the FFM system is first
presented, which imitates the FFM tip as a 1D array of particles
moving on a rigid substrate. Then, the open-loop stability is
studied, which reveals that both the center of the mass and the
individual particle systems are ultimately bounded under certain
system parameters. However, the conditions are severe and the
frictional force has approximately a non-zero constant magni-
tude. Due to the accessibility limitations of nanoscale systems,
conventional feedback control is not feasible. A vibrational
control scheme is designed, where high frequency vibration is
applied to the substrate of the FFM sliding system in the lateral
direction (parallel to the substrate). A tracking control problem is
defined accordingly, and feedback vibration control is designed to
tune the magnitude of vibration to stabilize the closed-loop
tracking system thus to reduce friction. Through the process of
direct separation of motion (Blekhman, 2000), where the high
frequency oscillation is considered as a ‘‘fast’’ motion on the
‘‘slow’’ motion of the system, an approximation system is
obtained for the ‘‘slow’’ dynamics with an effective potential
due to the fast dynamics, and then the tracking control problem is
solved. It is further proved that with relaxed conditions on system
parameters, the individual particles in the tracking control system
are asymptotically stable. Numerical simulations are conducted in
Matlab, where the frictional forces are shown to be reduced to
almost zero under vibration control.

The contribution of the paper is twofold. First, it advances
analytic understanding of the FFM sliding model on surfaces and
provides feedback vibration control scheme to guide the experi-
mentalists choosing appropriate vibration parameters. Second,
the system dynamics represents coupled nonlinear equations

with constrained accessibility (i.e., only the center of the mass
position of the particle array is accessible for feedback). A new
control method is developed to decouple the inter-connected
system and to design feedback vibration control.

Note that throughout the paper, the friction force refers to the
kinetic friction force.1 The proposed model is based upon the best
known among simple models in microscopic tribology, the
Tomlinson model and the Frenkel–Kontorova model. However,
the proposed model does not describe the comprehensive AFM
structure and dynamics of that structure, but it is a tribological
model that describes the dynamics of the sliding tip on the
atomistic surfaces. (Interested readers are referred to Braun &
Naumovets, 2006; Gnecco, Bennewitz, Gyalog, & Meyer, 2001;
Vanossi & Braun, 2007 (among many other good survey papers)
for more details on the atomic-scale friction models.)

The paper follows the same line of research as the authors’
early publications (Guo & Qu, 2008; Guo et al., 2008) dealing with
friction control at the nanoscale. However, the models proposed
in Guo et al. (2008) and Guo and Qu (2008) refer to the Quartz
Crystal Microbalance experimental setup where external forces
can be applied to the sliding particles. Accordingly, feedback
control is designed as a function of the particle position and
velocity therein. The model proposed in the current paper is
based on FFM experimental setup, where external forces can only
be added to the system by vibrating the sliding substrate in the
lateral direction. Also, the control method used in Guo et al.
(2008) and Guo and Qu (2008) is based on Lyapunov stability
analysis, while the main control technique used in the current
paper is based on direct separation of motion in vibrational
mechanics.

1.4. Organization and notations

The rest of the paper is organized as follows. In Section 2,
a dynamic model of FFM sliding system is introduced, and a
vibration control problem is defined. Then, the stability of the
open-loop system is studied in Section 3. In Section 4, feedback
vibration control is designed to solve the control problem defined.
Simulation results are shown in Section 5. Finally, brief conclud-
ing remarks are presented in Section 6.

Notations: JxJ denotes the Euclidean norm of vector x. xT

denotes the transpose of vector x. IN denotes the identity matrix
of dimension N. diagfAig denotes a block diagonal matrix whose
diagonal elements are Ai. � denotes the Kronecker product.

2. The model and problem statement

2.1. Dynamic model of FFM sliding system

The AFM consists of a micro-cantilever with a sharp tip that
slides on a surface and probes the surface topography. Typically,
cantilever material is silicon or silicon nitride and tip radius is
very sharp. The cantilever can move in both lateral and vertical
directions. As the cantilever tip approaches the surface, an
interaction force causes the cantilever to deflect. Light from a
laser source reflects off the cantilever’s tip and the corresponding
change in cantilever deflection is recorded by a photodetector
sensor. AFM can be used as an FFM to measure friction force
between the cantilever tip and the sample scanned (Jeon et al.,

1 The so-called kinetic friction force is the force required to maintain the two

surfaces in relative motion at a steady velocity, while the so-called static friction

force is defined as the minimal threshold force needed to initiate relative motion.

They are distinct and fundamental concepts in tribology.
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2006; Ruan & Bhushan, 1994). When normal and lateral forces are
measured at the same time, the AFM is called an FFM (Gnecco
et al., 2001). Fig. 1 shows a schematic illustration of the
FFM model.

In the model, we use a 1D Tomlinson/Frenkel Kontorova model
of an array of N identical particles (atoms) moving on a periodic
surface. The equations of motion of such a system can be written
as the following:

m €f iþg0 _f iþ
@U

@fi

¼ a0ðV 00t�fcmÞþFiðfi,fjÞ, ð1Þ

where i¼1,y,N, fi is the coordinate of the ith particle, m is its
mass, g0 is the linear friction coefficient representing the single
particle energy exchange with the substrate, V 00 is the support

velocity, and a0 is the elastic spring constant of the FFM cantilever
longitudinal mode. The particles in the array are subjected to a

periodic potential, UðfiþaÞ ¼UðfiÞ (where a is the lattice con-

stant), and interact with each other via a pair-wise force,

Fiðfi,fjÞ,j¼ i71. The position of the center of mass is defined as

fcm ¼ ð1=NÞ
PN

i ¼ 1 fi.

Remark 1. This set of Eqs. (1) was recently used to describe the
AFM experiment where the sliding surface was subject to normal
vibrations and ultralow friction was observed and accurately
(qualitatively) predicted the experimental results (Jeon et al.,
2006, 2007). Modeling atomistic friction at the nanoscale is a
very challenging problem and a variety of approaches has been
proposed (Braiman, Family, & Hentschel, 1997; Elmer, 1997;
Helman, Baltensperger, & Holyst, 1994; Hinrichs, 1997; Krylov &
Frenken, 2009; Persson, 1997; Persson & Nitzan, 1996; Smith,
Robbins, & Cieplak, 1996; Sokoloff, 1995; Weiss & Elmer, 1996;
Zworner, Holscher, Schswarz, & Wiesendanger, 1998). In our
approach, we consider the motion of a 1D chain of particles
(atoms) moving on a periodic potential. The basic equation for the
driven dynamics of such an array can be written in the following
form:

m €f iþg0 _f iþ
@U

@fi

¼ a0ðV 00t�fcmÞþFiðfi,fjÞþZðtÞ, ð2Þ

Here ZðtÞ is the Gaussian noise and /ZðtÞZðt0ÞS¼ kBTgdðt�t0Þ.
Eq. (2) for an array of particles follows from the widely used
approach to describe the diffusion of a single atom on the surface
in which case the equation of motion is given by:
m €fþg0 _fþ@U=@f¼ ZðtÞ (Braun & Ferrando, 2002). In some cases,
a nonlocal approach is used and the equation of motion reads as:
m €fþ

R t
0 gðt�t0Þ _fðt0Þ dt0 þ@U=@f¼ ZðtÞ (Miret-Artés & Pollak,

2005). In our approach, we combine many particles in a 1D array
thus describing an array of coupled Langevin equations as in the
reference Braun and Ferrando (2002), and we consider a limit of
very low temperature thus the Gaussian noise term is not included
in the equations. For the higher temperature case, we believe that
since the proposed control design is robust, some level of noise will
not affect it (however this issue needs to be looked in more detail).

A more detailed and possibly more realistic approach in

modeling the dynamics of the AFM tip was proposed in the recent

works (Abel, Krylov, & Frenken, 2007; Krylov & Frenken, 2008,

2009) where the dynamics of the AFM tip was described by the

following equation: m €f iþg0 _f iþkðf�fiðfÞÞ ¼ a0ðV 00t�fcmÞþZðtÞ,
where f is the coordinate of the tip apex. A single-particle

Langevin equation to describe the motion of the AFM tip was

also used by Nakamura, Wakunami, and Natori (2005), however

the motion of the apex was not included in their description.

2.2. Simplified model

We further assume the substrate potential to take a simple
periodic form, and the same friction force acts on every atom, and
we are interested in the time average of the friction force. To
simplify the model (1), the structure lattice of the atoms of both
the substrate and the tip are assumed to be equal.

Using the dimensionless variable zi ¼ ð2pfi=aÞ, where a is the
surface periodicity parameter, after normalization (see Appendix
A), the equation of motion (1) reduces to the following dimen-
sionless form:

€ziþg_ziþsinðziÞ ¼ aðV0t�zcmÞþFiðzi,zjÞ, ð3Þ

where zcm is the position variable of the center of mass, that is,

zcm ¼
1

N

XN

i ¼ 1

zi: ð4Þ

The inter-particle force is assumed to be in the following form:

Fiðzi,zjÞ ¼ kðziþ1�2ziþzi�1Þ, i¼ 2, . . . ,N�1, ð5Þ

with the free-end boundary conditions:

F1ðz1,z2Þ ¼ kðz2�z1Þ,

FNðzN ,zN�1Þ ¼ kðzN�1�zNÞ, ð6Þ

where k is a positive constant.
Friction force is defined to be the difference between the

external driving force aV0t and the elastic spring force azcm

(Helman et al., 1994) since the driving velocity is constant and
the sum of all forces acting on the cantilever must be zero. We are
interested in the time average of the friction force, and the friction
force of the sliding system (3) is defined as

FfricðtÞ ¼
1

t

Z t

0
aðV0t�zcmðtÞÞ dt: ð7Þ

The objective of the paper is to study the stability property of
the model (3), and to design vibrational control to reduce the
friction force defined in (7). We define our control problem in the
next subsection.

2.3. Control problem statement

Due to limited accessibility of the FFM system, conventional
feedback control is not feasible. The effect of surface vibrations of
friction was studied using FFM experiments in Jeon et al. (2006,
2007), where the procedure of the experiment and how friction is
measured were explicitly presented. Numerical simulations of
equations of motion (in dimensionless form) for a 1D array of
atoms moving with a constant velocity on a rigid substrate were
also performed in Jeon et al. (2006, 2007). Time-averaged friction
force as a function of the vibration amplitude for a given vibration
frequency are demonstrated therein. Good qualitative agreement
with the experimental results are shown. It is shown that the
friction force does not significantly depend on vibrations for small
vibration frequencies and amplitude and drops significantly when
the amplitude of vibration grows. For very large vibration
frequencies friction force increases and reaches approximately

α'κ

U

Substrate

Cantilever
tip

Fig. 1. A schematic illustration of the FFM model. The FFM tip is modeled as a

particle chain, which is moving under a spring-like force.
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constant value that is independent on the vibration frequency. As
the frequency range for friction reduction is significant, it is
believed that the observed reduction is not a resonant effect
and manifests significant change in friction dynamics due to
vibrations.

Consider applying lateral (parallel to the surface) vibration to
the substrate, which causes a time-periodic force acting on the
particles, see Fig. 2. The equation of motion becomes (Klafter &
Urbakh, 2007):

€ziþg_ziþsinðziÞ ¼ aðV0t�zcmÞþFiðzi,zjÞþ fvi, ð8Þ

where fvi is the vibration force acting on the particles.
It is concerned whether adding vibration can reduce friction

force and how to choose vibration parameters accordingly. We
propose a feedback scheme to control the external vibrational
force amplitude so that the friction force defined in (7) is reduced.
Since single particles are very difficult to access if at all possible,
we only use the average quantity for feedback. We have the
following assumption:

Assumption 1. The position of center of the mass of the particle
array is measurable, that is, zcm defined in (4) is available
real time.

Note that the mass center position cannot be directly mea-
sured real time on the commercially available AFM platforms.
However, with advanced control techniques (Miyoshi, Masuia,
& Terashimaa, 2007; Rifai & Youcef-Toumia, 2007), precision
positioning of the probe relative to the sample in all x–y–z-axes
directions can be computed real time and used in feedback
control, as shown in the literature including Wu and Zou (2009).

The main control problem is defined as follows:
Tracking Control Problem: Under Assumption 1, design vibra-

tion force fvi in the following form:

fvi ¼ Aðzcm,o,tÞ sinðotÞ, ð9Þ

where Að�Þ is the feedback vibration magnitude to be designed,
and o is a constant (high) vibration frequency, such that the
position of the center of the mass, zcm, tracks the reference
position signal V0t in the system (8).

From the definition of the friction force (7), it can be seen that
the friction force is proportional to the time integral of the
tracking error ðzcm�V0tÞ. Thus, solving the above defined tracking
control problem will make the tracking error small so that the
friction force is reduced. In the next section, we present the
stability property of the open-loop system (3), which is followed
by Section 4 on vibration control design to solve the tracking
control problem defined above.

3. Open-loop stability

In this section, the stability property of the system (3) is
studied. We first present a state-space model, and conduct local

stability analysis using Lyapunov stability based methods. We
reveal that under certain conditions on system parameters, the
system (3) is locally ultimately bounded around the equilibrium
points.

We first present state-space model of the system (3). Define
state variables xi1 ¼ zi, and xi2 ¼ _zi, we have the following state-
space representation:

_xi1 ¼ xi2,

_xi2 ¼�sin xi1�gxi2þa V0t�
1

N

XN

j ¼ 1

xj1

0
@

1
AþFiðxi1,xj1Þ, ð10Þ

where i¼ 1,2 . . . ,N.
Assuming particle interaction as described in (5), and defining

the error states as ei1 ¼ xi1�V0t,ei2 ¼ xi2�V0, we have

_ei1 ¼ ei2,

_ei2 ¼�sinðei1þV0tÞ�gðei2þV0Þ�
a
N

XN

j ¼ 1

ej1

þkðeiþ1,1�2ei1þei�1,1Þ ð11Þ

for i¼1,y,N. Note that with a little abuse of notation, the last
term (on the particle interactions) in (11) becomes kðe21�e11Þ for
the first particle i¼1, and kðeN�1,1�eN1Þ for the last particle i¼N,
due to the free-end boundary condition defined in (6).

We define another state variable to remove the constant term
in (11), xi1 ¼ ei1þgV0=a,xi2 ¼ ei2. We have the following state-
space model2:

_xi1 ¼ xi2,

_xi2 ¼�sin xi1þV0t�
gV0

a

� �
�gxi2�

a
N

XN

j ¼ 1

xj1þkðxiþ1,1�2xi1þxi�1,1Þ:

ð12Þ

Eq. (12) represents an interconnected nonlinear system, which
includes both a nearest-neighbor and an all-to-all particle inter-
actions. We consider local stability of the system (12).

Linearizing the system around ðxn

i1,xn

i2Þ ¼ ð0,0Þ, we obtain

_xi1 ¼ xi2,

_xi2 ¼�sin V0t�
gV0

a

� �
�cos V0t�

gV0

a

� �
xi1

�gxi2�
a
N

XN

j ¼ 1

xj1þkðxiþ1,1�2xi1þxi�1,1Þ: ð13Þ

The above system represents an interconnected time-varying
system. To facilitate stability analysis, we represent it in the
following form:

_x ¼ Gxþ f , ð14Þ

with

G¼ IN �

0 1

�cos V0t�
gV0

a

� �
�g

2
4

3
5þQ �

0 0

k 0

� �
þ J �

0 0

�
a
N

0

2
4

3
5,

ð15Þ

f ¼ 1�

0

�sin V0t�
gV0

a

� �2
4

3
5, ð16Þ

tip

cantilever

laser

Piezoactuator to 
apply vibration of 
the sample

Piezotube 

photodetector

sample
ω

Fig. 2. Adding lateral vibration control to the FFM sliding system.

2 For the ease of presentation, we assume x01 ¼ x11 and xNþ1,1 ¼ xN1 to

account for the free-end boundary condition defined in (6).
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where J is the N by N matrix of ones, 1 is the N-dimensional vector
of ones, and

Q ¼

�1 1 0 . . . 0

1 �2 1 0 . . .

^

0 . . . 1 �2 1

0 . . . 0 1 �1

2
6666664

3
7777775
: ð17Þ

Because of the nearest-neighbor-connection structure as
represented in Q, we can apply a similarity transformation to
transform the linear part of the system (14) to a block diagonal
one (Guo & Qu, 2008). Notice that the matrix (�Q) is a real
symmetric matrix with zero row sum, and it is irreducible. (�Q)
has eigenvalues:

m1Zm2Z � � �ZmN�14mN ¼ 0: ð18Þ

Denote the eigenvectors corresponding to each of the eigenvalues
to be vk,k¼ 1,2, . . . ,N. The trivial eigenvector of (�Q), vN, is
uniform, and other non-trivial eigenvectors, vk,k¼ 1, . . . ,N�1,
are orthogonal to the trivial one. Let V ¼ ½v1 v2 . . . vN�. We have
V�1QV ¼�DQ where DQ is a diagonal matrix with the diagonal
entry mi, i¼ 1,2, . . . ,N. The matrix V also transforms the all 1’s
matrix J into a diagonal one V�1JV ¼DJ where DJ is a diagonal
matrix with diagonal entry ðDJÞii ¼ 0, i¼ 1,2, . . . ,N�1, and
ðDJÞNN ¼N.

Denote the transformation matrix as

T ¼ V � I2: ð19Þ

We have

T�1GT ¼ IN �

0 1

�cos V0t�
gV0

a

� �
�g

2
4

3
5

�DQ �
0 0

k 0

� �
þDJ �

0 0

�
a
N

0

2
4

3
5

¼ diagfCig, ð20Þ

where

Ci ¼

0 1

�cos V0t�
gV0

a

� �
�mik �g

2
4

3
5,

for i¼ 1,2, . . . ,N�1;
0 1

�cos V0t�
gV0

a

� �
�a �g

2
4

3
5,

for i¼N:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð21Þ

Now we have that the coupling of the system (14) is removed
through a similarity transformation. We apply the state transfor-
mation, x¼ Tf, to the complete system (14). We obtain the
following system:

_f ¼ diagfCigfþ f , ð22Þ

where

f ¼ T�1f ¼

0

^

0ffiffiffiffi
N
p

2
6664

3
7775�

0

�sin V0t�
gV0

a

� �2
4

3
5:

Due to the state transformation, the last subsystem in (22), fN ,
represents an average quantity, that is, fN ¼ ð1=

ffiffiffiffi
N
p
Þ
PN

i ¼ 1 xi. We
have

ecm1 ¼
def 1

N

XN

i ¼ 1

ei1 ¼ xcm1�
gV0

a
¼

1ffiffiffiffi
N
p fN1�

gV0

a
,

ecm2 ¼
def 1

N

XN

i ¼ 1

ei2 ¼ xcm2, ð23Þ

where xcm1 ¼
def
ð1=NÞ

PN
i ¼ 1 xi1,xcm2 ¼

def
ð1=NÞ

PN
i ¼ 1 xi2. Therefore,

local stability of the average system can be analyzed using the

fN subsystem.

3.1. Stability of the center of the mass

The dynamics of the fN subsystem is, according to (22),

_fN1 ¼fN2,

_fN2 ¼ �cos V0t�
gV0

a

� �
�a

� �
fN1�gfN2�

ffiffiffiffi
N
p

sin V0t�
gV0

a

� �
: ð24Þ

Choose the Lyapunov function candidate,

WNðt,fNÞ ¼
eN

2
f2

N1þ
1

2
ðlNfN1þfN2Þ

2

� �
þ

1

2
1þcos V0t�

gV0

a

� �� �
f2

N1

� �
,

ð25Þ

where eN and lN are positive design parameters. Taking the time
derivative of WN along the system trajectory (24), we can obtain
the sufficient condition for the system (24) to be ultimately
bounded, which is presented in the following proposition.

Proposition 1. If the system parameter, a, satisfies the following

condition:

a4 V0

g þ1, ð26Þ

the system (24) is ultimately bounded.

Proof. Considering the Lyapunov function candidate (25), its time
derivative is

_W N ¼ ½eNþlNðlN�gÞ�aþ1�fN1fN2þ½�lncosðV0t�dÞ�alN

�1
2V0sinðV0t�dÞ�f2

N1þðlN�gÞf2
N2�

ffiffiffiffi
N
p
ðlNfN1�fN2ÞsinðV0t�dÞ,

ð27Þ

where we denote d¼ gV0=a. If a41, we can choose the design
parameter lN ¼ g=2, and eN ¼ lnðg�lNÞþa�1 to cancel out the
cross-term. Bounding the sinusoidal terms, we obtain

_W N r�½ða�1ÞlN�
1
2V0�f

2
N1�ðg�lNÞf

2
N2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðl2

Nþ1Þ
q

JfNJ, ð28Þ

where JfNJ denote the Euclidean norm of fN .

If a4V0=gþ1, let

ða�1ÞlN�
1
2V0 ¼

def
a40, g�lN ¼

def
b40, ð29Þ

and define

yominfa,bg: ð30Þ

We have

_W N r�ða�yÞf
2
N1�ðb�yÞf

2
N2�yJfNJ

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðl2

Nþ1Þ
q

JfNJ, ð31Þ

which implies

_W N p�ða�yÞf
2
N1�ðb�yÞf

2
N2, 8JfNJZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðl2

Nþ1Þ
q

y
: ð32Þ

According to Theorem 4.18 in Khalil (2002), we conclude that the

system (24) is ultimately bounded. &

3.2. Single particle stability

In addition to the conditions in (26), we need additional
conditions to ensure each individual particle in the system (22)
to be bounded. We have the following proposition.
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Proposition 2. If the system parameters, a, and k, satisfy the

following conditions:

a4 V0

g
þ1, k4 1

mN�1

þ
V0

gmN�1

, ð33Þ

where mN�1 is the second smallest eigenvalue of (�Q) as defined in

(17), the system (22) is ultimately bounded.

Proof (Sketch). In addition to the stability of the Nth subsystem
of (22) as presented in Proposition 1, we consider the stability of
the subsystem i,i¼ 1, . . . ,N�1. Choose the Lyapunov function
candidate:

W ¼
XN�1

i ¼ 1

ei

2
f2

i1þ
1

2
ðlifi1þzi2Þ

2

� �
þ
XN�1

i ¼ 1

1

2
1þcos V0t�

gV0

a

� �� �
f2

i1

� �
,

ð34Þ

where ei and li,i¼ 1, . . . ,N�1, are design parameters. Following
the same procedure as described in the proof of Proposition 1 and
also the proof of Theorem 3 in Guo and Qu (2008), we obtain the
additional condition on k : k41=mN�1þV0=gmN�1. Combining the
above conditions with those in Proposition 1, we obtain (33). &

We summarize the main results in the following theorem on
the open-loop stability.

Theorem 1 (Open-loop stability). The center of the mass of the

system (13) is locally ultimately bounded around its equilibrium

point ðxcm1,xcm2Þ ¼ ð0,0Þ if the system parameter a satisfies the

condition defined in (26). Furthermore, if the system parameters

a,k satisfy the condition defined in (33), each individual particle of

the system (13) is locally ultimately bounded around the equilibrium

point ðxi1,xi2Þ ¼ ð0,0Þ for i¼1,y,N.

The theorem follows directly from Propositions 1 and 2.

Remark 2. Since the application of Lyapunov direct method
provides sufficient conditions only, the obtained conditions on
system parameters are sufficient and may be conservative.

From Theorem 1, we can see that the linearized system (13) is
locally ultimately bounded around the equilibrium points under
certain conditions on system parameters. It implies that the
friction force, as defined in (7), is bounded around gV0=a. We
can also see that the condition on system parameters for ultimate
boundedness of the single particle system is more severe than
that for the center of the mass system. This is consistent with the
physical intuition that extra effort is needed to stabilize indivi-
dual particles, since each particle could be unstable even the
center of the mass is stable.

In the next section, we design feedback vibration control and
solve the control problem defined in Section 2.3.

4. Vibration control design

In this section, feedback vibrational control is designed using
the technique of direct separation of motion in vibrational
mechanics (Blekhman, 2000). Due to Assumption 1, we can only
use the position variable of the center of the mass for feedback.

Consider the following vibration control:

fvi ¼ sinðotÞ �

 
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ke2
�4gV0e�4 sinðV0tÞeþc

q !
, ð35Þ

where

e¼ zcm�V0t, ð36Þ

and k,c are positive control parameters and c is chosen to
ensure the argument in the square root sign positive, that is,

c4ð2=kÞðgV0þ1Þ2. Note that (35) is chosen through a reverse
design of direct separation of motion (Blekhman, 2000) and
Lyapunov design (Khalil, 2002; Qu, 1998). From the process
presented below, we can see through a Lyapunov analysis that
the feedback vibration control law (35) provides a desired closed-
loop response of the approximate system.

Substituting (35) into (8), we obtain the closed-loop system as
follows:

€ziþg_ziþsinðziÞ ¼ aeþFiðzi,zjÞþsinðotÞ

�

 
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ke2
�4gV0e�4 sinðV0tÞeþc

q !
: ð37Þ

Re-write (37) into the following form as

€zi ¼Wið_zi,zi,tÞþFiðzi,t,tÞ,

Wið_zi,zi,tÞ ¼�g_zi�sinðziÞþaeþFiðzi,zjÞ,

Fiðzi,t,tÞ ¼ sinðtÞ �o �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ke2
�4gV0e�4 sinðV0tÞeþc

q
, ð38Þ

where t¼ot, andZ T

0
Fiðzi,t,tÞ dt¼ 0 at fixed zi,t ð39Þ

with T ¼ 2p=o.
Consider its solution in the following form:

zi ¼ ZiðtÞþCiðt,tÞ, ð40Þ

where Ci satisfiesZ T

0
Ci t,tð Þ dt¼ 0: ð41Þ

Substituting (40) into (38) gives

€Ziþ
€Ci ¼Wið

_Ziþ
_C i,ZiþCi,tÞ�Wið

_Zi,Zi,tÞ

þWið
_Zi,Zi,tÞþFiðZiþCi,t,tÞ: ð42Þ

Averaging both sides of (42) with respect to the fast time t and
using (41) gives

€Zi ¼Wið
_Zi,Zi,tÞþ

1

T

Z T

0
½Wið

_Ziþ
_C i,ZiþCi,tÞ

�Wið
_Zi,Zi,tÞ� dtþ

1

T

Z T

0
FiðZiþCi,t,tÞ dt: ð43Þ

Subtracting (43) from (42) gives

€Ci ¼Wið
_Ziþ

_C i,ZiþCi,tÞ�Wið
_Zi,Zi,tÞ

�
1

T

Z T

0
½Wið

_Ziþ
_C i,ZiþCi,tÞ�Wið

_Zi,Zi,tÞ� dt

þFiðZiþCi,t,tÞ�1

T

Z T

0
FiðZiþCi,t,tÞ dt: ð44Þ

To find a solution to (44), we resort to approximation methods.
Note that Wi represents the slow motion component, which
changes very little in one fast time period T ¼ 2p=o comparing
to the fast component Fi. We have

~W i�
1

T

Z T

0

~W i dt
				

				5 Fi�
1

T

Z T

0
Fi dt

				
				, ð45Þ

where

~W i ¼Wið
_Ziþ

_C i,ZiþCi,tÞ�Wið
_Zi,Zi,tÞ:

So the first three terms in (44) can be neglected. Also, according
to (39),

1

T

Z T

0
FiðZiþCi,t,tÞ dt¼ 0 ð46Þ

at frozen Zi,Ci, and t.
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Because of (45) and (46), (44) can be approximated by

€C i ¼FiðZiþCi,t,tÞ ¼o sinðtÞ
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ke2
�4gV0e�4 sinðV0tÞeþc

q !
,

ð47Þ

whose solution at frozen e is

Cn

i ¼�e sinðotÞ �

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ke2
�4gV0e�4 sinðV0tÞeþc

q !
, ð48Þ

where e¼ 1=o. We can see that the magnitude of Ci is of the

order of e9Zi9, that is to say, the ratio of the two variables, Ci=Zi, is

of the order of e. Therefore, we can neglect the term Ci in

Wið
_Ziþ

_C i,ZiþCi,tÞ.
Since

FiðZiþCi,t,tÞ�FiðZi,t,tÞ � @FiðZi,t,tÞ
@Zi

Ci, ð49Þ

we have

1

T

Z T

0
FiðZiþCi,t,tÞ dt¼ 1

T

Z T

0
FiðZi,t,tÞ dtþ 1

T

Z T

0

@FiðZi,t,tÞ
@Zi

Ci dt

¼
1

T

Z T

0

@FiðZi,t,tÞ
@Zi

Ci dt: ð50Þ

Note that the second equal sign holds due to (39).
Substituting (48) and (50) into (43), we obtain

€Zi ¼Wið
_Zi,Zi,tÞþ

1

T

Z T

0
½Wð _Ziþ

_C
n

i ,Zi,tÞ

�Wð _Zi ,Zi,tÞ� dtþ
1

T

Z T

0

@FiðZi,t,tÞ
@Zi

Cn

i dt: ð51Þ

Therefore, we have the approximation system to (37):

€Ziþg _ZiþsinðZiÞ ¼ aðV0t�ZcmÞþFiðzi,zjÞ�kEþgV0þ sin ðV0tÞ,

ð52Þ

where Zi is the state of the approximation system, Zcm ¼ ð1=NÞPN
i ¼ 1 Zi, and E¼ Zcm�V0t.
Next, we analyze the stability of the approximation system

(52), with the understanding that the error of the solutions
between the original one (37) and this one is up to the order of
e¼ 1=o.

Denoting Ei1 ¼ Zi�V0t,Ei2 ¼
_Zi�V0, assuming linear inter-particle

connection in the form of (5), we can represent (52) in the error
space,

_Ei1 ¼ Ei2,

_Ei2 ¼�
ðaþkÞ

N

XN

j ¼ 1

Ej1�gEi2�sinðEi1þV0tÞþsinðV0tÞ

þkðEiþ1,1�2Ei1þEi�1,1Þ: ð53Þ

Adding up (53) for i¼ 1, . . . ,N, and denoting

Ecm1 ¼ E¼
1

N

XN

i ¼ 1

Ei1, ð54Þ

Ecm2 ¼
1

N

XN

i ¼ 1

Ei2, ð55Þ

we get the error dynamics of the center of the mass:

_Ecm1 ¼ Ecm2,

_Ecm2 ¼�ðaþkÞEcm1�gEcm2�
1

N

XN

i ¼ 1

sinðEi1þV0tÞþsinðV0tÞ: ð56Þ

Note that the last two terms of the second equation of (56) can be
simplified using

sin V0t�sinðEi1þV0tÞ ¼ �2 sin
Ei1

2
cos

Ei1þ2V0t

2
: ð57Þ

Next, we present stability results of the center of the mass
system (56), which solve the Tracking Control Problem defined
in Section 2.3.

4.1. Center of the mass system

It can be seen from (56) that the equilibrium of the center of
the mass is ðEcm1,Ecm2Þ ¼ ð0,0Þ. We choose the Lyapunov function
candidate for (56) as

VðEcm1,Ecm2Þ ¼
a2

2
E2

cm1þ
1

2
E2

cm2þbEcm1Ecm2

¼
1

2
aEcm1þ

b

a
Ecm2

� �2

þ
1

2
1�

b2

a2

� �
E2

cm2, ð58Þ

where a¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþaÞþg2=2

p
and b¼ g=2. Since boa, the Lyapunov

function defined above is positive definite.
Taking the derivative of the Lyapunov function with respect to

t along the solution of (56), we have

_V ¼�gE2
cm2�bðkþaÞE2

cm1�
2ðbEcm1þEcm2Þ

N

�
XN

i ¼ 1

cos
Eiþ2V0t

2

� �
sin

Ei

2

� �

r�gE2
cm2�bðkþaÞE2

cm1þ2ðb9Ecm19þ9Ecm29Þ

r�
g
2

E2
cm2�b

k

2
þa

� �
E2

cm1�9Ecm29
1

2
g9Ecm29�2

� �

�b9Ecm19
1

2
k9Ecm19�2

� �
: ð59Þ

Thus, as 9Ecm29Z4=g and 9Ecm19Z4=k, we have

_V r�
g
2

E2
cm2�

gðkþ2aÞ
4

E2
cm1: ð60Þ

Let m¼maxf4=k,4=gg. From Theorem 4.18 in Khalil (2002), we
conclude that the solutions of the averaged systems (56) are
globally uniformly ultimately bounded. We denote a matrix P by

P¼

1
2

b
2

b
2

a2

2

2
4

3
5: ð61Þ

The ultimate bound of ðJEcm1,Ecm2JÞ is given by (Khalil, 2002,
Section 4.8)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðPÞm2

lminðPÞ

s
: ð62Þ

The above result is summarized in the following theorem.

Theorem 2 (Vibrational tracking control). The feedback vibrational

controller (35) solves the tracking control problem defined in

Section 2.3.

Proof. Applying direct separation of the motion (Blekhman,
2000), we obtained the approximation system (52) for the ‘‘slow’’
dynamics of the closed-loop system (37) considering the effect of
the fast vibration. We also showed that the approximate average
system (52) is ultimately bounded by (62). The solution to the
original system (37), in the form of (40), can be approximated by
the solution of (52) with the error up to the order of e¼ 1=o.
Therefore, the tracking error, e, as defined in (36), is bounded,
which in turn implies that zcm tracks the reference position
V0t. &
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Remark 3. Since zcm tracks V0t, the friction force defined in (7) is
reduced in the closed-loop system. Also, the tracking control is a
global result and applies to any initial conditions as no lineariza-
tion is involved.

Theorem 2 achieves our main objective as to reduce friction
force by vibration. However, even if the center of the mass system
is stable, the single particle system could be unstable (for exam-
ple, oscillating). Although individual particles do not need to be
stable for friction to disappear, we are now interested in the effect
of vibration on the single particle system. For this purpose, we
discuss stability property of the single particle dynamics (53) in
the next subsection.

4.2. Single particle dynamics in the closed-loop system

The stability of (53) is discussed in this subsection. Comparing
it to the open-loop error system (11), we can see that in the
closed-loop approximation system (53), the constant offset term
ð�gV0Þ is canceled out, and an additional vibration term ðsin V0tÞ

is added. It is easy to see that the equilibrium points of (53) are at
ðEi1,Ei2Þ ¼ ð0,0Þ for i¼1,y,N. Linearizing (53) around the equili-
brium, we obtain

_Ei1 ¼ Ei2,

_Ei2 ¼�cosðV0tÞ � Ei1�gEi2�
ðaþkÞ

N

XN

j ¼ 1

Ej1þkðEiþ1,1�2Ei1þEi�1,1Þ:

ð63Þ

Following the same procedure as presented in Section 3.2, we
have the result summarized in the following theorem:

Theorem 3 (Single particle stability in closed-loop system). If the

system parameters, a,k, V0, and the control parameter k, satisfy the

following conditions:

aþk4
V0

g þ1, k4 1

mN�1

þ
V0

gmN�1

, ð64Þ

where mN�1 is the second smallest eigenvalue of (�Q) as defined in

(17), the system (53) is locally asymptotically stable around the

equilibrium ðEi1,Ei2Þ ¼ ð0,0Þ.

The proof of the theorem follows the same procedure as in the
proof of Propositions 1 and 2 and is omitted here.

Remark 4. The condition (64) is less strict than (33) on the
system parameter a. We can choose a relatively bigger control
parameter k so that a small a ensures the asymptotical stability of
single particles in the closed-loop system. Also, single particle
position trajectories in the open-loop system is at the best
ultimately bounded around gV0=a, while they can be asymptoti-
cally stable in the closed-loop system.

5. Simulation results

Numerical simulations are performed on arrays of different
sizes (3rNr256) using MATLAB. Simulation results are shown
for the system parameters: N¼32, g¼ 0:1, k¼ 0:26, a¼ 1, and
V0¼0.5. Random initial conditions are chosen.

We first compare the center of the mass position and friction
force between the open-loop system and the closed-loop system.
In Fig. 3, we show the error position of the center of the mass of
the particles. We can see that the center of the mass does not
track the desired position signal V0t well as the position error
oscillates. Accordingly, the friction force, as defined in (7), is
shown in Fig. 4, whose magnitude is around a non-zero constant.
In comparison, for the closed-loop system with the feedback

vibration control (35), Fig. 5 shows the error position of the
center of the mass in the closed-loop system, that is, the error
state e as defined in (36). It demonstrates a good tracking control
result. The corresponding friction force is shown in Fig. 6, which is

Fig. 3. Time history of the error position of the center of the mass in the open-loop

system (11). Inset magnifies the response after t¼145. The system parameters are

N¼32, g¼ 0:1, k¼ 0:26, a¼ 1, and V0¼0.5.

Fig. 4. Friction force of the open-loop system. Inset magnifies the response after

t¼145. The system parameters are the same as used in Fig. 3.

Fig. 5. Time history of the error position of the center of the mass in the closed-

loop system under vibration control (35). Inset magnifies the response after

t¼149.9. The system parameters are the same as used in Fig. 3, and the control

parameters are k¼30, c¼50, o¼ 200.
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very close to zero. The control parameters are chosen to be k¼30,
c¼50, and the vibration frequency o¼ 200.

We then compare the single particle trajectories in the open-
loop and closed-loop systems. For this purpose, we change the
system parameters N¼ 5,k¼ 5:3, and keep all other system and
control parameters unchanged. The open-loop performance, that
is, the state ei1, i¼ 1, . . . ,5 in (11), is demonstrated in Fig. 7, which
shows an oscillatory performance. Under the feedback vibration
control law (35), the single particle trajectories converge in the
closed-loop system as shown in Fig. 8.

In order to show how well the approximation system (52)
matches the original closed-loop system (37), we plot the differ-
ence of the position variables between the two systems in Fig. 9,
that is, zcm1�Zcm1 ¼

def
ð1=NÞ

PN
i ¼ 1 zi�ð1=NÞ

PN
i ¼ 1 Zi, where zi and Zi

are the states of (37) and (52), respectively. We can see that the
difference is close to zero as time elapses.

In the designed vibration control (35), the vibrational
frequency, o, is a high frequency constant chosen by the designer.
In practice, the vibrational frequency is constrained by the device

limitation and cannot be too high. To show the frequency
dependent behavior of the friction force, we show numerical
results in Table 1, where we show the value of Ffric at t¼150 for
the same initial condition randomly chosen. We can see that the
differences between the friction forces at different frequencies are
very small.

Note that in the above figures, the variables have no units as
the simulations were performed based on the dimensionless
model (3). Unit conversion of the vibration control is given in
Appendix B, where units are given for the original variables in the
model (1).

6. Conclusions

This paper discussed feedback vibration control to reduce
friction force for an FFM sliding system. A dynamic model of the
FFM system was first presented imitating the FFM tip as a 1D
array of particles moving on a rigid substrate. The open-loop
stability was studied, and it is revealed that both of the center of

Fig. 6. Friction force of the closed-loop system. Inset magnifies the response after

t¼145. The parameters are the same as used in Fig. 5.
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Fig. 7. Time history of the error positions of the individual particles in the open-

loop system (11). The parameters are N¼5, g¼ 0:1, k¼ 5:3, a¼ 1, and V0¼0.5.
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Fig. 8. Time history of the error positions of the individual particles in the closed-

loop system. The system parameters are the same as used in Fig. 7, and the control

parameters are k¼30, c¼50, o¼ 200.

Fig. 9. Time history of the difference of the position variables between the closed-

loop system (37) and its approximation system (52). Inset magnifies the response

after t¼149.9. The parameters are the same as used in Fig. 8.
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the mass and the individual particles are ultimately bounded
under severe system conditions. Then, a vibration control scheme
was proposed so that high frequency vibration is applied to the
substrate of the sliding system, and feedback vibration control
was designed to reduce the tracking error of the closed-loop
system, thus to reduce friction. With the help of direct separation
of motion in vibrational mechanics (Blekhman, 2000), the track-
ing control objective was achieved, and relaxed conditions on the
system parameters were obtained for single particles to be
asymptotically stable. Numerical simulations using Matlab
showed that the friction force under vibration control is reduced
to almost zero. The proposed method may be applied to MEMS
applications where superlubricity or extra-low friction are
required. Future work includes experimental tests of the devel-
oped control, and quantitative comparisons with experimental
results.
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Appendix A. Normalization of the sliding model (1)

In the following, we provide the normalization procedure from
the original sliding system equation (1) to the dimensionless
model (3).

Re-write (1)

m €f iþg0 _f iþ
@U

@fi

¼ a0ðV 00t�fcmÞþFiðfi,fjÞ: ðA:1Þ

Let the substrate potential be

U ¼
1

2
W
XN

i ¼ 1

1�cos
2pfi

a

� �� �
, ðA:2Þ

where W is the energy constant in Joule, a is the surface
periodicity in Meter. We get

@Us

@fi

¼
pW

a
sin

2pfi

a

� �
: ðA:3Þ

Let the inter-particle potential be

Uint ¼
1

2
K
XN�1

i ¼ 1

ðfiþ1�fi�bÞ2, ðA:4Þ

where b is the equilibrium inter-atomic distance, and K is the
coupling coefficient. We get the inter-particle force

Fiðfi,fjÞ ¼
@Uint

@fi

¼ Kðfiþ1�2fiþfi�1Þ: ðA:5Þ

Eq. (A.1) turns to

m €f iþg0 _f iþ
pW

a
sin

2pfi

a

� �
¼ a0ðV 00t�fcmÞþKðfiþ1�2fiþfi�1Þ:

ðA:6Þ

Define zi ¼ 2pfi=a, and divide both sides of the above equation
by pW=a. We obtain

ma2

2Wp2
€ziþ

g0a2

2Wp2
_ziþsinðziÞ ¼

a

pW
a0ðV 00t�zcmÞ

þ
Ka2

2Wp2
ðziþ1�2ziþzi�1Þ: ðA:7Þ

Define

o2
0 ¼

2Wp2

ma2
: ðA:8Þ

Then define the dimensionless time t¼o0t. After simplification,
we have

d2zi

dt2
þ

g0a2

2Wp2
o0

dzi

dt þsinðziÞ ¼
a2

2p2W
a0 2p

ao0
V 00t�zcm

� �

þ
Ka2

2Wp2
ðziþ1�2ziþzi�1Þ: ðA:9Þ

Define

g¼ g0a2

2Wp2
o0 ¼

g0a2

2Wp2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma2

2Wp2

r
, ðA:10Þ

k¼ Ka2

2Wp2
, ðA:11Þ

a¼ a2

2p2W
a0, ðA:12Þ

V0 ¼
2p

ao0
V 00: ðA:13Þ

We obtain the dimensionless equation (where the derivatives are
with respect to the dimensionless time tÞ,
€ziþg_ziþsinðziÞ ¼ aðV0t�zcmÞþkðziþ1�2ziþzi�1Þ: ðA:14Þ

This is Eq. (3).

Appendix B. Unit conversion of vibration control

If we add a term of the vibrational external force, f 0vi, in the
right hand side of Eq. (A.1), following the same normalization
procedure as described in Appendix A, we obtain

fvi ¼
a

pW
f 0vi: ðB:1Þ

Since the vibration control (35) is designed based on the
dimensionless model (A.14), that is,

fvi ¼ sinðotÞ �
 
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ke2
�4gV0e�4 sinðV0tÞeþc

q !
, ðB:2Þ

the actual friction force applied to the sliding system is

f 0vi ¼
pW

a
fvi, ðB:3Þ

f 0vi ¼
pW

a

 
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ke2
�4gV0e�4 sinðV0tÞeþc

q !
sinðoo0tÞ, ðB:4Þ

f 0vi ¼
def

A0sinðo0tÞ: ðB:5Þ

Table 1
Frequency dependence of friction force.

Frequency o 100 200 300 400 500 800

Friction force Ffric 0.0057 0.0056 0.0080 0.0078 0.0067 0.0073
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Consider the parameters in the original system (A.1) of the
following values:

m¼ 0:12 nkg, a¼ 3 nm, W ¼ 1� 10�10 nJ: ðB:6Þ

Assume the AFM scan size is l¼ 10 mm, using the parameter of
the simulation, V0¼0.5, we get V 00 ¼ 9:5 mm=s. So the AFM scan
frequency is f ¼ 1=T ¼ V 00=l¼ 0:95 Hz.

Using the control parameters of the simulations, that is,

o¼ 200, c¼ 50, k¼ 30, ðB:7Þ

we have the actual vibration frequency and amplitude:

o0 ¼oo0 ¼ 200� 4� 104
¼ 8 MHz, ðB:8Þ

A0 ¼
pW

a
o

ffiffiffi
c
p
¼ 0:148 mm: ðB:9Þ

Note that we take e� 0 around the steady state in calculating A0.
As the control result seen from the simulations (Figs. 4 and 6),

the non-dimensional friction force is reduced from around 0.26 to
0.03. After the unit conversion (F 0fric ¼ FfricnpW=a), the friction
force is reduced from 2:7� 10�2 nN to 3� 10�3 nN by using the
designed vibration control.
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