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a b s t r a c t

Control of frictional forces is required inmany applications of tribology.While the problem is approached
by chemical means traditionally, a recent approach was proposed to control the system mechanically to
tune frictional responses. We design feedback control laws for a one-dimensional particle array sliding
on a surface subject to friction. The Frenkel–Kontorova model describing the dynamics is a nonlinear
interconnected system and the accessible control elements are average quantities only. We prove local
stability of equilibrium points of the un-controlled system in the presence of linear and nonlinear particle
interactions, respectively. We then formulate a tracking control problem, whose control objective is
for the average system to reach a designated targeted velocity using accessible elements. Sufficient
stabilization conditions are explicitly derived for the closed-loop error systemsusing the Lyapunov theory
based methods. Simulation results show satisfactory performances. The results can be applied to other
physical systems whose dynamics is described by the Frenkel–Kontorova model.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Tribology has been an active research area due to its broad ap-
plications in the fields of physics, chemistry, geology, biology, and
engineering (Persson, 2000). Rapidly growing areas of tribology are
in micro-electro-mechanical systems (MEMS), and biological sys-
tems, particularly the lubricationmechanisms in joints. Recent ad-
vances have substantially improved the understanding of frictional
phenomena, particularly on the inherently nonlinear nature of
friction (Urbakh, Klafter, Gourdon, & Israelachvili, 2004). Tradi-
tionally, the control of frictional forces has been approached by
chemical means, such as supplementing base lubricants with fric-
tion modifier additives. A recent different approach, which tunes
frictional responses by controlling the system mechanically via
normal vibrations of small amplitude and energy, has attracted
considerable interest, see Braiman, Barhen, and Protopopescu
(2003), Cochard, Bureau, and Baumberger (2003), Gao, Luedtke,
and Landman (1998), Heuberger, Drummond, and Israelachvili
(1998), Rozman, Urbakh, and Klafter (1998) and Zaloj, Urbakh, and
Klafter (1999). The idea is to reduce the frictional force or to elimi-
nate stick-slipmotion through a stabilization of desirablemodes of
motion. We follow this line of research and design feedback con-
trol laws to control frictional dynamics towards a desirable mode
of motion.
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Friction can be manipulated by applying perturbations to
accessible elements and parameters of a sliding system (Persson,
2000). The authors in Braiman et al. (2003) proposed an intriguing
idea to control the overall motion of an array of mechanically
coupled objects sliding on a dissipative substrate via feedback
control and tracking, and applied the idea to a particle array,
with the frictional dynamics described by the Frenkel–Kontorova
(FK) model. A control problem was formulated therein, and
a global feedback control scheme was presented to render
the system’s output, the velocity of the center of mass of
the nanoarray, to approach a given targeted value, subject to
some fluctuations. Results were supported by simulations only.
Theoretical justification on the non-Lipschitzian control was later
given in Protopopescu and Barhen (2004). However, we showed
in Guo, Qu, and Zhang (2006) that the control law in Braiman
et al. (2003) does not eliminate the persistent oscillations of the
controlled variables around their equilibrium points.

We study in this paper the problem of controlling frictional
dynamics of a one-dimensional particle array using control
theoretical methods. We describe the FKmodel to characterize the
dynamics of the interconnected one-dimensional particle system.
It is a nonlinear system since both the coupling of the particleswith
the substrate and the particle interactions are nonlinear. A control
problem is then formulated based on the FK model, which is a
constrained nonlinear control problem. The constraint is caused by
the inaccessibility of individual particles. The control objective is to
achieve tracking of the targeted velocity using physically accessible
variables, i.e., the average quantity of the interconnected system.
We present two main results in the paper. First, we study stability
of equilibrium points of the particle array in the presence of linear
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Fig. 1. The Frenkel–Kontorova model represents a harmonic chain (which mimics
a layer of nano-particles) in a spatially periodic potential (which mimics the
substrate). The chain is driven by a constant force which is damped by a velocity-
proportional damping.

and nonlinear inter-particle coupling, respectively. Second, we
design global tracking control laws to achieve that the average
velocity of the array, i.e., the velocity of the center mass, tracks any
given constant targeted velocity. Global feedback control laws are
explicitly constructed using the Lyapunov theory based method.
We further analyze local stability of individual particles in the
closed-loop system under the average control law. Finally, we
illustrate the control performances using Matlab simulations of
different sizes of a particle array. While the tracking control of the
average system was presented in our early publication (Guo et al.,
2006), further study on interconnected particle systems is shown
in this paper, and sufficient conditions will be given to stabilize
individual particle systems around the targeted trajectory under
the average control. Also, we provide rigorous proof of stability at
the equilibrium points of the open-loop interconnected system for
the first time in this paper.

The paper is organized as follows. Section 2 presents the
Frenkel–Kontorovamodel used to describe the frictional dynamics.
In Section 3, the local stability of the open-loop interconnected
particle system is analyzed in two subsections with linear and
nonlinear particle interactions, respectively. Then, a tracking
control problem is defined in Section 4. Section 5 presents tracking
control design to solve the control problem formulated in Section 4.
Simulation results are given in Section 6. The paper is finally
concluded with brief remarks in Section 7.
Notations: ‖x‖ denotes the Euclidean norm of vector x. xT denotes
the transpose of vector x. IN denotes the identity matrix of
dimension N . diag{Ai} denotes a block diagonal matrix whose
diagonal elements are Ai. ⊗ denotes the Kronecker product:

A ⊗ B =

a11B a12B . . . a1pB
...

...
...

...
an1B an2B . . . anpB


where A is an n × p matrix and B is an m × q matrix. Some useful
properties of Kronecker product are given in the Appendix.

2. The Frenkel–Kontorova model

The basic equations for the driven dynamics of a one-
dimensional particle array of N identical particles moving on a
surface are given by a set of coupled nonlinear equations (Braiman
et al., 2003; Braiman, Family, & Hentschel, 1997):

m′z̈i + γ ′żi = −
∂U(zi)

∂zi
−

N∑
j=1
j6=i

∂W (zi − zj)
∂zi

+ f ′

i + η(t), (1)

where i = 1, . . . ,N , zi is the coordinate of the ith particle, m′

is its mass, γ ′ is the positive friction coefficient representing the
single particle energy exchangewith the substrate, f ′

i is the applied
external force, η(t) denotes additive the Gaussian noise, U(zi) is
the periodic potential applied by the substrate, and W (zi − zj) is
the inter-particle interaction potential.

Under the simplifications that the substrate potential is in the
form of m′

4π2 (1 − cos 2πzi
a ) with a > 0, the same force is applied to

each particle, and there is zero noise (i.e., η(t) = 0), the equation
of motion reduces to the following FK model:

φ̈i + γ φ̇i + sin(φi) = f + Fi (2)
where φi is the dimensionless phase variable, φi = 2πzi/a,
γ = γ ′/m′, f = 2πaf ′

i /m
′,

Fi = −
2πa
m′

N∑
j=1,j6=i

∂W (aφi/2π − aφj/2π)

∂(aφi/2π)
.

A specific example often considered for the particle interaction
force, Fi, is the nearest-neighbor interaction in the form of Morse-
type interaction (Braiman et al., 2003, 1997):

Fi =
κ

β

{
e−β(φi+1−φi) − e−2β(φi+1−φi)

}
−

κ

β

{
e−β(φi−φi−1) − e−2β(φi−φi−1)

}
, i = 2, . . . ,N − 1, (3)

where κ and β are positive constants. The free-end boundary
conditions are represented as:

F1 =
κ

β

{
e−β(φ2−φ1) − e−2β(φ2−φ1)

}
,

FN = −
κ

β

{
e−β(φN−φN−1) − e−2β(φN−φN−1)

}
. (4)

As β → 0, (3) turns to:
Fi = κ (φi+1 − 2φi + φi−1) , i = 2, . . . ,N − 1, (5)
which represents a linear approximation of particle interaction for
small β with the following free-end boundary conditions:

F1 = κ(φ2 − φ1), FN = κ(φN−1 − φN). (6)
An illustration of the Frenkel–Kontorova model is shown in Fig. 1.

The FK model (2) describes a chain of particles interacting
with the nearest neighbors in the presence of an external periodic
potential. It is one of the best known simple models for frictional
dynamics, and can be extended to two-dimensional and three-
dimensional models and to a full set of molecular dynamics.
Besides describing the frictional dynamics (Persson, 2000), the FK
model has been widely involved in descriptions of many other
physical problems, such as charge-densitywaves,magnetic spirals,
and absorbed monolayers (Braun & Kivshar, 2004).

The FK model presents a nonlinear interconnected systems.
Nonlinearity appears since (i) the coupling of the particles with the
substrate is nonlinear, and (ii) the particle interaction is nonlinear.
Particularly, the nonlinear Morse-type interaction represents an
attraction force between two nearest particles when their distance
is longer than the natural length of the spring, and a restoring
force (increasing unlimited) between them when the distance is
shorter than the natural length of the spring (Chou, Ho, Hu, &
Lee, 1998). The Morse-type particle interaction presents a class
of attraction/repulsive functions for a one-dimensional swarm
aggregation, which may be of interest to the research in swarm
dynamics, see Gazi and Passino (2002, 2003).

3. Open-loop stability analysis

Before we define our control problem, we study the stability
of the open-loop system of the FK model (2). The dynamics in (2)
expressed without external forces can be equivalently written as:
ẋi1 = xi2
ẋi2 = − sin xi1 − γ xi2 + Fi (7)
where i = 1, 2 . . . ,N , xi1 = φi, xi2 = φ̇i, and Fi is the Morse-
type particle interaction. Let us look at the local stability of the
equilibrium points in the presence of (i) linear particle interaction,
(ii) nonlinear particle interaction, respectively.

3.1. Linear particle interactions

We consider the local stability of (7) when Fi takes the form of
the linear interaction given in (5). From (7), the equilibrium points
are at (xi1, xi2) = (x∗

i1, 0) where x∗

i1 are solutions to
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Q =


−κ − cos x∗

11 κ 0 . . . 0
κ −2κ − cos x∗

21 κ 0 . . .
...

0 . . . κ −2κ − cos x∗

N−1,1 κ

0 . . . 0 κ −κ − cos x∗

N1

 ∈ RN×N .

Box I.
− sin x∗

11 + κ(x∗

21 − x∗

11) = 0,
− sin x∗

i1 + κ(x∗

i+1,1 − 2x∗

i1 + x∗

i−1,1) = 0, i = 2, . . . ,N − 1,

− sin x∗

N1 + κ(x∗

N−1,1 − x∗

N1) = 0. (8)
Define new states as zi1 = xi1−x∗

i1, zi2 = xi2, and linearize it around
its equilibrium. We obtain
żi1 = zi2
żi2 = − cos x∗

i1zi1 − γ zi2 + κ(zi+1,1 − 2zi1 + zi−1,1)
− sin x∗

i1 + κ(x∗

i+1,1 − 2x∗

i1 + x∗

i−1,1)

= − cos x∗

i1zi1 − γ zi2 + κ(zi+1,1 − 2zi1 + zi−1,1). (9)
Note that the last equal sign holds due to the equilibrium equation
(8).

Stacking the state space equations for i = 1, 2, . . . ,N , we
obtain

ż = Az + B Qz (10)
where z = [z11, z12, z21 z22, . . . zN1, zN2]

T,

A = IN ⊗ A, B = IN ⊗ B, Q = Q ⊗
[
1 0

]
, (11)

and

A =

[
0 1
0 −γ

]
, B =

[
0
1

]
, (12)

andQ is represented in Box I. Note that A andQ can be represented
by othermatrices.We represented themas the current form for the
convenience of the proof of Theorem 1 presented in the following.

Theorem 1. The system (7) with linear particle interaction (5) is
locally asymptotically stable at the equilibrium points (x∗

i1, 0) if all
of the eigenvalues of the matrix Q defined in Box I have negative
real parts; it is unstable if any of the eigenvalues of the matrix Q has
a positive real part. Particularly, it is locally asymptotically stable if
cos x∗

i1 ≥ 0 for all i with strict inequality for at least one i, and it is
unstable if cos x∗

i1 ≤ 0 for all i with strict inequality for at least one i.
Next, we present the proof of Theorem 1, which needs the

following three Lemma.

Lemma 1 (Godsil and Royle (2001, page 171) Spectral Theorem for
SymmetricMatrices). If A is an n×n real symmetricmatrix, then there
always exist matrices L and D such that LTL = LLT = I and LALT = D,
where D is the diagonal matrix of eigenvalues of A.

Lemma 2 (Lancaster & Tismenetsky, 1985). Let A = [aij]ni,j=1 ∈

Rn×n and assume that aii > 0 for each i and aij ≤ 0 whenever i 6= j.
If A is diagonally dominant, that is,

aii >

n∑
j=1,j6=i

|aij|, i = 1, 2, . . . , n,

or, if A is irreducible and

aii ≥

n∑
j=1,j6=i

|aij|, i = 1, 2, . . . , n,

with strict inequality for at least one i, then A is an M-matrix. A
symmetric M-matrix is positive definite.

Lemma 3 (Wu, 2002, Appendix A). Define the set W consisting of
all zero row sum matrices which have only nonpositive off-diagonal
elements. A matrix A ∈ W satisfies:

(1) All eigenvalues of A are nonnegative;
(2) 0 is an eigenvalue of A;
(3) 0 is an eigenvalue of multiplicity 1 if A is irreducible.

Proof of Theorem 1. First, we study stability of the linearized
system (10) for any positive constants γ , κ and for any N ≥ 2.
To perform this stability analysis, we find a transformation matrix
to transform the system matrix into a block diagonal one.

Define a similarity transformation z = Tζ . In the new
coordinate, the system dynamics is

ζ̇ = Hζ . (13)

We show how to choose T , and present H accordingly.
SinceQ is a real symmetricmatrix, according to Lemma 1, there

exists a unitary matrix T such that T−1QT = D where D is a
diagonal matrix of eigenvalues of Q . Let

T = T ⊗ I2 (14)

where I2 is the 2 × 2 identity matrix. Then:

H = T
−1

(A + B Q )T

= T
−1 [

IN ⊗ A + (IN ⊗ B)
(
Q ⊗

[
1 0

])]
T

= T
−1
(
IN ⊗ A + Q ⊗

[
0 0
1 0

])
T

=
(
T−1INT

)
⊗ A +

(
T−1QT

)
⊗

[
0 0
1 0

]
= IN ⊗ A + D ⊗

[
0 0
1 0

]
. (15)

We can see thatH is block diagonal, and the block diagonal element
of H writes:

Hii =

[
0 1
αi −γ

]
, (16)

where αi, i = 1, 2, . . . ,N are eigenvalues of Q . The stability of the
system depends on the sign of the real parts of αi, i = 1, . . . ,N:

(1) If αi, i = 1, 2, . . . ,N have negative real parts, the eigenvalues
ofHii, i = 1, 2, . . . ,N have also negative real parts, and so does
the matrix H . This indicates that the system is asymptotically
stable at these points. Due to the similarity transformation,
the same stability result holds for the original system ż =

(A+B Q )z. Furthermore, local stability of the original nonlinear
system (7) can be deduced from the stability analysis of its
linearized system (10) (Slotine & Li, 1991, Theorem 3.1).

(2) If αi has a positive real part for any i ∈ [1,N], eigenvalues
of Hii, i = 1, 2, . . . ,N , also have positive real parts. With the
same arguments as above, the system (7) is unstable at these
points.

Checking the structure of matrix Q in Box I, we have the
following cases:

• If cos x∗

i1 ≥ 0 for all i with strict inequality for at least
one i, the matrix −Q is an M-matrix and αi < 0 for all i
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Q =


κ − cos x∗

11 κ 0 . . . 0
κ − cos x∗

21 κ 0 . . .
...

0 . . . κ − cos x∗

N−1,1 κ

0 . . . 0 κ κ − cos x∗

N1

+ (−2κ)IN
def
= Φ + (−2κ)IN .

Box II.
Q =


−c11 − cos x∗

11 c11 0 . . . 0
c21 −(c21 + c22 + cos x∗

21) c22 0 . . .
...

0 . . . cN−1,1 −(cN−1,1 + cN−1,2 + cos x∗

N−1,1) cN−1,2
0 . . . 0 cN2 −cN2 − cos x∗

N1

 .

Box III.
according to Lemma 2. Therefore, Q is Hurwitz and the system
is asymptotically stable;

• If cos x∗

i1 = 0 for all i, Q has one (and only one) eigenvalue
0 according to Lemma 3. The linear system (10) is marginally
stable and the stability of the nonlinear system (7) could be
either stable or unstable;

• If cos x∗

i1 ≤ 0 for all i with strict inequality for at
least one i, we can represent Q as in Box II. Since Φ

is an irreducible and nonnegative matrix, it has a posi-
tive eigenvalue, r , equal to the spectral radius of Φ , which
is between 2k + min{− cos x∗

11, . . . ,− cos x∗

N1} and 2k +

max{− cos x∗

11, . . . ,− cos x∗

N1}

(Lancaster & Tismenetsky, 1985, page 537). Therefore, Q has at
least one positive eigenvalue. The system is unstable;

• If cos x∗

i1, i = 1, . . . ,N , have mixed signs, the system could
be either stable or unstable and numerical calculations is
necessary to determine the sign of the real parts of the
eigenvalues of Q . �

Remark 1. As special cases of Theorem 1, the equilibrium points
(2kπ, 0), k = 0, ±1, . . ., are asymptotically stable and ((2k +

1)π, 0) are unstable. The result was first claimed in our early
publication (Guo et al., 2006) without rigorous proof. We extend
the result to include all equilibriumpoints of the open-loop system
in this paper.

3.2. Nonlinear particle interactions

In the presence of Morse-type nonlinear particle interactions,
that is, Fi takes the form (3), the equilibrium points of (7) are at
(xi1, xi2) = (x∗

i1, 0) where x∗

i1 are solutions to

− sin x∗

11 +
κ

β

{
e−β(x∗21−x∗11) − e−2β(x∗21−x∗11)

}
= 0,

− sin x∗

i1 +
κ

β

{
e−β(x∗i+1,1−x∗i1) − e−2β(x∗i+1,1−x∗i1)

}
−

κ

β

{
e−β(x∗i1−x∗i−1,1) − e−2β(x∗i1−xi−1,1∗ )

}
= 0,

i = 2, . . . ,N − 1,

− sin x∗

N1 −
κ

β

{
e−β(x∗N1−x∗N−1,1) − e−2β(x∗N1−x∗N−1,1)

}
= 0. (17)

Let zi1 = xi1 − x∗

i1, zi2 = xi2, and linearize the system around its
equilibrium. After simplification, we get

żi1 = zi2
żi2 = − cos x∗

i1zi1 − γ zi2
+

κ

β

[
−e−β(x∗i+1,1−x∗i1) + 2e−2β(x∗i+1,1−x∗i1)

]
(zi+1,1 − zi1)

−
κ

β

[
−e−β(x∗i,1−x∗i−1,1) + 2e−2β(x∗i1−x∗i−1,1)

]
(zi1 − zi−1,1)

def
= − cos x∗

i1zi1 − γ zi2 + ci1(zi+1,1 − zi1) − ci2(zi1 − zi−1,1).

(18)
We can see that (18) is in the same form as in (9) with different
coupling coefficients. We can represent (18) as
ż = Az + B Qz
with the same forms of the matrices A, B,Q as in Section 3.1 but
different matrix Q shown in Box III.

Following the same procedure as shown in the proof of
Theorem 1, we conclude that the system (7) with nonlinear particle
interaction (3) is locally asymptotically stable at the equilibrium
points (x∗

i1, 0) if all of the eigenvalues of thematrix Q defined in Box III
have negative real parts; it is unstable if any of the eigenvalues of the
matrix Q has a positive real part.

In the next section, we formulate our control problem and then
discuss the control design in the subsequent section.

4. Control problem formulation

Control can be applied to the particle array, so that the frictional
dynamics of a small array of particles is controlled towards
preassigned values of the average sliding velocity. Let the external
force, f , in (2) be a feedback control, denoted by u(t). Rewrite the
system model (2) as follows (Braiman et al., 2003):

φ̈i + γ φ̇i + sin(φi) = Fi + u(t). (19)
Due to physical accessibility constraints, the feedback control u(t)
is a function of three measurable quantities, vtarget, vc.m., and φc.m.,
where vtarget is the constant targeted velocity for the center ofmass,
vc.m. is the average (center of mass) velocity, i.e.,

vc.m. =
1
N

N∑
i=1

φ̇i, (20)

and φc.m. is the average (center of mass) position, i.e.,

φc.m. =
1
N

N∑
i=1

φi. (21)

We define the following tracking control problem:
Design a feasible feedback control law
u(t) = u(vtarget, vc.m., φc.m.), (22)
such that vc.m. tends to vtarget.

In nanoscale friction control, it is sufficient to control the system
as a whole. It can be seen that the tracking control problem is
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a constrained control problem since the accessible variables are
average quantities only. Existing results in nonlinear decentralized
control (for example, Guo, Jiang, and Hill (1999), Ioannou (1986),
Jiang (2002) and Tezcan and Basar (1999)) cannot be applied due
to the inaccessibility of the subsystems’ states.

In the next section, we first construct feedback control laws to
solve the tracking control problem defined above, and we further
analyze the single particle stability in the closed-loop systemunder
the designed average control law.

5. Tracking control design

To design feedback tracking controllers, we define the following
tracking error states:

ei1 = φi − vtargett, ei2 = φ̇i − vtarget. (23)
The corresponding error dynamics for a single particle is given as:
ėi1 = ei2
ėi2 = − sin(ei1 + vtargett) − γ (ei2 + vtarget) + Fi + u(t). (24)

5.1. Tracking control of the average system

In this subsection, we design tracking control to solve the
problem defined in Section 4, which is to render the average
velocity of the system, i.e. the velocity of the center of the mass,
to converge to a constant targeted value. To this end, we introduce
the average error states as:
e1av = φc.m. − vtargett, e2av = vc.m. − vtarget, (25)
where vc.m. and φc.m. are defined in (20) and (21), respectively.
Then, it is obvious that the convergence of (φc.m., vc.m.) to
(vtargett, vtarget) is equivalent to the convergence of (e1av, e2av) to
(0, 0). Therefore, asymptotic stability of the system in the error
state space is equivalent to asymptotic tracking of the targeted
positions and constant velocity.

The dynamics of (e1av, e2av) can be derived as:
ė1av = e2av

ė2av = −
1
N

N∑
i=1

sin(ei1 + vtargett) − γ (e2av + vtarget) + u(t). (26)

Note that the Fi term disappeared in (26) because the sum of Fi is
zero for Morse-type interactions of the form defined in (3).

We construct the following Lyapunov function candidate:

W (eav) =
1
2
e21av +

1
2
(c1e1av + e2av)2 (27)

where c1 is a positive design constant, and eav = [e1av e2av]T.
Taking the time derivative ofW along the dynamics of (26), and

denoting
ξ = c1e1av + e2av, (28)
we have:

Ẇ (eav) = −c1e21av + ξ

[
e1av + c1e2av − γ e2av

−
1
N

N∑
i=1

sin(ei1 + vtargett) − γ vtarget + u(t)

]
. (29)

Choose
u(t) = γ vtarget − e1av − (c1 − γ )e2av

− (c1 + c2)ξ + sin(vtargett)
= γ vtarget − k1(φc.m. − vtargett)

− k2(vc.m. − vtarget) + sin(vtargett) (30)
where c2 is a positive design constant, k1 = 1 + (c1 + c2)c1, k2 =

2c1 + c2 − γ , and the term sin(vtargett) is introduced to enforce the
equilibrium of the closed-loop system (26) to be the origin.
We obtain:
Ẇ (eav) = −c1(e21av + ξ 2) − c2ξ 2

+ ξ
1
N

N∑
i=1

[
− sin(ei1 + vtargett) + sin(vtargett)

]
≤ −c1(e21av + ξ 2) − c2ξ 2

+ |ξ |

×
1
N

N∑
i=1

|− sin(ei1 + vtargett) + sin(vtargett)|

≤ −c1(e21av + ξ 2) − c2ξ 2
+ 2|ξ |. (31)

Since the maximum of the last two terms is 1/c2, we have

Ẇ (eav) ≤ −c1(e21av + ξ 2) +
1
c2

, (32)

which can be used to prove uniform boundedness of the error
system (26) as shown in the proof of Theorem 2.

To achieve asymptotical tracking, that is, to make the error
system (26) asymptotically stable, the following switching control
law can be used:
u(t) = γ vtarget − k1(φc.m. − vtargett) − k2

(
vc.m. − vtarget

)
+ sin(vtargett) − 2sgn(ξ) (33)

where sgn(ξ) denotes the signum function, defined as sgn(ξ) = 1
for ξ > 0, sgn(ξ) = −1 for ξ < 0, and sgn(ξ) = 0 for ξ = 0.

The following theorem presents the stability results of the
closed-loop average error system (26).

Theorem 2. The feedback control laws (30) or (33) solve the tracking
control of the average system defined in Section 4. Using (30), the
tracking error between the velocity of the center of mass and the
targeted velocity is uniformly bounded over time [0, ∞). Under
the switching control law (33), the tracking error goes to zero
asymptotically.
Proof. Using the continuous control law (30), for the positive
definite Lyapunov function W defined in (27), we obtained (32).
Then,

Ẇ (eav) ≤ 0, ∀‖(e1av, ξ)‖ ≥
1

√
c1c2

. (34)

We conclude that the solutions of the closed-loop systems (26),
(30) are globally uniformly bounded.

To calculate the ultimate bound, we notice from (27) that
1
2
λmin(P)‖eav‖2

≤ W (eav) =
1
2
eTavPeav

≤
1
2
λmax(P)‖eav‖2 (35)

where eav = [e1av e2av]T,

P =

[
1 + c21 c1

c1 1

]
,

and λmin(P), and λmax(P) denote the minimum and maximum
eigenvalues of the matrix P , respectively. From (35), we have

‖eav‖2
≤

2W (eav)
λmin(P)

=
‖(e1av, ξ)‖2

λmin(P)
. (36)

Due to (34), we obtain

Ẇ (eav) ≤ 0, ∀‖eav‖ ≥
1

√
c1c2λmin(P)

. (37)

The ultimate bound of ‖eav‖ is given by Khalil (2002, Section 4.8):

b =

√
λmax(P)

c1c2λ2
min(P)

. (38)
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By choosing c1, c2 appropriately (with the price of a large control
effort), we can have the error states to be arbitrarily close to zero.

Under the switching control law (33) (which is the continuous
control (30) plus a switching term), substituting (33) into (29), we
get

Ẇ (eav) ≤ −c1(e21av + ξ 2) − c2ξ 2
+ 2|ξ | − ξ2sgn(ξ)

≤ −c1(e21av + ξ 2), (39)

which is negative definite. Asymptotic stability of the error system
follows from Lyapunov theory. �

The two control laws (30) and (33) were first presented in our
early publication (Guo et al., 2006) without rigorous proof.

It should be noted that the controller proposed in (30) render
the velocity of the average system to go to the targeted valuewhile
the individual particles could have different modes of motion.
Next, we investigate stability of single particles in the closed-loop
system under the average control law (30).

5.2. Stability of single particles in the closed-loop system

We assume linear particle interactions in this subsection. From
(5) and (23), representing Fi using the error states, we have:

Fi = κ
(
ei+1,1 − 2ei1 + ei−1,1

)
, i = 2, . . . ,N − 1,

F1 = κ(e21 − e11), FN = κ(eN−1,1 − eN1). (40)

For the convenience of presentation, let

k̄1 =
k1
N

, k̄2 =
k2
N

. (41)

Substituting the control law defined in (30) into (24), we have the
state space model of the closed-loop system in the following form:

ėi1 = ei2

ėi2 = −γ ei2 + Fi − k̄1

(
N∑
j=1

ej1

)
− k̄2

(
N∑
j=1

ej2

)
+
[
sin(vtargett) − sin(ei1 + vtargett)

]
. (42)

Linearize the system around the equilibrium e∗
= 0, where e =

[e11, e12, e21, e22, . . . , eN1, eN2]
T. Since

sin(vtargett) − sin(ei1 + vtargett)

= −2 sin
ei1
2

cos
ei1 + 2vtargett

2
, (43)

we obtain the following linearized model:

ė = Ge, (44)

where

G = IN ⊗

[
0 1
0 −γ

]
+ Q ⊗

[
0 0
κ 0

]
+ Θ ⊗

[
0 0

−k̄1 −k̄2

]
,

+ IN ⊗

[
0 0

− cos vtargett 0

]
= IN ⊗

[
0 1

− cos vtargett −γ

]
+ Q ⊗

[
0 0
κ 0

]
+ Θ ⊗

[
0 0

−k̄1 −k̄2

]
(45)

where Θ is the N by N matrix of ones, and

Q =


−1 1 0 . . . 0
1 −2 1 0 . . .

...
0 . . . 1 −2 1
0 . . . 0 1 −1

 . (46)
We have the following lemma:

Lemma 4. There exists a similarity transformation such that the
matrix G in (44) can be transformed to a block diagonal one.

Proof of Lemma 4. Notice that the matrix (−Q ) is a real symmet-
ric matrix with zero row sum, and it is irreducible. From Lemmas 1
and 3, (−Q ) has eigenvalues

µ1 ≥ µ2 ≥ · · · ≥ µN−1 > µN = 0. (47)

It is always possible to choose the eigenvectors to be real,
normalized and mutually orthogonal. Denote the eigenvectors
corresponding to each of the eigenvalues:

vk = [v1k, v2k, . . . , vNk], k = 1, 2, . . . ,N − 1; vN . (48)

Then V = [v1 v2 . . . vN ] is an orthogonal matrix, i.e., VV T
=

V TV = I , implying V T
= V−1, and

N∑
k=1

vkivkj =

N∑
k=1

vikvjk = δij, (49)

where δij = 1 for i = j and δij = 0 for i 6= j. Because of
−V TQV = diag(µ1, µ2, . . . , µN), we further have

(−Q )ij =

N∑
k=1

µkvikvjk. (50)

Because the eigenvectors vk, k = 1, 2, . . . ,N − 1, are orthogonal
to vN , the following property holds:

N∑
j=1

vjk = 0, k = 1, 2, . . . ,N − 1,

vN =
1

√
N

[1 1 . . . 1]T. (51)

Therefore, we have:

V−1QV = −DQ (52)

where DQ is a diagonal matrix with the diagonal entry µi, i =

1, 2, . . . ,N.
Due to property (51), the matrix V transforms the all 1’s matrix

Θ to a diagonal one as well:

V−1ΘV =
[
(V−1ΘV )ik

]
=

[(
N∑
j=1

vji

)(
N∑
j=1

vjk

)]
= DΘ (53)

where DΘ is a diagonal matrix with diagonal entry (DΘ)ii = 0, i =

1, 2, . . . ,N − 1, and (DΘ)NN = N . Choose the transformation
matrix as follows:

T = V ⊗ I2. (54)

We have:

T−1GT = (V ⊗ I2)−1
(
IN ⊗

[
0 1

− cos vtargett −γ

]
+Q ⊗

[
0 0
κ 0

]
+ Θ ⊗

[
0 0

−k̄1 −k̄2

])
(V ⊗ I2)

= IN ⊗

[
0 1

− cos vtargett −γ

]
− DQ ⊗

[
0 0
κ 0

]
+DΘ ⊗

[
0 0

−k̄1 −k̄2

]
= diag{Ci}, (55)
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where

Ci =


[

0 1
− cos vtargett − µiκ −γ

]
, i = 1, 2, . . . ,N − 1,[

0 1
− cos vtargett − k1 −k2 − γ

]
, i = N.

(56)

This completes the proof of the lemma. �

We are now in the position to state the main theorem of this
subsection.

Theorem 3. For system parameters κ and γ that satisfy

κ >
1

µN−1
, γ >

vtarget

2(µN−1κ − 1)
, (57)

where µN−1 is the second smallest eigenvalue of the matrix (−Q ),
choose the control parameters

k1 > 1, k2 > max
{

vtarget

2k1
− γ , 0

}
, (58)

then the error system for individual particles (42) is locally
asymptotically stable.

Proof of Theorem 3. We use the classic Lyapunov theory to prove
the local stability of the error system (42).

From Lemma 4, under similarity transformation z = T−1e,
system (44) is transferred to the following one:

ż = diag{Ci}z, (59)

where Ci is represented in (56).
Define the following Lyapunov function candidate:

W (t, z) =

N∑
i=1

{
εi

2
z2i1 +

1
2
(λizi1 + zi2)2

}

+

N∑
i=1

{
1
2
[1 + cos(vtargett)]z2i1

}
, (60)

where εi, and λi, i = 1, . . . ,N , are design parameters.
We can see that

W1(z) ≤ W (t, z) ≤ W2(z), (61)

whereW1(z) andW2(z) are both positive definite:

W1(z) =

N∑
i=1

{
εi

2
z2i1 +

1
2
(λizi1 + zi2)2

}

W2(z) =

N∑
i=1

{(
1 +

εi

2

)
z2i1 +

1
2
(λizi1 + zi2)2

}
. (62)

Take the time derivative of W (t, z) along the system dynamics
(59). We have:

Ẇ (t, z) =

N−1∑
i=1

[εi + λi(λi − γ ) − µiκ + 1] zi1zi2

+

N−1∑
i=1

[
−

1
2
vtarget sin(vtargett) − λi cos(vtargett) − λiµiκ

]
z2i1

+

N−1∑
i=1

(λi − γ )z2i2 +
1
2
[εN + λ2

N − λN(k2 + γ ) − k1 + 1]zN1zN2

− λNk1z2N1 − (k2 + γ − λN)z2N2

−
1
2
sin(vtargett)vtargetz2N1. (63)
Fig. 2. Local stability of the equilibrium points (φ1, φ̇1, φ2, φ̇2, φ3, φ̇3) =

(0.1941, 0, 0.9360, 0, 4.7747, 0) in the presence of linear particle interactions.
(a) Particle positions; (b) Particle velocities.

Under the condition on κ:

κ >
1

min
i≤N−1

(µi)
=

1
µN−1

, (64)

we have µiκ > 1. Choose the design and control parameters:

λi < γ , (65)

εi = λi(γ − λi) + µiκ − 1 > 0, i = 1, 2, . . . ,N − 1 (66)
λN < γ + k2, (67)

εN = λN(k2 + γ − λN) + k1 − 1 > 0, (68)
k1 > 1, (69)

so that the cross terms are zero. Bounding the sinusoidal terms, we
obtain

Ẇ (t, z) ≤ −

N−1∑
i=1

(
λiµiκ −

1
2
vtarget − λi

)
z2i1

−

N−1∑
i=1

(γ − λi)z2i2 −

(
λNk1 −

1
2
vtarget

)
z2N1

− (k2 + γ − λN)z2N2. (70)

Because of the following condition on γ :

γ >
vtarget

2 min
i≤N−1

(µiκ − 1)
=

vtarget

2(µN−1κ − 1)
, (71)

there exists λi < γ , i = 1, . . . ,N − 1, such that

λiµiκ −
1
2
vtarget − λi > 0. (72)

To get λNk1 −
1
2vtarget > 0,we need λN > vtarget/(2k1). Combining

with (67), we need to choose the following control parameter so
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Fig. 3. Local stability of the equilibrium points (φ1, φ̇1, φ2, φ̇2, φ3, φ̇3) =

(0.0001, 0, 0.0004, 0, 6.2827, 0) in the presence of nonlinear particle interactions.
(a) Particle positions; (b) Particle velocities.

that λN exists:

k2 > max
{

vtarget

2k1
− γ , 0

}
. (73)

Therefore, we have

Ẇ (t, z) ≤ −W3(z), (74)

whereW3(z) is positive definite.
The asymptotical stability of (59) follows directly from the

Lyapunov stability theory because of (61) and (74) (Khalil,
2002, Chapter 4). Due to the similarity transformation z = T−1e,
(44) is asymptotically stable. Therefore, the nonlinear error system
(42) is locally asymptotically stable. �

Remark 2. Since the application of Lyapunov direct method
provides sufficient conditions only, the obtained condition on γ
and κ is sufficient and may be conservative.

6. Simulation results

We have performed extensive numerical simulations on arrays
of different sizes (3 ≤ N ≤ 256). The system parameters used are
γ = 0.1, κ = 0.26 (Braiman et al., 2003; Guo&Qu, 2005). Random
initial conditions are used in the simulations.

First,we verify the stability of the open-loop frictional dynamics
(7). In the presence of linear particle interactions, for the system
parameters:

N = 3, κ = 0.26, γ = 0.1,

we have one set of the equilibrium points (by solving (8)) at

(φ1, φ̇1, φ2, φ̇2, φ3, φ̇3) = (0.1941, 0, 0.9360, 0, 4.7747, 0).
Fig. 4. Tracking performance of the average system for targeted value vtarget = 3:
(a) the time history of the velocity of the center of the mass, (b) the time history of
the error states of the center of the mass with the solid line denoting e1av and the
dashed line denoting e2av , (c) the control history.

We check that φi ∈ ( 2k+1
2 π, 2k+3

2 π), k = −1, 1, i = 1, 2, 3 and
the matrix Q defined in Box I is negative definite. According to
Theorem 1, the open-loop system is locally asymptotically stable
at these points. This is verified by Fig. 2.

In the presence of nonlinear particle interactions, with the same
system parameters κ, γ and β = 1, we have one set of the
equilibrium points (by solving (17)) at

(φ1, φ̇1, φ2, φ̇2, φ3, φ̇3) = (0.0001, 0, 0.0004, 0, 6.2827, 0).

Wechecked that thematrixQ defined in Box III is negative definite,
so the system is locally asymptotically stable at these points. This
is verified by Fig. 3.

Figs. 4 and 5 demonstrate the tracking performances of the
average system using the control law (30) with different initial
conditions and for two different targeted values vtarget = 3, 1.5
respectively. In both Figs. 4 and 5, (a) shows the time history of
the velocity of the center of the mass, i.e., vc.m., (b) shows the error
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Fig. 5. Tracking performance of the average system for targeted value vtarget = 1.5:
(a) the time history of the velocity of the center of the mass, (b) the time history of
the error states of the center of the mass with the solid line denoting e1av and the
dashed line denoting e2av , (c) the control history.

states of the center of the mass, i.e., e1av and e2av , and (c) shows the
control history.

As pointed out in Section 5.1, the individual particle could be
in different modes of motion while the average system tracks
a targeted trajectory. Fig. 6 shows the oscillating dynamics of
individual particles of the closed-loop system tracking the targeted
average velocity vtarget = 1.5whose average tracking performance
was shown in Fig. 5. It can be seen that individual particles are
oscillating while the velocity of the average system tracks the
targeted value.

In comparison, we show the stability of the error states of
individual particles under the control law (30) in Fig. 7. The system
parameters used are γ = 1.6, κ = 1.5 for a three-particle
interconnected system. The control parameters are chosen to be
k1 = 1.2, k2 = 0.4. The targeted velocity is vtarget = 1.5. Fig. 7
shows that the tracking error for each individual particle tends
to zero which indicates that the velocity of each particle in the
interconnected system tracks the targeted value. This verifies the
result in Theorem 3.
Fig. 6. Particles dynamics of the average system tracking the targeted average
velocity vtarget = 1.5: (a) the phase variables of individual particles, (b) the velocity
variables of individual particles.

7. Conclusions

We studied the stability and the control problem for a one-
dimensional particle array sliding on a surface subject to friction.
The well-known Frenkel–Kontorova model is used to describe the
dynamics, which represents a nonlinear interconnected system.
A control problem is formulated and the control objective
is for the average system to reach a designated targeted
velocity using physically accessible variables, i.e., the average
quantity of the system. Local stability of the un-forced system
at different equilibrium points is revealed first in the presence
of linear and nonlinear particle interconnections, respectively.
A global feedback control law is then constructed to achieve
the control objective by utilizing the Lyapunov theory based
method. Simulation results are shown to illustrate satisfactory
performances. The results of the paper are applicable to other
physical systems whose dynamics can be described by the
Frenkel–Kontorova model.
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Appendix. Properties of Kronecker product

(1) (A ⊗ B)(C ⊗ D) = AB ⊗ CD
(2) A ⊗ B + A ⊗ C = A ⊗ (B + C)

(3) (A ⊗ B)T = AT
⊗ BT

(4) (A ⊗ B)−1
= A−1

⊗ B−1

(5) The eigenvalues of C ⊗ D (C ∈ Rm×m,D ∈ Rn×n) are λiµj, i =

1, . . . ,m, j = 1, . . . , n, whereλi, i = 1, . . . ,m are eigenvalues
of C and µj, j = 1, . . . , n are eigenvalues of D.
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Fig. 7. Stability of individual particles in the closed-loop tracking system for
targeted value vtarget = 1.5: (a) the time history of the velocity of the center of the
mass, (b) the control history, (c) the error phase variables of individual particles,
(d) the error velocity variables of individual particles.
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