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Abstract— In this paper, we study the consensus on scale-free
network, which is known as more robust and immune to the
random mutation and perturbation than (binomial) random
network. The underlying dynamics of system is derived from
a discrete random process by averaging the state of agents
weighted by agent degree. In such framework, we address the
consensus on different categories, on fixed/switching topology,
on undirected/directed graph based on martingale convergence
theorem.

Index Terms— Network control system, consensus problem,
complex network, scale-free network, stochastic stability

I. INTRODUCTION

The consensus problem in coupled dynamical networks
and systems has been studied for years. As the cooperative
multi-agent system has been proved to improve the overall
flexibility and effectiveness of the system, the system co-
ordination requires that individual agents share a consistent
information of the world [1]. The information consensus lays
the ground work to ensure the system achieving cooperative
behavior effectively.

Information consensus is studied from both determin-
istic and probabilistic domains. Olfati-Saber and Murray
in [2] address the consensus problem under a variety of
deterministic assumptions, from directed networks with both
fixed and switching topology, to undirected network with
communication time-delays, using the approach of algebra
graph theory and matrix theory. Jadbabaie etc. in [3] propose
a deterministic consensus algorithm through averaging the
neighbor states using the approach of ergodic theorem under
different scenarios: discrete leaderless coordination, discrete
leader-following coordination, as well as leader following
in continuous time. On the probabilistic side, Hatano and
Mesbahi in [5] consider the agreement over an undirected
random network using Lyapunov methods from stochastic
control theory. In [4], Wu considers the dynamics conver-
gence problem in probability over binomial random directed
network using inhomogeneous Markov chain, matrix theory
and graph theory.

Scale-free network is one of the most fascinating discov-
ery in complex networks topology by the end of last century.
Albert Barabási and Réka Albert proposed that both the

world wide web and the actor collaboration networks have
their nodes’ degree following a power law distribution in
1999. Later on, a tremendous number of networks (eg. social
network, epidemiology, neural network, computer network)
are identified to have the same power laws distribution. What
is more, this power laws distribution structure always holds
independently from the scale of the network. In another
word, the advantages from scale-free network can be applied
to various applications flexibly without the constraints from
the number of the nodes in the network. Thus, the network
is called scale-free network, which is a non-uniform random
network. The scale-free network structure is a universal
feature extracted from the natural, social, biological, and
man-made network systems which are always robust against
self mutation and environmental perturbation. Therefore, it
would be fascinating to embed such robust and prominent
feature from scale-free network framework into the multi-
agent system to improve its cooperative behavior.

We address the consensus problem of decentralized dy-
namic system on scale-free network, which has turned out to
be a robust and extendable communicating/sensing network
topology. To our best knowledge, it is the first rigorous
consensus proof on scale-free network. Based on the proof,
we can apply such communication structure into a lot
of multi-agent applications to improve system robustness,
such like autonomous robotic system, transportation control
system, mobile sensor network, etc. For example, given a
group of agents assigned to achieve some cooperative tasks,
we can build up the underlying communication topology
network according to the scale-free network mechanism —
preferential attachment. Based on our theoretical work, the
system is mathematically proved to reach consensus, which
provides solid basis for the system to achieve meaningful
applications. Furthermore, it has been addressed that such
multi-agent system can perform robustly to random link
dropout or agent disfunction.

The outline of this paper is as follows. In Section II,
we introduce the basic notions and terminologies in graph
theory, the scale-free network model and its properties. In
Section III, we presents a coordinated stochastic dynamical
system based on the scale-free network mechanism. Then we
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prove the stochastic consensus stability of a directed finite
scale-free network dynamical system in Section IV using
the martingale convergence theorem. Later on, we gener-
alize consensus result on both undirected/directed network.
Finally this paper ends up with an overall conclusion as in
Section V.

II. SCALE-FREE NETWORK

A. Graph theory preliminary

We define graph G as a collection of vertices and edges
G = {V (G), E(G)} where V (G) is a set of vertices
V (G) = [v1 v2 . . . vn] and E(G) is a set of edges between
the vertices E(G) = {(vi, vj)|vi, vj ∈ V (G)}. The edges
of graphs may be imbued with direction. We define a graph
to be undirected if every edge in the graph is an unordered
pair between two distinct vertices. A graph is directed if
the edge in the graph is an ordered pair of distinct vertices.
Thus, in a directed graph, an edge has two distinct ends:
a head and a tail. For an undirected graph, the degree of
a vertex is the number of edges incident to the vertex. In
a directed graph, each end is counted separately. The sum
of head endpoints count toward the in-degree and the sum
of tail endpoints count toward the out-degree. If there is
a path between any two vertices of a graph, then graph is
connected.

A subgraph of a graph G is a graph H such that:
V (G) ⊇ V (H), E(G) ⊇ E(H). A subgraph of X that is
maximal, subject to being connected, is called a giant com-
ponent (connected component). A graph (either undirected
or directed) together with a function which assigns a positive
real number to each edge is known as a network. we will
take the default function as a scalar 1.

In term of finite and infinite element, a graph is infinite
if it has infinitely many vertices or edges or both; otherwise
the graph is finite. An infinite graph where every vertex has
finite degree is called locally finite. We discuss finite graph
in this paper.

In term of deterministic and probabilistic dependencies,
a deterministic graph is with no facilities to accommodate
probabilistic dependencies. A random (probabilistic) graph
is a graph that is generated by random process. The theory
of random graphs lies at the intersection between traditional
graph theory and probability theory and studies the prop-
erties of typical random graphs. Distinction between these
two dependencies will be further illustrated in III.

B. Network Models

Scale-free network is usually with the property that its
degree follows a power-law distribution.

P [k] ∼ k−γ (1)

in which, k is an integer denoting the node degree, P [k] is
the probability that a node connects with k other nodes. γ
is a scalar coefficient, which usually ranges in

γ ∈ (2,∞) (2)

to ensure the expected value of degree k exists. The power
law distribution denotes that some nodes has high degrees
although most nodes are of low degree in a scale-free
network. It is noteworthy that in Equation (1) it is to take
the scale-free network as an undirected graph, which can be
extended into a directed case by considering each vertex in
undirected graph as an ordered pair of distinct vertices.

According to the statistic data from the directed scale-free
network in the real world, both the in-degree and out-degree
distribution follow power law approximately[11].

P{kin} ∼ k−γin

in

P{kout} ∼ k−γout

out (3)

To give a mechanistic explanation for such emergence of
power laws, Barábasi and Réka introduced the preferential
attachment model, in which the network grows by the
addition of a single vertex at each time-step, with edges
connected to it. The other end of each edge is connected to
the other vertices already in the network, chosen at random
with probability proportional to degree[15]. Let i denote the
newly added vertex, Ni be the neighborhood of the newly
added vertex, kj be the degree of the vertex j, Then, the
probability πij that a new vertex i will be connected to
vertex j depends on the degree of vertex j as:

πij =
kj∑

j∈Ni
kj

(4)

C. Network Connectivity

Physics people have studied the connectivity of locally
finite scale-free network through percolation theory, which
entirely based on probabilistic arguments. Percolation theory
is applicable to the connectivity of a system that contains
so many particles that surface effects may be ignored and
the system replaced by a model with an infinite number
of particles in an unbounded volume. And the basic idea
of percolation theory is to assume the probability that a
given point belongs to an infinite cluster is known as the
percolation probability, and a critical probability exists that
the system phase transits from a non-percolating state to a
percolating state[14].

Cohen and Erez refer to that in [12], if the power of
degree distribution γ ≤ 3, the critical probability threshold
for a scale-free network system integrity being compromised
is 1. In another word, an infinite scale-free network has a
giant component almost surely under the condition γ ≤ 3.
The results ensure that connectivity of undirected scale-free
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network if γ ≤ 3, and for directed scale-free network γin ≤
3 or γout ≤ 3.

D. Why scale-free network

The scale-free network has many predominant advantages
which can be used to improve the cooperative performance
in a multi-agent system. First of all, it is known as a robust
topology which is immune to random errors such as random
removal of a rather large ratio of edges and vertices. Thus,
for a cooperative control system, the scale-free network of-
fers a reliable topology to ensure the information consensus
under the condition certain modules are removed.

More, based on the “preferential attachment” mechanics,
scale-free network offers the compatibility and flexibility
adding new modules (edges and vertices) into the network.
For a cooperative control system, it validates the addition
of any vehicle without redesigning the control law. Such
”plug and play” feature may improve the implementation of
complex, distributed control system substantially in nowa-
days cooperation applications which are always embedded
in information-rich environment[7].

Another advantage of the scale-free network is that it can
be applied to very large scale system. As the scale of the
cooperative system arises to a large number, the efficiency,
feasibility and redundancy of the communication topology
are being challenged. The scale-free network is a mathematic
model extracted from the real-world complex network, so it
is competent to be taken as the cooperative system topology
with a rather large number of agents.

III. PROBLEM SETUP

Let (S,Σ, µ) be a measure space, where S is a set, Σ is
a σ-algebra on S, and µ is a probability measure function
defined on a σ-algebra Σ over a set S with values in [0, 1].

We define the dynamics as a discrete-time stochastic sys-
tem based on the buildup mechanism of scale-free network.
For agent i, its state at time t + 1, can be updated by
averaging the states of the agents around i weighted by agent
degree at time t and itself . And such control law is based
on the probability measure function in equation (3).

xi[t + 1] =
1

ki +
∑

j∈Ni

kj


xi[t] · ki +

∑

j∈Ni

xj [t] · kj


 (5)

in which t ∈ {1, 2, 3, . . . }, xi[t] ∈ R denotes the state of
agent i at time t, ki and kj denote the degree of agent
i and j respectively, and Ni denotes the neighborhood
of agent i. Note that the concepts of “neighborhood” in
deterministic and probabilistic domains are slightly different.
In deterministic graph theory, the physical meaning of “j is
in the neighborhood of i” is that there is an edge between
i and j, and i and j communicate with each other; but

in the probabilistic case, the concept of “neighborhood” is
described in probability, j is in the neighborhood of i only
if i and j are adjacent to each other, and the probability that
an edge exists between i and j is non-zero, however, i and
j do not definitely communicate to each other. In this paper,
we will consider the probabilistic case only.

In order to extend dynamics on directed graph, we need
the notation j ∈ Nout

i which means j is in the neighborhood
of i that i leads to, i → j; vice versa, j ∈ N in

i denotes j is
in the neighborhood of i, leading to i, j → i. Then, one has

xi[t + 1] =
xi[t] · kout

i +
∑

j∈Nin
i

xj [t] · kout
j

kout
i +

∑
j∈Nin

i
kout

j

(6)

or

xi[t + 1] =
xi[t] · kin

i +
∑

j∈Nin
i

xj [t] · kin
j

kin
i +

∑
j∈Nin

i
kin

j

(7)

which means in directed graph, the state i is updated by how
the in-degree neighborhood effects others and how agent i
effects the others it leads to, and vice versa.

In simplicity, this system can be concisely represented as

x[t + 1] = M [t] · x[t] (8)

where M(t) is a stochastic matrix, in which





Mij =
k

in/out
i

k
in/out
i +

∑
j∈Nin

i
k

in/out
j

, i=j; (9a)

Mij =
k

in/out
j

k
in/out
i +

∑
j∈Nin

i
k

in/out
j

, j∈Ni; (9b)

Mij = 0, o.w. (9c)

Note that, since the dynamics is a random process, states
stand for the expectation value over the degree probability
distribution M(t). Due to the randomness, the dynamical
system network topology can be either initially randomly
chosen due to preferential attachment rule (called fixed
topology); or randomly updating due to preferential attach-
ment rule from time to time (called switching topology).
Both the fixed topology or the switching topology can be
described by the same stochastic dynamic framework. It
is different from the deterministic domain, in which fixed
topology and switching topology are considered as two
separate scenarios.

IV. CONSENSUS OVER SCALE-FREE NETWORK

Consensus is a common phenomenon in our daily life,
from the computer virus spreading through internet, to birds
and fish sharing information for the flocking and school-
ing motions. For multi-agent coordination, the consensus
problem is a basic issue, which guarantees all the agents
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in system share information and be able to achieve state
agreement to achieve some functional behavior. Based on
the stochastic dynamics setup proposed in section III, we
can develop the definition of consensus as follows.

Definition 1: The system reaches consensus almost
surely (with probability one) when the state sequence x[t]
converges to a steady state xss almost surely (a.s.) or with
probability 1 (w.p.1), as t →∞. This is written in the form

lim
t→∞

P{x[t] → xss} = 1 (10)
Since the dynamics is a random process, which is different

from the conventional deterministic stability problems, we
employ the martingale convergence theorems to address the
convergent stability with probability. First, we introduce the
definition of martingale and supermartingale as follows.

Definition 2: ([9] pp.25) Let yn, n = 1, . . . be a sequence
of random variables, Bn, n = 1, . . . a nondecreasing se-
quence of σ-algebras, and yn is measurable with respect to
Bn. If yn and satisfies E[yn+1|Bn] = yn w.p.1, then the
sequence {yn, Bn} is a martingale. If E[yn+1|Bn] ≤ yn

w.p.1, then the sequence {yn, Bn} is a supermartingale.
We draw the following martingale convergence theorem.
Lemma 1: ([10] pp. 31) If x = [x1,x2, . . . ] is a non-

negative supermartingale sequence and E|xk| < ∞, then x
converges w.p.1 to a random variable, as k →∞.

The main result of this section is as follows.
Theorem 1: For a finite directed scale-free network with

dynamics as in equation (6), given that the average in-
degree is greater than 1, the component in which one
node connects to any other nodes with non-zero probability
reaches consensus w.p.1.

Proof: We set the dynamic state sequence at time k as
xk = [x1(k), x2(k), . . . ].

Let stochastic function S(xk) as

S(xk) =
∑

i

Si(xk) =
∑

i

∑

j∈Ni

‖xi(k)− xj(k)‖ ≥ 0

(11)
It is trivial to consider the consensus convergence if S(xk) is
a supermartingale and converges to 0 w.p.1. We will follow
these two steps to prove the system consensus.

We set directed scale-free network equivalent model via
following equivalent laws.

(1) We take the average in-degree as scalar δin, average
out-degree as δout. Due to equation (3), it is clear that

δin = E [kin] =
∞∑

kin=1

kin · P [kin]

=
∞∑

k=1

kin · αk−γin

in =
∞∑

kin=1

αk1−γin

in (12)

in which α is a scalar to assure
∑∞

kin=1 αk−γin

in = 1. Note
that kin in equation (11) stands for the node degree and we
will take din

i as the node i in-degree in the following, as
well as dout

i as the node i out-degree.
(2) We take the average state difference between any

adjacent agents i and j as 4x = ±|xi(k)− xj(k)|.
Based on such equivalent model, we will prove the

stochastic function S(xk) is a supermartingale based on
system dynamics in equation (6).

Si(xk+1|xk)

=
∑

j∈Nin
i

∥∥∥∥∥

∑
j∈Nin

i
xj(k) · dout

j + xi(k) · dout
i∑

j∈Nin
i

dout
j + dout

i

−
∑

q∈Nin
j

xq(k) · dout
q + xj(k) · dout

j∑
q∈Nin

j
dout

q + dout
j

∥∥∥∥∥

=
∑

j∈Nin
i

∥∥∥∥
δout · xi(k)

δout · δin + δout
− δout · xj(k)

δout · δin + δout

+
δout ·

∑
j∈Nin

i
xj(k)

δout · δin + δout
−

δout ·
∑

q∈Nin
j

xq(k)

δout · δin + δout

∥∥∥∥∥

=
∑

j∈Nin
i

∥∥∥∥
xi(k)− xj(k)

δin + 1
+

∑
j∈Nin

i
xj(k)−∑

q∈Nin
j

xq(k)

δin + 1

∥∥∥∥∥

=
∑

j∈Nin
i

∥∥∥∥∥
xi(k)− xj(k) +

∑
q∈Nin

j
(xj(k)− xq(k))

δin + 1

∥∥∥∥∥

Then, we can derive that

maxSi(xk+1|xk) =
∑

j∈Nin
i

‖4x‖ (13)

min Si(xk+1|xk) = 0 (14)

min Si(xk+1|xk) ≤ E [Si(xk+1|xk)] ≤ min Si(xk+1|xk)
(15)

In equation (13), the Si(xk+1|xk) reaches maximum
value, when the ith agent state xi(k) is always beyond
(or below) all of its in-degree neighbor xj(k), and for
every neighbor j, its state xj(k) is always beyond (or
below) all of its in-degree neighbor xq(k). That is, ∀j ∈
N in

i , xi(k) − xj(k) > 0,∀q ∈ N in
j , xj(k) − xq(k) > 0; or

∀j ∈ N in
i , or xi(k)−xj(k) < 0, ∀q ∈ N in

j , xj(k)−xq(k) <
0.

In equation (14), the Si(xk+1|xk) reaches minimum
value, when the ith agent state xi(k) is beyond (or below)
its neighbor xj(k), and among the δin in-degree neighbors
of j, δin−1

2 items are below (or beyond) xj(k), δin+1
2 items

are beyond (or below) xj(k).
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Since δin > 1 and (15), we assume there exists a scalar
µ that meets

E [S(xk+1)|xk] = µ ·
∑

i

∑

j∈Nin
i

‖4x‖ , 0 ≤ µ ≤ 1 (16)

Obviously to see that

E [S(xk+1)|xk]− S(xk) ≤ 0 (17)

So S(xk) is a supermartingale. According to Lemma 1,
S(x∞) converges w.p.1 to a random variable. Next, we will
prove that the expectation of S(x∞) converges to zero.

First, note that when µ = 1 or µ = 0, min Si(xk+1|xk) =
max Si(xk+1|xk) = 0 so that

∑
i

∑
j∈Nin

i
‖4x‖ = 0, in

other sense, the system reaches consensus.
More, consider when 0 < µ < 1, from (16)

E [S(xk+1)|xk] = µ · S(xk)

Taking expected value on both sides and iterate E [S(xk)],
yields

lim
k→∞

E [S(xk)] = E [S(x0)] lim
k→∞

k∏
1

µ

Since
k∏
1

µ ≤ exp

(
−

k∑
1

(1− µ)

)

lim
k→∞

E [S(xk)] ≤ E [S(x0)] lim
k→∞

exp

(
−

k∑
1

(1− µ)

)

= E [S(x0)] exp(−∞) = 0

Therefore, S(x∞) converges to zero w.p.1.
Remark 1: The proof above is based on the system dy-

namics in equation (6), by considering the neighborhood
in-degree. It is simple to extend such results to the system
dynamics in equation (7) regarding to the neighborhood out-
degree as long as the average out-degree δin is greater than
one.

Remark 2: The consensus can be applied to undirected
network by taking an unordered edge in undirected network
as a ordered pair of edges, as long as the average degree is
assured, δ > 1.

Remark 3: The component in which any two agents com-
municate in probability will reach consensus. It is a much
more released requirement on the communication topology
assumptions comparing to the previous deterministic results.

V. CONCLUSION

In this paper, we have proven the stochastic consensus
over a robust and prominent network topology, namely, finite
scale-free network. Based on “the averaging neighbor states
weighted by neighbor degree” law, we set up a stochastic
discrete-time dynamical system; and base on martingale con-
vergence theorem, we proved the consensus of the dynamical
system over a directed scale-free network. And later on,
we applied the consensus results from directed graph to
undirected graph.
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