
Minimal Persistence Control on Dynamic Directed Graphs for
Multi-Robot Formation

Hua WANG and Yi GUO

Abstract— Given a multi-robot system, in order to preserve
its geometric shape in a formation, the minimal persistence
control addresses questions: (1) what pairwise communication
connections have to be prescribed to minimize communication
channels, and (2) which orientations of communication links are
to be placed between robots. In this paper, we propose a min-
imal persistence control problem on multi-robot systems with
underlying graphs being directed and dynamically switching.
We develop distributed algorithms based on the rank of the
rigidity matrix and the pebble game method. The feasibility of
the proposed methods is validated by simulations on the robotic
simulator Webots and experiments on e-puck robot platform.

I. INTRODUCTION

In a coordination task of multi-robot systems, the topology
control on (dynamic) graphs explicitly specifies how system-
level interactions are organized, while the control law on
each robot defines how the state variables update locally. In
other words, with the topology control satisfying a specific
topological property (i.e., connectivity), the control law on
each robot will elegantly coordinate the multi-robot system
(i.e., reaching concensus), in which the original coordination
problem is transformed into a simplified problem with a
combinatorial assumption. In this paper, we are interested
in the persistence control over dynamic directed graphs, and
its related formation control.

Among the literature on formation control, there exists
two distinct categories according to the type of information
that the control law requires –the position-based formation
control in [1] [2] [3] [4], and the distance-based formation
control in [5] [6] [7] [8]. The position-based formation
control steers each vehicle upon the relative direction and
distance information shared by adjacent vehicles. Instead, the
distance-based formation control steers the vehicle upon the
relative distance only. It maintains a set of vehicles in certain
geometric shape by only keeping local relative distance,
given the undirected/directed framework is rigid/persistent.
Therefore, the rigidity/persistence control addresses the nec-
essary topology property in formation control applications.

The framework persistence stretches the framework
rigidity-like problem with specification on edge-orientations.
The framework rigidity addresses the question “how many
pairwise distances must be prescribed between points so that
all the distances between these points are preserved”. It is
extensively studied in the distance-based formation control
applications as in [5] and [9]. Olfati-Saber and Murray in
the pinioneer work [5] propose a theoretical topological

Hua Wang and Yi Guo are with the Department of Electrical and Com-
puter Engineering, Stevens Institute of Technology, Hoboken, NJ 07030,
USA wanghuahit@gmail.com; yi.guo@stevens.edu

framework based on the notion of rigidity, which defines
interesting formation control problems, e.g., split, rejoin,
and reconfiguration maneuvers formally. In [9], Erev et
al. propose a systematic, inductive construction method to
build a provably rigid formation based on the Henneberg
sequence and Delaunay triangulation. On the other hand,
the persistence addresses the problem how to preserve all
the pairwise distances with underlying directed graphs by
controlling edge placements and edge orientations in [10]
and [11]. In [10], Hendrickx et al. study the theoretical
principle to construct a provably persistent graph in a planar
space by a sequential elementary operations. Yu et al. in
[11] provide a theoretical frameowrk to study persistence
and structural persistence in a three and higher dimensional
space. Approaches adopted in [10] and [11] to construct
persistent graphs are parallel to the “Henneberg sequence”
approach in undirected graphs.

In this paper, we consider effective schemes to control
the minimal persistence over dynamic directed graphs. We
develop minimal rigidity control by manipulating the rank
of rigidity matrix, and constraint consistence control based
on the pebble game theory. We verify the feasibility of the
proposed methodology in simulations on robotic simulator
Webots, and on a testbed of 6 e-puck robots. This work
distinguishes peers’ work in the following aspects. First,
we consider “dynamic” directed graph. Also, the proposed
control can be used to construct and maintain the persistence
of a dynamic framework based on the rank of rigidity matrix.
In contrast, the previous work in [10] and [11] proposed
a sequential approach to construct a persistent framework
based on Henneberg sequence. Last, our approach can be
extended into arbitrary m-dimensional space.

II. PRELIMINARIES

A. Graph rigidity and Its sufficient conditions

Rigidity is the sufficient structure property that a group of
robots maneuver as a cohesive whole, given the underlying
communication graph is undirected. Persistence is formulated
to address the similar problem in directed graphs. We first
introduced in the basic notions in the context of rigidity.

We consider graphs with no self-loop nor multiple edges
between two nodes. A graph G(V,E) consists of a vertex
set V = {1, 2, . . . n} and an edge set E ⊆ V × V , which is
a collection of pairs of vertices, note that × is the Cartesian
product. If the pairs of vertices are unordered, the graph is
called an undirected graph; otherwise, the graph is called
a directed graph. In the context of this paper, we consider
the leader-follower communication architecture as a directed

2012 IEEE International Conference on Robotics and Automation
RiverCentre, Saint Paul, Minnesota, USA
May 14-18, 2012

978-1-4673-1404-6/12/$31.00 ©2012 IEEE 1557

graph, in which a directed edge points from the follower to
the leader, i.e., head is the leader and tail is the follower1.
The indegree d

(i)
in of vertex i is the number of directed edges

pointing to vertex i, the outdegree d
(i)
out of vertex i is the

number of directed edges leaving vertex i. A framework is a
triple (V,E,p) where (V,E) is a graph and p = [p1, . . .pn]T

is a coordinate vector corresponding to the vertices V in an
m dimensional Euclidean space.

A deformation is a continuous one-parameter family
p(t) = (p1(t), . . . ,pn(t)) on a framework. A deformation
is trivial if it preserves the distance between any two points,
whether they are adjacent or not. A framework is said to be
rigid if it has only trivial deformations, e.g., translations and
rotations. Otherwise, it is flexible.

Mathematically, the distance-preserving between any two
points in the edge set E can be written as

(pi(t)− pj(t)) · (pi(t)− pj(t)) = cij ,∀(i, j) ∈ E (1)

By taking the first derivative over time on both sides of
the equation, we get

(pi(t)− pj(t)) · (p′i(t)− p′j(t)) = 0,∀(i, j) ∈ E (2)

We define a framework {V,E,p} to be first-order rigid or
infinitesimally rigid if its coordinates p meet (2). Infinitesi-
mal rigidity is a natural approximation to rigidity.

A rigid framework {V,E,p} is called minimally rigid
(MR) if any removal of a single edge will destruct the
rigidity. Otherwise, {V,E,p} is called redundantly rigid.

Next, we introduce the sufficient condition on rigidity, the
rank criteria of the rigidity matrix, which guarantees the
infinitesimal rigidity of a framework in an m-dimensional
space [12]. We start with the rigidity matrix R. Assume
the coordinates p of the n vertices in an m-dimensional
Euclidean space Rm are:

p =
[

p1 p2 . . . pn

]T
=

[
p11 p12. . .p1m p21 p22. . . p2m pn1 pn2. . . pnm

]T
The rigidity matrix R is an |E| × nm matrix whose rows
and columns are indexed by the edges and the vertices
respectively, i.e., each row corresponds to an edge, and each
consecutive m-column block from leftmost corresponds to a
vertex. In rigidity matrix R, on the kth row corresponding
to the edge (i, j), it has vector coordinates (pi−pj)

T in the
columns from (i−1)m+1 to im, (pj−pi)

T in the columns
from (j − 1)m+ 1 to jm, and zero elsewhere. The kth row
of R is:

[0 · · · 0

vertex i︷ ︸︸ ︷
(pi − pj)

T 0 · · · 0

vertex j︷ ︸︸ ︷
(pj − pi)

T 0 · · · 0] (3)

We illustrate how to construct a rigid matrix R in follow-
ing example. Fig. 1 shows a framework F in a 3-dimensional
Euclidean space R3 that consists of 4 vertices V1, V2, V3, V4,

1Note that in the context of this paper, the directed edge origins from the
information receiver, pointing to the information sender (exactly opposite
the data flow).

Fig. 1. A framework in a 3-dimensional space

i.e., the number of dimension m is 3; the number of nodes
n is 4. Nodes’ coordinates are p1 = (−1, 2, 4)T , p2 =
(−3, 3, 0)T , p3 = (0, 1, 0)T , p4 = (2, 5, 0)T respectively,
and 6 edges are e1 = (V1, V2), e2 = (V1, V3), e3 =
(V1, V4), e4 = (V2, V3), e5 = (V2, V4), e6 = (V3, V4).

The rigidity matrix R is (6× 12) shown below:

V x
1 V y

1 V z
1 V x

2 V y
2 V z

2 V x
3 V y

3 V z
3 V x

4 V y
4 V z

4
2 −1 4 −2 1 −4 0 0 0 0 0 0
−1 1 4 0 0 0 1 −1 −4 0 0 0
−3 −3 4 0 0 0 0 0 0 3 3 −4
0 0 0 −3 2 0 3 −2 0 0 0 0
0 0 0 −5 −2 0 0 0 0 5 2 0
0 0 0 0 0 0 −2 −4 0 2 4 0

(4)

The six rows from top to down in (4) represent edges e1,
e2, e3, e4, e5, and e6 respectively. Next, we present Lemma
1 clarifying the connection between the rank of the rigidity
matrix and the infinitesimal rigidity.

Lemma 1: [13] (Rank of the rigidity matrix) A framework
on n vertices is infinitesimally rigid in an m-dimensional
space if and only if its rigidity matrix R satisfies rank(R) =

mn− m(m+1)
2 .

Lemma 1 implies that given a framework of n vertices,
there are at most mn − m(m+1)

2 independent edges in the
sense of rigidity. It can be used to determine the infinitesimal
rigidity of frameworks in m-dimensional spaces.

We define critical rank rankc as

rankc
def
= m · n− m · (m + 1)

2
(5)

A graph with n vertices is rigid in dimension m if it has
at least rigidity-independent rankc edges. We say a graph is
minimally rigid if it has exactly rankc edges.

From the rigidity matrix R of the framework F in Fig.
1, it is simple to compute that rank(R) = 6, which equals
rankc. Thus, the framework F in Fig. 1 is infinitesimally
rigid.

B. Persistence and Its sufficient conditions

Persistence is formulated to address the rigidity-like prob-
lem in directed graphs. We first present basic concepts
regarding persistence.

In Rm, a presentation of an undirected graph G(V,E) is a
function {p : V → Rm, p = {p1, p2 . . . , pn}}, where pi ∈ p
is the position of vertex i. A distance set d on G(V,E) is

1558

a set of distances dij > 0, for all edges (i, j) ∈ E. Given
the desired distance set d corresponding to the formation
constraints is properly defined, the position vector of the
vertex set in a framework is called fitting for the distance
set d. More formally, given a representation p, the position
of vertex i is fitting if there is no p∗ ∈ Rm for which the
following strict inclusion holds:

{
−−→
(i, j) ∈ E : ‖pi − pj‖ = dij}

⊂ {
−−→
(i, j) ∈ E : ‖p∗ − pj‖ = dij} (6)

A representation p is persistent if there exists ε > 0
such that every representation p′ fitting set induced by p and
satisfying d(p, p′) < ε is congruent to p for Rm. A graph is
then generically persistent if almost all its representations
are persistent. The constraint consistence of a graph is
the necessary and sufficient condition that a generically
rigid graph is generically persistent. A representation p is
constraint consistent if there exists ε > 0 such that any
representation p′ fitting for the distance set d̄ induced by
p and satisfying d(p, p′) < ε is a realization of d̄. For
vertex i, the position p′(i) is the fitting if and only if the
out-degree is min(m, dout

(i)). The constraint consistence
of a representation prevents any node overruled by a set of
redundant distance constraints.

Lemma 2: [11] A graph G(V,E) in Rm(m ∈ {2, 3, . . . })
is always generically constraint consistent, if all the vertices
have an out-degree smaller than or equal to m.
The above Lemma provides a out-degree upper bound criteria
for the generally constraint consistency, and the following
lemma from [11] connects the persistence, rigidity and
constraint consistency.

Lemma 3: [11] A representation in Rm(m ∈ {2, 3, . . . })
is persistent if and only if it is rigid and constraint consistent.
A graph in Rm is generically persistent if and only if it is
generically rigid and generically constraint consistent.

The constraint consistence of a graph is related to the
nodes’ out-degree as presented in Lemma 4.

Lemma 4: [11] An m-dimensional graph is persistent if
and only if all those subgraphs are rigid, and are obtained
by successively removing outgoing edges from vertices with
out-degree larger than m until all such vertices have an out-
degree equal to m.

We last define the minimal persistence, which is analogous
to minimal rigidity in undirected graphs. A framework in Rm

is said to be minimally persistent if (1) it is persistent and (2)
no single edge can be removed without losing persistence.

III. PROBLEM FORMULATION

Given a dynamic directed framework (V,E, p) consisting
n vertices in m-dimensional space, the coordinations p of the
vertices are fixed, the edge set E is time-varying. At time tk,
the corresponding edge set is Ek ⊆ V ×V . |Ek| denotes the
number of the edges in edge set Ek. We presume that each
vertex in the framework is capable of processing information
locally, localizing itself and receiving/transmitting data in a
limited range with neighbors.

We have the following assumptions on the system.
A1 A given framework (V,E, p) evolves in an m-

dimensional space Rm;
A2 The underlying directed graph is reachable, that is,

each state variable of the system is reachable by
a path connecting all vertices from at least one
vertex. We call the path connecting all vertices the
“reachable path” P ;

A3 The edge set in the framework is under control
sequence {C1 × C2 × · · · × Ck}, control Ck on
edge set is a graph operation.

Next, we define the basic graph operators on one single
directed edge eij . We adopt notation E ∪ eij as edge eij
addition onto edge set E, E ⇐= E\eij as edge eij removal
from edge set E, and � eij as the reverse operation on
eij , which results eji. Now we define the persistence control
problem as follows.

Problem 1: Given a dynamic framework (V,E, p) satis-
fying A1-A3, find a control sequence {C1 × C2 × · · · ×
Ck} under which the framework is (generically) minimally
persistent.

IV. MINIMAL PERSISTENCE CONTROL OVER DYNAMIC
FRAMEWORKS

In this section, we propose a distributed scheme to control
the persistence of a given directed framework. We assume
that each robot is equipped with sensors to accurately localize
itself and robots share information by point-point communi-
cations. Pairs of nodes communicate in a simple protocol
of send, request or wait. Our motivation is to control the
persistence of a framework by local communications and
computations.

The minimal persistence of a given framework is subject
to that (1) the framework is minimally rigid, and (2) the
representation is constraint consistent. Since we consider
frameworks in high dimensions, we adopt the “rank of
rigidity” criteria to determine the infinitesimal rigidity of a
given framework. The control on persistence is divided into
the following sequential procedures: (1)locally constructs
the rigidity matrix block based on a directed graph; (2)
locally estimate the rank of the rigidity matrix to ensure the
minimal rigidity of the framework; and (3) locally control
the constraint consistence of the framework. Note that we
design local algorithm with the directional communications.

A. Local construction of the rigidity matrix

Each robot i is equipped with sensors to acquire its
location coordinations pi(t) itself at time t, pi(t) is an
m-dimensional stack vector. By simply sending/receiving
protocols, each robot is capable of constructing its own
rigidity matrix block. If robot i sends its information to
j, robot j constructs the m entries, which is the position
difference vector [xj − xi yj − yi . . .] defined in (3), and
otherwise zeros.

To construct the rigidity matrix of a directed graph in a
decentralized fashion, it is subject to the directional pair-
wise communication between (i, j) and the data flows along

1559

the reachable path. For instance, if the communication link
between pair (i, j) is directional, and node i is an ancestor of
node j along the presumable reachable path, entries on the
(i, j) row in rigidity matrix block corresponding to robot i,
can be copied from the entries of jth rigidity matrix block,
once the data flow gets to j.

B. Minimal rigidity control algorithm

After the rigidity matrix is locally built, we propose
decentralized schemes to determine the infinitesimal rigidity
of the framework by the rank of the rigidity matrix as
described in Lemma 1. We present an agent-based distributed
algorithm to determine the rigidity of dynamic frameworks
based on multifrontal sparse QR factorization in Algorithm
1. The data flow passes on via point-point communications
until the framework has been determined to be infinitesimally
rigid or not. If the framework is rigid, Algorithm 1 returns
1.

The detail of the Algorithm 1 is outlined in the following.
Initially, each robot constructs its local rigidity matrix block
R

(i)
rgd by exchanging their position information with its

communicating neighbors. On Line 2, the QR factorization
function 2 is called, given parameters (i, R

(i)
rgd, T), where

R
(i)
rgd is the rigidity matrix block acquired by robot i, T is

an topological ordering of the data flow in order to factorize
the rigidity matrix. If the rank of the rigidity matrix is rankc,
the algorithm returns 1. Otherwise, it searches potential
neighbors by extending communication range. By testing the
triviality of each potential neighbor, a control sequence is
generated to guarantee the framework is rigid. By testing the
triviality of edge set E, a control decision is made to guar-
antee the rigidity-dependent edges are removed, therefore,
the framework is minimally rigid.Once a minimally rigid
framework is found, the algorithm returns with the control
sequence {C1 × C2 × · · · × Ck} .

To factorize a sparse matrix, we employ a multifrontal
sparse QR factorization method. The operations can be cat-
egorized into the symbolic phase, which determines the su-
pernodal elimination tree (the structure of the data flow) and
numeric phase (which carries out the numerical operations)
[14]. We mainly consider the numeric phase in Function
2, which describes the data processing procedure of the
multifrontal sparse QR factorization. Let R be a rectangular
sparse matrix to be QR factorized. A as a symmetric matrix
satisfying A = (PR)TPR, where P is a row ordering
matrix. Aj corresponds to the jth row in the ordering of
the supernode2 S of matrix A. Based on the matrix structure
of A, a topological ordering (a.k.a. supernodal elimination
tree T) is defined, which determines the data flow. Each
supernode S is associated with a frontal matrix FS and an
update matrix US .

In Function 2, the key operation in this algorithm is to
compute the frontal matrix, in other words, to iteratively
merge the update matrix from its children nodes into the

2In the context of this paper, each robot is a supernode, which occupies
equal-column block of rigidity matrix

Algorithm 1 The minimal rigidity control algorithm
Require:

A1 and a topological ordering of the elimination tree T
Goal: output the rigidity status and the control sequence
{C1 × C2 × · · · × Ck}.

For robot i, 1 ≤ i ≤ n

1: obtain rigidity matrix block R
(i)
rgd by local communica-

tions
2: call Function 2 (i, R

(i)
rgd, T) to obtain Fi

3: evaluate rank r̂(Rrgd) of matrix Rrgd by judging Fi.
4: if r̂(Rrgd) 6= rankc then
5: search potential neighbor set Υi

6: for all j ∈ Υ(i) do
7: update rigidity matrix R

(i)′

rgd with edge eij

8: call Function 2 (i, R
(i)′

rgd, T) to obtain Fi

9: evaluate rank r̂(R′rgd) of Rrgd by judging F ′i
10: if edge eij is trivial (e.g., r̂(Rrgd) == r̂(R′rgd))

then
11: discard the potential edge eij ;
12: elseif eij is nontrivial (e.g., r̂(Rrgd) > r̂(R′rgd))

then
13: update edge with {Cw : E ← E ∪ eij}
14: set r̂(Rrgd) as r̂(R′rgd)
15: end if
16: end for
17: elseif r̂(Rrgd) == rankc then
18: for all eij ∈ E do
19: if |E| == rankc then
20: break;
21: elseif edge eij is trivial to rigidity then
22: discard edge eij , update edge set with {Cm :

E ← E\eij}
23: else
24: preserve edge eij
25: end if
26: end for
27: return 1 with {C1 × C2 × · · · × Ck};
28: end if

frontal matrix FS . The frontal matrix FS is assembled and
updated at each supernodal terminal (in the context of this
paper, each robot is a supernodal terminal) until fully merged
i.e., all the update matrices from children nodes and the
matrix block it stands for. The “assembly” of an update
matrix in Line 3 can be done by a matrix extend-add
operation. The “ merge” and “transform” operations on Lines
4, 8 and Line 9 can be done by Givens rotations3. The update
matrix US can be calculated by a row/column elimination
operation on the frontal matrix FS in Line 11, then, it is
passed on to the next parent node in the topological order.

The correctness of Algorithm 1 is straightforward. The
infinitesimal rigidity of the framework is subject to the rank

3Givens rotatation is an operation on pair of rows to introduce single
zero. By systematically applying it to successive pairs of rows, it can be
used to annihilate elements in a matrix

1560

Function 2 The parallel multifrontal sparse QR factorization
Input:

(i) a supernode S
(ii) an equal-column partitioning block RS (corresponding
to supernode S) of the sparse rectangular matrix R
(iii) the supernodal elimination tree T , the data flows from
leaf nodes to the root

Output: frontal matrix FS

1: for each supernode S in a topological ordering T do
2: allocate space for US and FS

3: retrieve update matrices UD from its children nodes
4: for each D ∈ children(S) do
5: merge update matrix UD into FS and discard UD;
6: end for
7: compute the symmetric matrix AS on RS

8: for each column j that S covers, j ∈ S do
9: transform AS to an upper trapezoidal matrix Tj ;

10: merge Tj into FS

11: end for
12: compute the update matrix US on FS

13: send US to its parent
14: return FS

15: end for

of its rigidity matrix. The rank of the rigidity matrix is
determined by the multifrontal sparse QR factorization. For
each robot, its rigidity matrix block is built by pairwise
position exchange. The decentralized sparse QR algorithm
processes the data, and passes the update information along
until it reaches a concluding rigidity status y. Therefore,
Algorithm 1 is simply applied to determine the rigidity of a
given framework.

C. The constraint consistence control algorithm

Given a directed network topology, the persistence of a
framework is subject to the rigidity and the constraint con-
sistence. We propose Algorithm 3 to control the constraint
consistence of a given undirected framework. By orienting
the edge set, the out-degree of any robot is bounded by the
space dimension m from Lemma 4. Algorithm 3 describes
an efficient decentralized scheme balancing the out-degree
of each node in the network. The basic idea origins from
pebble game algorithm [15]. In order to guarantee that the
node’s out-degree is upper-bounded by the space dimension
m, each robot has a state variable called out-degree quota
q
(i)
out.

Algorithm 3 is run on each edge eij , where eij ∈ Ei, Ei

is the edge set consisting all the edges of which node i is
one end. Robot i locally orients its edge set Ei if the quota
criteria is met on Line 2. Once an outward edge is set, the
out-degree quota q

(i)
out is reduced by one. If the quota criteria

is not satisfied, it searches for potential out-degree quota
from adjacent neighbors in Line 6, i.e., depth-first search.
Once a out-degree quota is found at robot k, reverse the edges
from i to k, and adjust the out-degree quotas accordingly in

Algorithm 3 The constraint consistence control algorithm
Require:

(i) A1 and A3
(ii) a given undirected framework (V,E, p) is minimally
rigid.
(iii) the out-degree quota q

(i)
out is initialized as m.

Goal: find the control sequence {Q1×Q2×. . .Qk} orienting
the edge set E with constraint upper-bounds.

For a local robot i, 1 ≤ i ≤ n

1: for each edge eij in the edge set Ei do
2: if q(i)out + q

(j)
out ≥ (m + 1)m/2 + 1 then

3: orient eij as Qk : {i→ j}, and set q(i)out ← q
(i)
out−1;

4: else
5: mark i and j as visited for the searching by others
6: searching for quotas from other neighbors
7: if a quota is found at robot k then
8: reverse all the edges along directed path i to k

Qk : {� et,∀et ∈ îk}, and set q(i)out ← q
(i)
out + 1,

q
(k)
out ← q

(k)
out − 1;

9: end if
10: end if
11: return control sequence {Q1 ×Q2 × . . .Qk}
12: end for

Line 8. Obviously, the out-degree quota of robot i is reduced
by one once an outward edge is oriented, and the overall
out-degree quotas of the network is a constant over time.
The decentralized algorithm orients each edge only once, it
terminates once the overall out-degree quotas of the network
is (m+1)m/2.

The correctness of Algorithm 3 over minimally rigid
framework (V,E, p) is guaranteed as of a typical case of the
pebble game algorithm on a tight (m,m(m + 1)/2)-sparse
graph4. The initial graph is a tight (m,m(m + 1)/2)-sparse
graph since it is minimally rigid. From Theorem 8 in [15],
it is proven that given a tight sparse graph, the pebble game
algorithm will result in a well-constraint graph, that is, it
has no greater than (m+1)m/2 out-degrees and the outward
degrees of any node is “well-constraint” with the orientations
in the graph. To summarize, Algorithm 3 guarantees that the
framework is consistent constraint.

V. SIMULATION RESULTS

In this section, we show simulation results of the persis-
tence control schemes introduced in Sections IV. We use
robotic simulator Webots v6.1.5, a platform providing a
virtual environment and virtual commercially-available robot
types. We build a multi-robot system, each robot prototype is
the e-puck robot. We show the impact of persistence control
in a distance-based formation application. We apply distance-
based formation control on the dynamic of robotic system,
in which each robot updates its states upon its distance

4A graph G on n vertices is (k, l)-sparse if every subset of n′ < n
vertices spans at most kn′− l edges. G is tight if, in addition, it has exactly
(kn− l) edges [15].

1561

measurement between robots. Note that the distance-based
formation control [7] and [8] updates robotic dynamics upon
the relative distance between robots.

In Fig. 2, we show the kinetic and topology dynamics
of the multi-robot system. We label the robots from the
top left counterclockwise as 1 to 6. In Fig. 2(a), 6 robots
start to maneuver in the same direction (to the left) while
maintaining a triangular shape formation. In Fig. 2(b), robot
1 stops moving. As a consequence, the link between robots
1 and 6 drops, the persistence of the framework is violated
(since the framework is not rigid any more). By increasing
communication radius on robot 1, robot 1 reaches robot 6.
The request to add the link between robot 1 and 6 is approved
based on the persistence correction algorithm. In Fig. 2(c),
the orientations of the communication links are shown as the
pointing arrows. In Fig. 2(d), the link (2, 4) suddenly drops
(we set it as unrecoverable), and the framework persistence is
violated according to the rigidity checkup algorithm. In Fig.
2(e), as robot 2 keeps extending its communication range,
few more links (4, 6) and (2, 5) are rebuilt. The framework
is infinitesimally minimally rigid. In Fig. 2(f), under the
persistence correction control and formation control, the 6-
robot system reaches the original formation shape again.

VI. EXPERIMENTAL VALIDATION

In this section we demonstrate the experimental results
carried out on a 6-robot mobile e-puck platform, in order to
illustrate the impact of persistence control on distance-based
formation control. The e-puck robot is equipped with a dis-
tributed microprocessor, two differential-drive step motors,
and 8 IR sensors which serve dual functions: communication
and distance sensing. Communication modules include an IR
emitter and an IR receiver with adjustable communicating
range; and distance sensors measure the distance between
robots based on the IR sensor readings. In the distance-based
formation control introduced in [7] and [8], the distances be-
tween robots are requisite, and the communication is critical
in formation application. In order to eliminate the conflict on
distance sensor and communication module, we use remote
control functionality from Webots v6.1.5, which provides
a bluetooth remote control between robots and computer.
The Webots provides a supervisor node which can read
all the systematic information in the world (the simulation
environment in Webots) to measure the distance between
robots and a emitter/receiver node which models the radio,
serial or infra-red emitters/receivers to wirelessly exchange
data between robots in the simulator. It also provides a
Bluetooth remote control interface to synchronize the robotic
motion between the virtual robot models and real world E-
puck robots.

Under the remote control from the computer side, we
apply the persistence control and formation control laws on
the physical e-puck robotic system. We show the snapshots of
the robotic platform in Fig. 3. The underlying communication
links are the same as shown in Fig. 2 to facilitate compar-
isons. At t=0, the 6 e-puck robots maneuver in a triangle-
shape formation as in Fig. 3(a). Then, the top left robot is

stuck at its location. Therefore, the formation of the system
is interrupted shown in Fig. 3(b). The formation is backed
up in Fig. 3(c). The formation of the system is interrupted
with certain links dropping of as shown in Fig. 3(d), and Fig.
3(e). But the robot team finally recovers its triangular shape
formation in Fig. 3(f).

VII. CONCLUSION

In this paper, we study the framework persistence control
of multi-robot systems with a dynamic directed communi-
cation framework. We first introduce the rigidity and per-
sistence notions in the infinitesimal, generic, and minimal
senses, and the sufficient conditions on rigidity and persis-
tence. We then proposed a minimally persistent problem to
control the persistence of a given dynamic framework. Based
on the “rank of the rigidity matrix” criterion and pebble
game algorithm, we developed distributed control schemes
to solve the persistence control problem. The simulation and
experimental results show the feasibility and effectiveness of
the algorithms we developed.

REFERENCES

[1] A. Williams, G. Lafferriere, and J. Veerman, “Stable motions of
vehicle formations,” in Proceedings of the 44th IEEE conference on
decision and control, european control conference. (CDC-ECC’05),
Dec. 2005, pp. 72 –77.

[2] Z. Lin, M. Broucke, and B. Francis, “Local control strategies for
groups of mobile autonomous agents,” IEEE Transactions on Auto-
matic Control, vol. 49, pp. 622–629, 2004.

[3] Z. Lin, B. Francis, and M. Maggiore, “Necessary and sufficient graph-
ical conditions for formation control of unicycles,” IEEE Transactions
on Automatic Control, vol. 50, no. 1, pp. 121 –127, Jan 2005.

[4] J. Marshall, M. Broucke, and B. Francis, “Formations of vehicles
in cyclic pursuit,” IEEE Transactions on Automatic Control, vol. 49,
no. 11, pp. 1963 – 1974, Nov. 2004.

[5] R. Olfati-Saber and R. M. Murray, “Graph rigidity and distributed
formation stabilization of multi-vehicle systems,” in Proceedings of
the 41st IEEE conference on decision and control, vol. 3, Las Vegas,
NV, Dec. 2002, pp. 2965–2971.

[6] L. Krick, M. E. Broucke, and B. Francis, “Stabilization of infinites-
imally rigid formations of multi-robot networks,” in Proceedings of
the 47th IEEE conference on decision and control, Cancun, Mexico,
Dec. 2008, pp. 477 –482.

[7] D. Dimarogonas and K. Johansson, “On the stability of distance-based
formation control,” in Proceedings of the 47th IEEE conference on
decision and control, Cancun, Mexico, Dec. 2008, pp. 1200–1205.

[8] ——, “Further results on the stability of distance-based multi-robot
formations,” in Proceedings of the american control conference, St.
Louis, MO, June 2009, pp. 2972–2977.

[9] T. Eren and P. Belhumeur, “A framework for maintaining formations
based on rigidity,” in Proceedings of the IFAC world congress,
Barcelona, Spain, July 2002, pp. 2752–2757.

[10] J.M.Hendrickx, B. Fidan, C. Yu, B. Anderson, and V. Blondel,
“Formation reorganization by primitive operations on directed graphs,”
IEEE Transactions on Automatic Control, vol. 53, no. 4, pp. 968–979,
May 2008.

[11] C. Yu, J. M. Hendrickx, B. Fidan, B. Anderson, and V. D. Blondel,
“Three and higher dimensional autonomous formations: Rigidity,
persistence and structural persistence,” Automatica, vol. 43, no. 3, pp.
387–402, Mar. 2007.

[12] B. Hendrickson, “Conditions for unique graph realizations,” SIAM J.
Comput., vol. 21, no. 1, pp. 65–84, 1992.

[13] B. Servatius and H. Servatius, Rigidity theory and applications, ser.
Fundamental Materials Science series. Plenum Press, 1999.

[14] C. Sun, “Parallel sparse orthogonal factorization on distributed mem-
ory multiprocessors,” SIAM Journal on Scientific Computing, vol. 17,
no. 3, pp. 666–685, May 1996.

[15] A. Lee and I. Streinu, “Pebble game algorithms and sparse graphs,”
Discrete Mathematics, vol. 308, no. 8, pp. 1425 – 1437, 2008.

1562

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 2. Simulation results of a 6-robot system under formation control and
persistence control at time instances. (a) at t=0s, the robot system maneuvers
in a triangular shape; (b) at t=7s, one link is dropped; (c) at t=30s, robot
system backed up the original formation; (d) at t=36s, one link is dropped
between robots 2 and 4, rigidity/persistence is lost; (e) at t=54s, the topology
is rigid; (f) at t=67s. a persistent framework is shown.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3. Experimental results of a 6-robot system under formation control
and persistence control. (a) at t=0, the 6 E-puck robots maneuver in a
triangle-shape formation; (b) the triangular formation has altered; (c) the
triangle-shape formation is backed up; (d) the formation of the system at
certain link-drop(s); (e) the formation of the system at certain link-drop(s);
(f) the system again reaches the triangle-shape formation.

1563

