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Abstract— We consider the problem of source seeking using a
group of mobile robots equipped with sensors for concentration
measurement (instead of the gradient). In our formulation, each
robot maintains a gradient estimation, moves to the source by
tracing the gradient, and all together keep a predefined forma-
tion in movement. We present two control algorithms with all-
to-all and limited communications, respectively. The estimation
error is taken into account to derive robust control algorithms.
Comparing to existing methods, the proposed algorithm with
limited communications is fully distributed. Both theoretical
analysis and numerical simulations are given to validate the
effectiveness of our methods.

I. INTRODUCTION

We study the source seeking problem in this paper: a
source forms a scalar value field in space. We design
algorithms to drive a group of robots, which can only
sample local values, to the source. Potential applications
include source localization of oil spill [1], chemical plume
tracing [2], cooperative foraging [3], etc. For a robot with
the ability of measuring concentration gradients, a simple
moving strategy by following gradient-ascending direction
can complete the task. However, in practice, most robots are
only equipped with sensors for concentration measurement
instead of the gradient. Similar problems to source seeking
can be found in nature. For example, a male moth is able
to approach a female one from far away by tracing the
pheromone plume [2]. For a swarm of bacteria, without
the ability of concentration gradient measurements, they still
are able to find the source of beneficial chemicals [4]. The
phenomenons give insight into the problem and inspire many
studies in this field.

Many different methods are proposed to solve problem
including behavior-based source seeking [5]–[8] and control-
based source seeking [9], [10], [13], [15]. The behavior based
source seeking method often defines a set of elementary
behaviors and a set of behavior combination rules. Different
combinations of the elementary behaviors are activated in
schedule to steer a single robot or a group of robots. Authors
in [5], [6] design behavior-based source seeking algorithms
for a single robot. In [7], the method is extended to the
scenarios with a group of robots. However, the inherent
dynamics of the robot are often ignored for behavior-based
source seeking, and there is no guarantee to reach the source
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eventually. In contrast, the control-based source seeking
method directly takes the robot dynamics into account to
develop a control algorithm. In [13], extremum-seeking con-
trol theories are used to design a source seeking control. [9]
gives a control law by combining a potential field control law
and a gradient control law. In [15], two strategies for source
seeking are considered. The first strategy uses a single robot
with the historical data for estimating the gradient along the
trajectory while the other one use a group of robots with
projected gradient estimation. Ogren et al. in [10] solve the
problem by decoupling it into formation maintenance and
leader following. Among existing literatures using control-
based method, most of them ignore the gradient estimation
error to ease the treatment, and the control algorithm often re-
quires shared information with all robots in the group. These
limitations inspire our study to design control algorithms that
are robust to the gradient estimation error and also relax the
communication requirements.

In this paper, we use distributed robots for source seeking.
The problem is modelled as a cooperative optimal estimation
and control problem and we first derive an algorithm with
all-to-all communications. Theoretical analysis are given to
prove this algorithm enables the group of robots to approach
the source. Then, based on the results, a modified algorithm,
which is fully distributed with limited communications, is
presented to solve the same problem.

The contribution of this paper is twofold. First, we use
the gradient estimation to guide the movement, and we
provide a theoretical upper bound on the tracking error.
Second, among existing methods using a group of robots,
such as [9], [10], [15], each robot needs global information
from all the others. In contrast, the algorithm with limited
communications presented in this paper is a fully distributed
and scalable one, i.e., each robot only needs to communicate
with one-hop neighbors and no across-hop message passing
is required.

The rest of the paper is organized as follows. Section II
gives assumptions and formulations. In Section III, the pa-
rameter estimation is given by using a least-square estimator.
Section IV presents the first control algorithm with all-to-
all communications. The second algorithm requiring only
limited communications is proposed in Section V. In Section
VI, simulations are performed to show the effectiveness.

Notations and symbols: λmax(A) and λmin(A) represent
the greatest and the smallest eigenvalues of a square matrix
A. We use p(x) to denote the concentration at x and H(x)
to denote the Hessian matrix of p(x). argmax(p(x)) denotes
the optimal point where p(x) reaches the maximum.
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II. PROBLEM FORMULATION

Same as in [10], [13], [15], we assume that the robot’s
motion is described by a double integrator:

ẋi = vi

v̇i = ui for i = 1, 2, ..., n (1)

where xi ∈ Rk, vi ∈ Rk and ui ∈ Rk are the position, the
velocity and the control input (acceleration) of the ith robot
in a k dimensional workspace.

We make the following assumptions on the environments:
Assumption 1: The scalar valued distribution p(x) : Rk →

R is a concave function with respect to x and reaches its
maximum at x = xs.

Assumption 2: The Hessian matrix of p(x) satisfies:−ξ2 ≤
λmin(H) and λmax(H) ≤ −ξ1 for all x in the domain with
ξ2 > ξ1 > 0.

Remark 1: For the field p(x) formed by a single source,
such as a temperature field and an electric field, it has
the maximum value at the source position xs and reduces
with the increase of distance from it. Assumption 1 is a
simplification to this observation. It is also a commonly
made assumption in optimization (equivalently, −p(x) is
convex). In geometry, the greatest and the least eigenvalues
of H(x) measure the greatest and the least curvatures of
p(x), respectively [11]. In practice, the absolute values of
both the greatest and the least curvature are bounded, by
which we conclude that H(x) is both upper and lower
bounded in the eigenvalue sense. Assumption 2 states this
fact.

We define the cooperative source seeking problem as
below:

Problem 1: Under Assumptions 1 and 2, in a k dimen-
sional workspace with a scalar valued distribution p(x),
design an algorithm to drive the center of a group of robots
to the source xs = argmax(p(x)) and simultaneously drive
all robots to a desired formation. The available information
for the control algorithm of the ith robot is the sampled value
p(xi(t)) at time t.

III. COOPERATIVE ESTIMATION OF GRADIENTS

Since the robots are equipped with sensors for concentra-
tion measurement (instead of gradient), each robot needs to
make estimation of gradient and then follows the gradient
direction to the source. In this section, we use a least square
(LS) estimator for gradient estimation.

Generally, the measurement of p(x) are different for robots
located at different positions. Our goal is to estimate the
gradient at xc(t), which is the center of the formation,
i.e., xc(t) = 1

n

∑n
i=1 xi(t), based on the sampling of p(x)

acquired by each robot. We use the following linear param-
eterization model to adaptively approximate the distribution
of p(x):

ŷ(t) =
[

X(t) 1
]
θ(t) (2)

with

ŷ(t) =


p̂(x1(t))
p̂(x2(t))

...
p̂(xn(t))

 , X(t) =


xT

1 (t)
xT

2 (t)
...

xT
n (t)

 (3)

where x1(t), x2(t), ..., xn(t) are all k×1 vectors with k de-
noting the space dimension, θ(t) is the estimation parameter,
which is a (k + 1)× 1 vector, p̂i(x(t)) is the estimation of
p(x(t)) by the ith robot at time t, and 1 is a n×1 vector with
all entries equal to 1. The estimation error is defined to be
the difference between the estimation ŷ(t) and the measure-
ment y(t) =

[
p(x1(t)), p(x2(t)), ..., p(xn(t))

]T =[
p1(t), p2(t), ..., pn(t)

]T
. The LS estimator mini-

mizes the norm of the estimation error, i.e. to make ŷ(t) ≈
y(t). Solving ŷ(t) ≈ y(t) yields:

θ(t) =
[

X(t) 1
]+

y(t)

=
[

XT (t)X(t) XT (t)1
1T X(t) n

]−1 [
XT (t)
1T

]
y(t)(4)

where
[

X(t) 1
]+

is the pseudoinverse of
[

X(t) 1
]
.

Therefore, we get the following parameter estimation:

θ(t) =
[

XT (t)X(t) XT (t)1
1T X(t) n

]−1 [
XT (t)
1T

]
y(t)

ĝc(t) =
[

I 0
]
θ(t) (5)

where ĝc(t) is the gradient estimation at the formation center
xc(t) at time t, I is a k × k identity matrix 1 is a k-row
vector with all entries equal to 1 and 0 is a k-row vector
with all entries equal to 0. This equation gives us an optimal
estimation of ĝc(t) in the sense of least squares.

IV. SOURCE SEEKING WITH ALL-TO-ALL
COMMUNICATIONS

In this section, we present the algorithm for source seeking
with all-to-all communications based on the gradient estima-
tion (5).

To solve the cooperative source seeking problem, we need
to design two behaviors for the robot: one is the gradient
climbing behavior, which drives the robot to the source and
the other one is the formation achieving behavior, which
guides robots to the desired formation. However, the goal is
not realizable with only the two behaviors. In addition, we
introduce a velocity damping behavior to avoid oscillation
or overshooting around the source and an estimation error
compensation behavior to reduce the effect of the gradient
estimation error. Therefore, we present the following control
input to the ith robot,

ui = −
∑

j∈N(i)

ω1ij(xi − xj − xdi + xdj) + c0ĝc

−
∑

j∈N(i)

ω2ij(vi − vj)−
c1

n

n∑
i=1

vi − c2sgn(
n∑

i=1

vi) (6)

where N(i) denotes the neighbor set of the ith robot, n
denotes the number of robots in the group, ω1ij = ω1ji
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and ω2ij = ω2ji, which are positive constants, c0, c1 and
c2 are also positive constants, sgn(·) is the sign function,
which equals to 1, −1 and 0 for a positive input, negative
input, and the input of 0, respectively, xi and vi are the ith
robot’s position and velocity, respectively, xdi is the desired
relative position of the ith robot in the desired formation, ĝc

is the gradient estimation given by (5). In (6), the first two
terms drive the robot to the desired formation, the third term
generates the gradient climbing movement, the fourth term
is a velocity damping term, which dissipates the kinematic
energy of the robot, and the last term is an extra damping
term to compensate the inaccuracy of gradient estimation.
Combining the control input of all robots in the group, the
control algorithm can be written into a compact form:

u = −(L1 ⊗ I)(x− xd)− (L2 ⊗ I)v + c01⊗ ĝc

−c1

n
1⊗

(
(1T ⊗ I)v

)
− c2

n
1⊗ sgn

(
(1T ⊗ I)v

)
(7)

where u = [uT
1 ,uT

2 , ...,uT
n ]T is the control input, x =

[xT
1 ,xT

2 , ...,xT
n ]T is the position vector of all robots, v =

[vT
1 ,vT

2 , ...,vT
n ]T is the velocity vector of all robots, both L1

and L2 are symmetric Laplacian matrices on the undirected
graph constructed by the group of robots, the i-jth entry of
L1 is −ω1ij for i 6= j and

∑n
l=1 ω1il for i = j, the i-jth

entry of L2 is −ω2ij for i 6= j and
∑n

l=1 ω2il for i = j, I is
an k × k identity matrix with k denoting the dimension of
the space, n is the number of robots, xd is a constant vector
with n× k rows, which represents the desired formation, 1
is a n × 1 vector with all entries equal to 1, and ⊗ is the
Kronecker product.

The procedures of the proposed control algorithm with all-
to-all communications is stated in Algorithm 1 for clarity.

Algorithm 1 Source seeking control for the ith robot with
all-to-all communication
Require:

Concentration measurement p, position x and velocity v
of all robots are available to the ith robot.

Ensure:
To achieve the desired formation and drive the formation
center to the source.

1: repeat
2: pi,xi,vi ⇐ Sensor readings.
3: p1, p2, ..., pi−1, pi+1, ..., pn;x1,x2, ...,xi−1,xi+1, ...,xn

v1,v2, ...,vi−1,vi+1, ...,vn

⇐ Communication with all the other robots.
4: Position matrix X⇐ Equation (3).
5: Gradient estimation ĝc(t) ⇐ Equation (5).
6: Control input ui ⇐ Equation (6).
7: until (‖ĝc(t)‖ < ε)

In Algorithm 1, the ith robot first collects its measurement
of concentration pi, position xi and velocity vi (Line 2), and
collects concentration, position and velocity of all the other
robots by communication (Line 3). After this, the position
matrix X is constructed according to equation (3) (Line 4).
Then, gradient estimation of ĝc(t) is made according to

equation (5) (Line 5). Subsequently, equation (6) is used to
calculate the control input ui. Line 2, 3, 4, 5, 6 are repeated
in sequence until the norm of the estimated gradient ĝc(t) is
less than a predefined positive constant ε, i.e., ‖ĝc(t)‖ < ε.

To validate the effectiveness of Algorithm 1 in theory, we
make the following assumption.

Assumption 3: The gradient estimation ĝc(t) obtained by
(5) has a bounded error, i.e., ‖ĝc(t) − gc(t)‖ ≤ e0 (e0 is a
positive constant), in which gc(t) denotes the true value of
the gradient at the formation center.

We have the following theorem to state the convergence
of the designed control algorithm.

Theorem 1: Under Assumptions 1, 2, 3, Algorithm 1 with
the control law (6), where the parameter c2 > c0

√
ke0 (k

denotes the dimension of space), solves Problem 1. The
formation center xc(t) = 1

n

∑n
i=1 xi(t) converges to x∗,

which satisfies ĝc(x∗) = 0. Moreover, x∗ has a bounded
distance from the source xs:

‖x∗ − xs‖ ≤
2e0

ξ1
(8)

where ξ1 and e0 are defined in Assumption 2 and Assumption
3, respectively.

Proof: See Appendix I.

V. DISTRIBUTED SOURCE SEEKING WITH LIMITED
COMMUNICATIONS

In Section IV, we developed a control algorithm for coop-
erative source seeking. It requires all-to-all communications.
Aiming at reducing communication burdens, in this section
we develop a fully distributed control algorithm, which only
requires neighbor-to-neighbor communications. That is, we
impose the following assumption in this section:

Assumption 4: The communication topology is a con-
nected undirected graph. For the ith robot, only information
from its one-hop neighbors and that from itself are available
to the control design of ui.

From (6), it is clear that all necessary information for the
ith robot can be derived from its one-hop neighbors except
ĝc and 1

n (1T⊗I)v. We use consensus filters to estimate them
in a distributed manner [12], [14]. With consensus filters, a
robot is able to estimate the average of inputs, i.e. 1

n

∑n
j τj ,

by running the following protocol on every robot

żi =
∑

j∈N(i)

aij(zj − zi) + γ(τi − zi) (9)

where zi is a scalar state maintained by the ith robot, N(i)
denotes the neighbor set of the ith robot, aij is a positive
constant, which satisfies aij = aji. γ is a positive constant
and ui is the scalar input to the ith robot. By running (9)
on every robot, zi is able to track the average of inputs,
i.e. 1

n

∑n
j τj . To estimate ĝc in distributed manners, we

first re-write the expression of θ(t) in (5) into average
forms (without confusions, the time t aside the time varying
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variables are omitted.)

θ =
[

1
nXT X 1

nXT 1
1
n1T X 1

]−1 [
1
nXT y
1
n1T y

]
=

[ 1
n

∑n
i=1 xixi

T 1
n

∑n
i=1 xi

1
n

∑n
i=1 xi

T 1

]−1 [
1
n

∑n
i=1 xipi

1
n

∑n
i=1 pi

]
(10)

We can online estimate 1
n

∑n
i=1 xixi

T , 1
n

∑n
i=1 xi,

1
n

∑n
i=1 xipi, and 1

n

∑n
i=1 pi distributively by running four

separate consensus filters on every robot. We have the
following filter expressions for Z1i, z2i, z3i, z4i, θei, and
ĝcei, which are estimations of 1

n

∑n
i=1 xixi

T , 1
n

∑n
i=1 xi,

1
n

∑n
i=1 xipi, 1

n

∑n
i=1 pi, θ, and ĝc by the ith robot (note

that Z1i is a k × k matrix, z2i and z3i are both k × 1
vectors, and z4i is a scalar.):

Ż1i =
∑

j∈N(i)aij(Z1j − Z1i) + γ(xixT
i − Z1i)

ż2i =
∑

j∈N(i)aij(z2j − z2i) + γ(xi − z2i)

ż3i =
∑

j∈N(i)aij(z3j − z3i) + γ(xipi − z3i)

ż4i =
∑

j∈N(i)aij(z4j − z4i) + γ(pi − z4i)

θei =
[

Z1i z2i

zT
2i 1

]−1 [
z3i

z4i

]
ĝcei =

[
I 0

]
θei (11)

To estimate 1
n (1T ⊗ I)v, we first express it into the form

that 1
n (1T ⊗ I)v = 1

n

∑n
i=1 vi. Denoting z5i the estimation

of 1
n (1T ⊗ I)v by the ith robot, we have

ż5i =
∑

j∈N(i)

aij(z5j − z5i) + γ(vi − z5i) (12)

Replacing ĝc and 1
n (1T ⊗ I)v in (6) with ĝcei in (11) and

z5i in (12), the distributed control algorithm for the ith robot
writes:

ui = −
∑

j∈N(i)

ω1ij(xi − xj − xvi + xvj) + c0ĝcei

−
∑

j∈N(i)

ω2ij(vi − vj)− c1z5i − c2sgn(z5i)(13)

The procedures of the proposed control algorithm with
limited communications is stated in Algorithm 2.

The difference of Algorithm 1 and Algorithm 2 lies in that
consensus filters are used to estimate ĝcei in a distritbuted
way in Algorithm 2 (Line 5, 6 and 7).

VI. SIMULATIONS

In this section, we compare our algorithms with the
methods proposed in [15] and the method proposed in [13].
There are two methods proposed in [15]: one uses a single
robot to perform the task and the other one uses a group of
robots. We call the two strategies PGS and PGM for short,
respectively and we call the strategy proposed in [13] ES
method for short.

Simulations are performed under a representative set of
parameters. For the ES method, parameters are chosen to

Algorithm 2 Distributed source seeking control for the ith
robot with limited communications
Require:

Concentration measurement p, position x and velocity v
of itself and its neighbors are available to the ith robot.

Ensure:
To achieve the desired formation and drive the formation
center to the source.

1: Initializing state variables Z1i, z2i, z3i, z4i, z5i.
2: repeat
3: xi,vi,pi ⇐ Sensor readings.
4: xj , vj

⇐ Communication with neighbor j ∈ N(i).
5: Collect jth robot’s consensus filter output Z1j , z2j ,

z3j , z4j , z5j .
6: State update of consensus filter Z1i, z2i, z3i, z4i, z5i

⇐ Equation (11) and Equation (12).
7: Distributed gradient estimation θei, ĝcei

⇐ Equation (11).
8: Distributed control input ui ⇐ Equation (13).
9: until (‖ĝcei(t)‖ < ε)

be the same as in [13]. For the PGS and PGM method,
parameter setup cannot be found in the associated paper [15].
We choose kd = 5, ks = 1, d0 = 1, κ = 1 (see that paper for
definitions of each parameter) and the potential function is
chosen to be the one suggested in the paper. For our methods,
Algorithm 1 and Algorithm 2, we choose c0 = 20, c1 = 7,
c2 = 7, γ = 1, L1 = 6L0, L2 = L0, L3 = 30L0 with

L0 =


2 0 −1 −1 0
0 2 −1 0 −1
−1 −1 3 −1 0
−1 0 −1 2 0
0 −1 0 0 1


For the proposed methods and the PGM method, 5 robots are
employed. Robots start from different positions. For PGS and
ES method, which use a single robot, the initial position is
set to be the center of robots in the multiple robot case. For
simplicity, we choose p(x) = 100− ‖x‖ [13], [15].

We first compare the trajectories of the formation center
(for methods using a single robot, we use its trajectory for
evaluation). From Fig. 1 (a), we can see that Algorithm 1,
Algorithm 2, PGM method and EM method, are able to steer
the formation center to the vicinity of the source. Among
them, ES method uses a single robot, which uses fewer robots
in number than Algorithm 1, Algorithm 2 and the PGM
method. However, the robot takes a spiral like trajectory to
the source and the travelled distance is much longer than
other methods. Algorithm 1 outperforms Algorithm 2, PGM
method and EM method according to the traveled distance.
Compared to Algorithm 1, the trajectory by using Algorithm
2 is a little longer, resulting from the dynamic interaction of
the consensus filter and the robot dynamics in Algorithm 2.
However, different from all the other methods simulated here,
as stated before, Algorithm 2 is a fully distributed algorithm,
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Fig. 1. Simulation comparisons between PGS method [15], ES method
[13], PGM method [15], Algorithm 1, and Algorithm 2. (a): Trajectory of
formation centers (for single robot case, it is the robot’s own trajectory).
The yellow diamond represents the start position. The red square is the
end position of the robot by ES method, the proposed Algorithm 1 and the
proposed Algorithm 2. It is also the source position. The black dot and the
pink triangle are the end position of the robot by PGM method and that of
the robot by PGS method. (b): Trajectories of each robot for methods using
multiple robots. The black dots, the blue triangles and the red squares are
the end positions of robots by PGM method, Algorithm 1 and Algorithm
2, respectively. The green dots represents the start positions. The contour
of the field p(x) is plotted in the figure.
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Fig. 2. Robot velocity profiles of Algorithm 1.

which only requires information exchanges between one-hop
neighbors. Nevertheless, Algorithm 2 still outperforms PGS,
PGM and ES methods in the sense that Algorithm 2 has a
shorter trajectory than them.

We then compare Algorithm 1, Algorithm 2 and the PGM
method, which use a group of robots, to see whether the
desired formation are reached. From Fig. 1(b), we can see
that PGM method does not reach a uniform distribution on
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0 5 10 15 20 25 30
−2

−1

0

1

2

3

t (sec)

v y
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Fig. 3. Robot velocity profiles of Algorithm 2.

a circle, while both Algorithm 1 and Algorithm 2 reach
the desired formation. The robot velocity profiles of our
proposed methods are shown in Fig. 2 and Fig. 3. As
observed, the velocity of robots converges to a common
value, which eventually reaches zero. This indicates that
robots reach a common velocity in order to reach a fixed
formation, while this common velocity converges to zero
when the source is reached.

VII. CONCLUSIONS

The problem of source seeking is studied. Two control al-
gorithms are given to solve the problem. Theoretical analysis
proves that the proposed algorithm guarantees convergence
to the source with all robots reaching the desired formation.
Simulation results validate the theoretical results.

APPENDIX I
PROOF OF THEOREM 1

There are 3 steps for the proof: Step 1-derivation of the
formation center’s dynamics; Step 2-stability analysis; Step
3-derivation of the source seeking error.

Step 1: derivation of the formation center’s dynamics.
Substituting the control input (7) into the robot dynamics

(1) yields

v̇ = −(L1 ⊗ I)(x− xd)− (L2 ⊗ I)v + c01⊗ ĝc

− c1
n 1⊗

(
(1T ⊗ I)v

)
− c21⊗ sgn

(
(1T ⊗ I)v

)
(14)

As to the formation center xc, we have

xc =
1
n

n∑
i=1

xi =
1
n

(1T ⊗ I)x (15)

Recalling the property of Laplacian matrices that L11 = 0,
the fact that L1 and L2 are symmetric, and the mixed-product
property of Kronecker products, we have (1T ⊗I)(L1⊗I) =
0, (1T ⊗ I)(L2 ⊗ I) = 0, (1T ⊗ I)(1 ⊗ ĝc) = nĝc,
(1T⊗I)

(
1⊗

(
(1T⊗I)ẋ

))
= n2ẋc, (1T⊗I)

(
1⊗sgn

(
(1T⊗

I)ẋ
))

= nsgn(ẋc). Based on these results, left multiplicating
the matrix 1

n (1T ⊗ I) on both sides of (14) yields the
following dynamics of xc:

ẍc = c0ĝc − c1ẋc − c2sgn(ẋc) (16)
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Defining vc = ẋc, we have

v̇c = c0ĝc − c1vc − c2sgn(vc) (17)

Step 2: stability analysis using the Lyapunov stability theory.
We choose the following Lyapunov function
V = (x − xd − 1 ⊗ xc)T (L1 ⊗ I)(x − xd − 1 ⊗ xc) +

p(xs)− p(xc) + 1
2c0

vT
c vc + (v − 1⊗ vc)T (v − 1⊗ vc)

Note that, in the expression of V , L1 ⊗ I is symmetric
since (L1 ⊗ I)T = LT

1 ⊗ IT = L1 ⊗ I, and (x − xd − 1 ⊗
xd)T (L1⊗I)(x−xd−1⊗xc) is semi-positive definite since
the Laplacian matrix L1 is semi-positive definite [12] and the
eigenvalues of A⊗B is λiµj for all i and j with λi denoting
the ith eigenvalue of the square matrix A while µj denoting
the jth eigenvalue of the square matrix B. In addition,
p(xs) − p(xc) ≥ 0 due to Assumption 1. Therefore, V is
indeed semi-positive definite. Calculating the time derivative
of V along the trajectory of (14) and (17) yields

V̇ = 2(x− xd)T (L1 ⊗ I)v − gT
c vc +

1
c0

v̇T
c vc

+2(v̇ − 1⊗ v̇c)T (v − 1⊗ vc) (18)

From (14) and (17), we get

v̇ − 1⊗ v̇c = −(L1 ⊗ I)(x− xd)− (L2 ⊗ I)v
− c1

n 1⊗
(
(1T ⊗ I)v

)
− c2

n 1⊗ sgn
(
(1T ⊗ I)v

)
+c11⊗ vc + c21⊗ sgn(vc) (19)

Along with (15), we have

v̇ − 1⊗ v̇c = −(L1 ⊗ I)(x− xd)− (L2 ⊗ I)v (20)

Substituting (16) and (20) into (18) yields V̇ = −2vT (L2⊗
I)v+(ĝc−gc)T vc− c1

c0
vT

c vc− c2
c0
‖vc‖1, where ‖·‖1 denotes

the 1-norm of a vector. Using properties of vector norms, we
further get

V̇ ≤ −2vT (L2 ⊗ I)v + ‖ĝc − gc‖1‖vc‖1 − c1
c0

vT
c vc − c2

c0
‖vc‖1

≤ −2vT (L2 ⊗ I)v − c1

c0
vT

c vc − (
c2

c0
−
√

ke0)‖vc‖1 (21)

Note that ‖·‖ denotes the Euclidean norm in (21). In the derivation
of (21), the norm inequalities (ĝc − gc)

T vc ≤ ‖ĝc − gc‖1‖vc‖1
and ‖vc‖1 ≤

√
k‖vc‖ are employed. The right side of (21) is semi-

negative definite by noting that L2⊗ I is semi-positive definite and
c2 > c0

√
ke0. Together with the fact that the right side of (21) is a

function of state variables and the invariance-like theorem (Theorem
8.4 in [16]), we draw the conclusion that the right side of (21) goes
to zeros as time elapses. Therefore,

lim
t→∞

v = 1⊗ α1 and lim
t→∞

vc = 0 (22)

where α1 is a vector with k rows. With (16)and (20), we further
conclude the following holds as time goes to infinity,

ĝc → 0 (23)
−(L1 ⊗ I)(x− xd) → 1⊗ α̇1 (24)

For any k× 1 vector α2, we have α̇T
1 α2 = 0 by left multiplication

of 1T ⊗ αT
2 on both sides of (24). Due to the arbitrarity of the

choice of α2, we get α̇1 = 0. In other words, we conclude that α1

is a constant vector. With (24), we get x− xd → 1⊗ α3 as t →
∞, where α3 is a vector with k rows. This equation means that,
when time elapses, the position x is a translation from xd given
by the desired formation. Since transformation does not change

relative positions, we obtain the conclusion that x converges to the
formation given by xd. Moreover, we get xc → x∗ by employing
ĝc(x

∗) = 0 and (23).
Step 3: derivation of the source seeking error.
The Taylor expansion of p(x) at x∗ yields p(x) = p(x∗) +

∇T p(x∗)(x − x∗) + 1
2
(x − x∗)T H(x1)(x − x∗), where x1 is

between x and x∗. For x = xs, this equation yields p(xs) =
p(x∗)+∇T p(x∗)(xs−x∗)+ 1

2
(xs−x∗)T H(x1)(xs−x∗). Thus,

we get

p(xs)− p(x∗) ≤ ‖∇p(x∗)‖‖xs − x∗‖ − ξ1

2
‖xs − x∗‖2

= ‖∇p(x∗)− ĝc(x
∗)‖‖xs − x∗‖

−ξ1

2
‖xs − x∗‖2

≤ e0‖xs − x∗‖ − ξ1

2
‖xs − x∗‖2 (25)

Note that Assumption 3 is employed in the above derivation of (25).
Also note that the left side of (25) is not larger than 0 according
to Assumption 1, so we have 0 ≤ e0‖xs − x∗‖ − ξ1

2
‖xs − x∗‖2

Therefore, ‖x∗ − xs‖ ≤ 2e0
ξ1

. This concludes the proof.
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