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Abstract— We study distributed estimation and tracking for
radio environment mapping (REM). Comparing to existing
REM using centralized methods, we provide a distributed
solution eliminating the central station for map construction.
Based on the random field model of the REM with shadow
fading effects, we adopt consensus-based Kalman filter to
estimate and track the temporal dynamic REM variation. The
unknown parameters of REM temporal dynamics are estimated
by a distributed Expectation Maximization algorithm that is
incorporated with Kalman filtering. Our approach features
distributed Kalman filtering with unknown system dynamics,
and achieves dynamic REM recovery without localizing the
transmitter. Simulation results show satisfactory performances
of the proposed method where spatial correlated shadowing
effects are successfully recovered.

I. INTRODUCTION
Decentralized environmental modeling [1] and exploration

[2] are active research topics inspired by the fast-developing
consensus algorithms [3] or distributed filters [4]. With
the aid of consensus-based information fusion, distributed
sensors cooperatively detect and estimate the environmental
parameters without a centralized processor. In this paper,
we study consensus-based estimation and tracking of Radio
Environment Mapping (REM), which is a typical application
of decentralized environmental modeling in the context of
cognitive radio networks.

Radio environment mapping [5] mainly refers to an in-
tegrated database that provides multi-domain environmental
information and prior knowledge for cognitive radios, such
as the geographical features, available services and networks,
locations and activities of neighboring radios. Among those,
one of the fundamental problems is the estimation and
dynamic tracking of the radio signal propagation map, such
as power spectral density map estimation [6] [7], or as
an alternative, the channel gain estimation [8] and tracking
[9]. The radio environment mapping studied in this paper
aims at using distributed sensors to recover dynamic radio
signal spatial propagation and spectral energy distribution in
a given frequency range. Recovered signal propagation maps
facilitate dynamic spectrum sharing, and help communicate
the radio spectrum knowledge among common users of
cognitive radio networks.

The REM estimation and tracking is challenging, as lo-
calizing transmitters may not be allowed by legislations.
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Without prior-known behaviors of the transmitters, the REM
can be modeled as an uncertain dynamical system, such as
spatial-temporal Gaussian random fields [10]. Existing REM
results adopting this model include the radio tomographic
imaging [11] [12] based on the medium scale correlated
shadow fading characterization, passive localization [13] and
intruder detection [14] by analyzing the interaction between
the signal propagation and the environmental geometry.
However, most of the work on REM uses centralized meth-
ods, where a central data collection and processing machine
is available to generate the global radio map. Those methods
suffer the dependency of reporting channels, bandwidth con-
straints, and scalability issues [15]. There has been limited
work on distributed solutions to the REM problem without
a central station.

From the decentralized control and sensing perspective,
distributed Kalman filters play an important role in sensor
networks to estimate and recover uncertain dynamic fields,
such as temperature over an area in the ocean [1]. By local
neighboring communications, distributed sensors compute
centralized global information in each Kalman filter iteration
using consensus algorithm or distributed filter without a cen-
tralized fusion center. Based on this scheme, consensus-based
distributed Kalman filters are developed for decentralized
environment modeling in various applications. Lynch et al.
developed the PI-consensus filter [16], which adopts Kalman
filter to model environments using mobile sensor networks
[1]. To improve estimation accuracy in the environment rep-
resented by random fields, Cortes [17] developed distributed
Kriged Kalman filter using PI-consensus filter for spatial
estimation. To reduce the computational cost introduced
by the PI-consensus filter, Saber proposed a sub-optimal
Kalman filter tracking algorithm [18] to facilitate algorith-
m implementation. However, existing work on distributed
Kalman filter assumes system parameters are either known
or have been prior-estimated, which may not be feasible as
prior knowledge is sometimes hard to estimate in practical
systems, such as the REM problem discussed in this paper.

For unknown system estimation, two main techniques
commonly used in the literature, the maximum likelihood
estimation [19] and the Expectation Maximization (EM)
[20], are both centralized methods. Inspired by the fact
that there are no distributed solutions for environmental
estimation and modeling with unknown system models, we
study distributed consensus-based estimation and tracking
of an uncertain field, and apply the method to solve the
dynamic REM problem in the presence of uncertain system
parameters.

In this paper, we consider distributed consensus-based
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Kalman filtering to estimate and track dynamic REM with
correlated shadowing. We adopt random fields to model the
REM as an uncertain dynamical system, of which, the spatial
and temporal dynamics can be decoupled using function ex-
pansion. We develop consensus-based Kalman filtering with
distributed EM algorithm to estimate the temporal dynamics
as well as the system parameters that are used to recover
and track the REM. Simulation results show the effectiveness
of recovering the shadowing phenomenon and the dynamic
tracking capability of REM. Our main contribution includes
a distributed solution to the REM problem, and distributed
Kalman filtering with unknown system parameters.

II. PROBLEM FORMULATION

A. System Configuration and Distributed Sensor Placement

Fig. 1. The REM system setup. The blue dots denote the RF sensors.
The black rectangle represents the stationary obstacle. The solid triangle is
the RF transmitter. The red circle represents the RF sensor communication
range with the radius Rc. The color bar indicates the radio signal strength
measurement value.

As shown in Fig. 1, we consider a dynamic radio transmit-
ter moving in a bounded area with the size of xw in length
and yw in width where obstacles exist. To explore the radio
signal distribution in this area, RF sensors are deployed for
radio signal strength detection, and they can communicate
with their neighboring sensors within their communication
range Rc, using the communication topology indicated in
Fig. 2. In this paper, we assume:

1) The radio signal: The radio transmitter moves in a
bounded area, and the radio signal propagation model
is represented in (30).

2) The environment: There are stationary obstacles with
unknown positions.

3) RF sensors and placement: The sensors are uniformly
deployed and they can communicate with their neigh-
boring sensors within their communication range Rc.
We assume each RF sensor can only detect its current
position, signal strength measurement value, and the
corresponding covariance of the measurement noise.
They can also receive information from their one-hop
neighboring sensors using the communication topology
defined in Fig. 2. In addition to the sensing capability,

we assume the sensors have onboard computational
power and can process measured data real time.

Fig. 2. Sensor communication topology. The blue solid circles denote the
RF sensors.

In this paper, we define the global coordinates as: the
positive x-axis pointing to the right horizontal direction, and
the positive y-axis pointing to the up vertical direction. As
shown in Fig. 1, the sensor placement scheme is described as
follows. We place l columns parallel to the y-axis, and each
column contains m sensors. The coordinate of the sensor
locating at the eth row (1 ≤e≤m) and f th column (1 ≤f≤l)
is at (xefc , yefc ):

(xefc , y
ef
c ) =



(√
3
2 Rc +

√
3
2 (f − 1)Rc, (e− 1)Rc

)
,

if f is an odd integer;(√
3
2 Rc +

√
3
2 (f − 1)Rc,

1
2Rc + (e− 1)Rc

)
,

if f is an even integer.

The number of sensors in the odd column modd and even
column meven are expressed as:

modd = meven + 1 = Int( yw

Rc
) + 1,

if Rem( yw

Rc
) < Rc

2 ;

modd = meven = Int( yw

Rc
) + 1,

if Rem( yw

Rc
) ≥ Rc

2 .

where Int(x) is the integer part of x, and
Rem(x)=x−Int(x). Also, the number of column l
is: l = Int( xw√

3
2 Rc

).
Remark 1: Since we assume the sensor communication

range as a circle, we adopt the sensor placement scheme
as in [21]. For a more detailed analysis of coverage sensor
placement, interested readers may refer to [22].

We are interested in distributed estimation and recovery of
the REM caused by the dynamical RF signal. We formally
define our problem in the next subsection.

B. The Model and Problem Statement

The radio signal propagation model is described in Ap-
pendix I, where the signal strength for each location cell
is explicitly computed according to (30). However, it is not
practical to use (30) in constructing REM because it needs
the prior-known trajectory of the transmitter to determine
the temporal dynamics P0 and La in (30), while localizing
radio transmitter is not allowed by legislations. Also, without
knowing the environment geometry and behaviors of the
radio transmitter, the spatial-temporal dynamics of shadow
fading, the Sa term in (30), cannot be determined. This is
the fundamental reason that the radio propagation process is
usually modeled in a different way.
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Since the interaction between the signal and the envi-
ronmental geometry evolves as uncertain spatio-temporal
dynamics, it is common to model the radio signal propa-
gation as random fields [8]–[11]. Specifically, dropping the
subscript a in (30) for convenience, the radio signal y at
any cell a and time k is regarded as a random field y(k, s),
where s ∈ R2 is the space coordinate and k ∈ R+ is the
time index. We have the same assumption [8]–[11] that any
pair of y(k1, s1) and y(k2, s2), s1, s2 ∈ s, k1, k2 ∈ k, only
correlated in space not in time, i.e.,

Cov(y(k1, s1), y(k2, s2)) = C(‖s1 − s2‖2)δ(k1 − k2) (1)

where C(‖s1 − s2‖2) is a positive symmetric function, and
δ(k1−k2) is the Dirac delta function. Neglecting the spatial
correlated noise, the random field y(k, s) from the Mercer’s
theorem has the function basis expansion as

y(k, s) =

∞∑
j=1

ξj(k)φj(s), (2)

where ξ(k) describes a temporal process consisting of infinite
components, and φ(s) is the corresponding function basis
to describe the spatial variation. For the consideration of
computational cost, (2) usually takes the finite expansion as

y(k, s) =

M∑
j=1

ξj(k)φj(s). (3)

In the compact form, we have

y(k, s) = φ(s)ξ(k), (4)

where φ(s) = [φ1(s), ...φM (s)], and ξ(k) =
[ξ1(k), ..., ξM (k)]T .

The major convenience from the expansion (2) is the
decoupling of temporal dynamics and spatial variation of
y(k, s). For temporal dynamics, ξ(k) is assumed to evolve
as [23],

ξ(k) = Aξ(k − 1) + ν(k), (5)

where A is the system matrix of temporal dynamics of the
REM behaviors, ν(k) denotes the Gaussian noise with zero
mean and covariance matrix Q(k).

For a network consisting of n RF sensors, the measure-
ment of the ith RF sensor at the corresponding cell is given
by

Yi(k, s) = y(k, s) + ζ(k, s), (6)

where ζ(k, s) denotes the Gaussian measurement noise with
zero mean and covariance R(k), which assumes to be not
spatial correlated in this paper for simplicity.

Consider the system model (4) (5) and (6), the Kalman
filter technique can be used to estimate the system state ξ for
recovering the signal strength y, which requires the system
matrix A in (5) prior-known. However, due to uncertainties in
practical systems, the system matrix A, is often time-varying
and unknown so that the accurate estimation for ξ becomes
challenge. Therefore, based on the model, the distributed
REM tracking problem is defined as to estimate and

track y(k, s), k ∈ R+, s ∈ R2 using distributed sensor
measurements (6) in the random Gaussian field with the
unknown matrix A in the temporal dynamics (5).

Remark 2: The model (4) - (5) presented in this section is
similar to the model in [1]. The major difference is that we
assume that the system matrix A in (5) is unknown, while A
is known or prior-estimated in [1]. A more detailed model
for distributed tracking considering additive spatial correlated
noise in a random field is presented in [17] using distributed
Kriged Kalman filtering techniques. We will further extend
the result to distributed Kriged Kalman filter for unknown
dynamical systems in our future work.

III. THE ALGORITHM

In this paper, our objective is to develop a distributed REM
tracking algorithm so that the distributed sensors cooperative-
ly estimate the system model parameters, and simultaneously
track the dynamic REM. To solve this problem, we propose
a distributed Kalman-EM filter based algorithm.

A. Kalman-EM Filter based Estimation and Tracking

Applying Kalman filter to track the state parameters ξ in
the system (4) (5) and (6), the system matrix A in (5) needs
to be estimated. To solve the problem, a learning method,
Expectation Maximization (EM) is chosen to embed into
the Kalman filter, for the purpose of learning the system
matrix A. This learning method is inspired from the Bayesian
perspective as it maximizes the expectation of parameter log-
likelihood, so that both the observation Y and the system
state ξ get the maximum estimation probability. We call it
the Kalman-EM filter. In this subsection, we introduce the
estimation process of the proposed Kalman-EM filter.

1) System Matrix Estimation: The system matrix estima-
tion utilizes the Bayesian method, and the EM algorithm as
the prediction tool given the observations. This algorithm
includes two steps: i) Maximize the expectation likelihood
in terms of the system state using Kalman filter (E-step);
ii) Maximize the expectation likelihood in terms of the
system matrix A (M-step). In our problem, for the system (4)
(5) and (6), the estimated state ξ(k) and observation Y (k)
follow the Gaussian process: ξ(k)∼N (Aξ(k − 1), Q) and
Y (k)∼N (φξ(k), R), in which (·)(k) denotes the value of
the variable at time k. The joint likelihood is:

logP
(
{ξ(1 : k̂)}, {Y (1 : k̂)}|A(k̂)

)
=

log

P (ξ(1))

k̂∏
k=2

P (ξ(k)|ξ(k − 1))

k̂∏
k=1

P (Y (k)|ξ(k))

 (7)

where

P (Y (k)|ξ(k)) = exp{−1

2
[Y (k)− φξ(k)]TR−1

·[Y (k)− φξ(k)]}(2π)−n/2|R|−1/2,

P (ξ(k)|ξ(k − 1)) = exp{−1

2
[ξ(k)−Aξ(k − 1)]TQ−1

·[ξ(k)−Aξ(k − 1)]}(2π)−n/2|Q|−1/2
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with observations Y (1 : k̂) = (Y (1), ..., Y (k̂)) and states
ξ(1 : k̂) = (ξ(1), ..., ξ(k̂)).

At time k̂, we perform the E-step of EM to compute the
expected log-likelihood EL, taking unobserved state ξ into
account [24]:

EL(k̂) = E[logP (ξ(1 : k̂), Y (1 : k̂))|Y (1 : k̂);A(k̂)] (8)

in which it calculates:

ξ̂(k) = E[ξ(k)|Y (1 : k);A(k)] (9)
P (k) = E[ξ(k)ξT (k)|Y (1 : k);A(k)] (10)

P ((k), (k − 1)) = E[ξ(k)ξT (k − 1)|Y (1 : k);A(k)]

(11)

To choose an appropriate system matrix A that enables
(8) to be maximized at each time instant, the M-step is
performed, so we obtain:

∂EL(k̂)

∂A(k̂)
= −

k̂∑
k=1

P ((k), (k − 1)) +

k̂∑
k=1

Q−1A(k)P (k − 1) = 0 (12)

which yields

A(k̂) =

 k̂∑
k=1

P ((k), (k − 1))

 k̂∑
k=1

P (k − 1)

−1 . (13)

2) Kalman-EM Filter Estimation and Tracking: Let
ξ̃ represent the estimate of ξ, and V be the M × M
covariance matrix correlated with estimate errors. Define
the information matrix σ(k) = V −1(k) , the information
vector δ(k) = V −1(k)ξ(k) and M × M scalar matrix
KM×M . Based on initializations A(0), σ(0) and δ(0), both
information vector τ and matrix σ at time k is obtained by
the following steps of Kalman filter:

Prediction:

σ̃(k) = (A(k − 1)σ−1(k − 1)AT (k − 1) +Q)−1(14)
δ̃(k) = σ̃(k)A(k − 1)σ−1(k − 1)δ(k − 1) (15)

Correction:

σ(k) = σ̃(k) + φTR−1φ (16)
δ(k) = δ̃(k) + φTR−1Y (k) (17)

Scalar matrix update:

K(k) = (σ̃−1(k)− σ−1(k))σ̃(k) (18)

Also, (10) and (11) have the solutions for (8) as follows:

P (k) = V̂ (k − 1) + ξ̂(k − 1)ξ̂T (k − 1)(19)

P ((k), (k − 1)) = V̂ ((k), (k − 1)) + ξ̂(k)ξ̂T (k − 1)

(20)

where V̂ (k − 1), ξ̂(k − 1) and V̂ ((k), (k − 1)) update all
previous expectations of Ṽ (k), ξ̃(k) and Ṽ ((k), (k − 1)),
respectively, for accurately estimating A(k) once a new
estimated state is generated, and Ṽ ((k), (k − 1)) denotes
the cross covariance matrix between two consecutive time
instants. Specifically, this is the E-step of Kalman-EM filter
that performs backward recursions for k = k̂, ..., 1 on the
equations:

J(k − 1) = σ−1(k − 1)AT (k − 1)σ̃(k − 1) (21)
V̂ (k − 1) = σ−1(k − 1) + J(k − 1)

·
(
V̂ (k)− σ̃−1(k − 1)

)
JT (k − 1) (22)

ξ̂(k − 1) = σ−1(k − 1)δ(k − 1) + J(k − 1)

·
(
ξ̂(k)−A(k − 1)σ−1(k − 1)δ(k − 1)

)
(23)

which is initialized as V̂ (k) = σ−1(k) and ξ̂(k) =
σ−1(k)δ(k).

For k = k̂, ..., 2 on the equation, we have:

V̂ ((k − 1), (k − 2)) = σ−1(k − 1)JT (k − 2)

+J(k − 1)

(
V̂ ((k), (k − 1))

−A(k − 1)σ−1(k − 1)

)
JT (k − 2) (24)

which is initialized as V̂ ((k), (k − 1)) = (I −
K(k))A(k − 1)σ−1(k − 1), where I is an identity matrix
of dimension M ×M .

In the M-step, (10) and (11), which are obtained from the
above backforward iteration, are then combined with (13),
to obtain the updated system matrix A(k), which serves as
the outcome of the differentiation of (8).

B. PI Consensus Filter for Distributed Estimation and Track-
ing

Considering (16) and (17), dropping the parameter of k,
let

φTR−1φ =

n∑
i=1

φ(si)
TR−1i φ(si), (25)

φTR−1Y (k) =

n∑
i=1

φ(si)
TR−1i Yi(k), (26)

where n is the number of RF sensors in the area.
In order to calculate φTR−1φ and φTR−1Y (k) above, we

need the global information for i = 1, . . . , n. However, in
our system setup, each sensor only knows its own parameters
Ri and Yi(k) using its own position and measurement
values. Fortunately, each sensor can communicate with its
neighbors and eventually get the global information through
information propagation. To achieve this goal, we have each
sensor implement a PI consensus filter [16] [1]. The discrete-
time consensus estimator (running in a faster time scale) is
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given as

vi(τ) = vi(τ − 1) + β

{
γ[ui − vi(τ − 1)]

−KP

∑
j∈Ni

[vi(τ − 1)− vj(τ − 1)]

+KI

∑
j∈Ni

[ηi(τ − 1)− ηj(τ − 1)]

}
,

ηi(τ) = ηi(τ − 1)− β

·
{
KI

∑
j∈Ni

[vi(τ − 1)− vj(τ − 1)]

}
(27)

where j ∈ Ni denotes that sensor j is in the one-hop
neighbor set, Ni, of sensor i, ui is the sensor i’s vector input
to the sum, ηi and vi are the sensor i’s internal state, and
the estimate of the average of all agents’ inputs, respectively.
γ > 0 is the parameter governing the rate at which new in-
formation replaces old information in the dynamic averaging
process, and β is the step size for the PI consensus filter. Kp

and KI are estimator gains. For convenience, (27) can also
be written in the following compact form:

[
v(τ)
η(τ)

]
=

([
I 0
0 I

]
+ β

[
−γI − LP LI

T

−LI 0

])
·
[
v(τ − 1)
η(τ − 1)

]
+

[
γI
0

]
u (28)

where I is the identity matrix, LP = KpL, LI = KIL, and
L is the graph Laplacian defined in Appendix I.

Suppose the total sensor number n is known to all sensors,
let ui = nφ(si)

TR−1i φ(si), running the above protocol,
vi, i = 1, . . . , n, converges to φTR−1φ as time elapses. Also,
when ui = nφ(si)

TR−1i Yi(k), vi, i = 1, . . . , n, converges to
φTR−1Y (k). Therefore, distributed estimation is achieved
using the PI consensus filter scheme shown above.

The procedure of our proposed algorithm is described
in Algorithm 1. The ith sensor collects its radio energy
measurement Yi, position si (Line 1), calculates its local
quantity φ(si)

TR−1i φ(si) and φ(si)
TR−1i Yi(k). (Line 3).

After that, each of the sensors performs the PI consensus
filtering towards calculating the global quantities φTR−1φ
and φTR−1Y (k) by their neighbor communication (Line 4
- Line 10). Then they implement Kalman filter to estimate
the system states (Line 12), run E-step backward recursion
(Line 13), and estimate the parameter matrix A for M-step
(Line 14), then update the dynamic REM by calculating (4)
(Line 15). Thus, dynamic REM is recovered on each sensor
real time.

IV. SIMULATIONS

We generate the dynamical REM based on the system
setup of Section II-A, in which, the bounded area consists
of 47× 41 regular cells, and the RF transmitter is moving
around the obstacle. In the simulation, we denote the RF
transmitter power in the form of the channel gain (dB).
According to the radio propagation model (30), we set:

Algorithm 1 Distributed REM tracking
Require:

Radio energy measurement Y , sensor position s =(m,n).
Initialization: information vector δ(0), information ma-
trix σ(0), system matrix A(0), state covariance matrix
Q, and measurement noise covariance matrix R.

Ensure:
To enable each sensor to reach agreement on REM
estimation, and track the dynamical REM.

1: for time step k = 1 to k̂ do
2: Each sensor i gets its corresponding position si =

(m,n) and sensor measurement of radio energy Yi,
then calculates its basis function φ(si).

3: Each sensor calculates φ(si)
TR−1i φ(si) and

φ(si)
TR−1i Yi(k).

4: for τ = 1 to p do
5: Each sensor sets ui = nφ(si)

TR−1i φ(si),
6: Each sensor gets its neighboring sensors’ informa-

tion vj , ηj , j ∈ Ni,
7: Each sensor runs PI consensus filter in (27) to get

vi and ηi;
8: Each sensor sets ui = nφ(si)

TR−1i Yi(k),
9: Each sensor repeats line 6 and 7,

10: end for
11: Each sensor returns consensused global quantities

vi → φTR−1φ and → φTR−1Y (k).
12: Each sensor runs Kalman filter line by line to calculate

the priori, σ̃(k) and δ̃(k), posteri σ(k) and δ(k) and
scalar matrix K(k) using equations (14)-(18).

13: Each sensor runs E-step backward recursion line by
line to calculate J(k − 1), V̂ (k − 1), ξ̂(k − 1) and
V̂ ((k − 1), (k − 2)) using equations of (21)-(24) .

14: Each sensor substitutes V̂ (k − 1), ξ̂(k − 1) and
V̂ ((k − 1), (k − 2)) into (19) and (20) to calculate
P ((k), (k − 1)) and P (k − 1), and updates System
Matrix A(k) using equations of (13).

15: Each sensor calculates the energy data y(k, s) at all
the points in the global map and recovers REM using
(4).

16: Next step k + 1 ← k.
17: end for

P0 = 20dB; the attenuation of the bth cell xb = 5 if the
cell is occupied by an obstacle, while xb = 0.1 if the cell
is in free space; the environmental noise ιa(k) for each
cell follows the Gaussian distribution: ιa(k)∼N (0, 1); the
parameter Γ = 0.1; we ignore the multi-path and interfere
effect so that Fa(k) = 0. Fig. 3 shows the energy distribution
of RF transmitter at different time instants, in which, the
reddish area having the highest signal strength corresponds to
the location of the radio transmitter, and the black rectangle
denotes the obstacle.

We place n = 156 sensors with the communication range
Rc = 0.433 over the bounded area as shown in Fig. 1, our
goal is to estimate and track the REM using Algorithm
1. To implement our proposed algorithm, each sensor sets
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Fig. 3. Dynamical REM of the moving radio transmitter generated using
(30).

the parameters as following: The function basis subset in
(4) contains M = 15 component sets as φ(sx, sy) =
[1, sx, sy, s

2
x, s

2
y, sxsy, s

3
x, s

3
y, sxs

2
y, s

2
xsy, s

4
x, s

4
y, sxs

3
y, s

2
xs

2
y,

s3xsy] with sx and sy the horizontal and vertical positions,
respectively; the covariance matrix of the temporal dynamic
noise in (5) is Q = 0.01I15×15; the measurement covariance
matrix for each sensor in (6) is R = 0.1I15×15; each sensor
initializes the Kalman filter parameters in (14) and (15) as:
τ(0) = 015×1and σ(0) = 0.0001I15×15; the parameters of
PI consensus filter (27) are: γ = 1.6, β = 0.5, KP = 0.1
and KI = 0.01; the initializations of PI consensus filter are:
vi(0) = 015×15 and ηi(0) = 015×15 for C estimation, and
vi(0) = 015×1 and ηi(0) = 015×1 for D estimation, and we
randomly initialize the system matrix A.

Fig. 4 is the recovered REM generated by our algorithm.
Comparing to the true REM shown in Fig. 3, it can be seen
that the initial REM is poorly recovered at t = 1s, and
the radio transmitter cannot be localized. However, as the
distributed Kalman filter converges, the dynamically chang-
ing REM is tracked successfully, and the radio transmitter
source can be approximately localized with the highest signal
strength. Specifically, at time t=25s, 50s and 75s, it can be
seen from the subfigures that the locations of the dynamic
radio source is recovered (i.e., they are approximately at
the same place in the global coordinate), and the shadowing
effect caused by the obstacle is also successfully recovered
as displayed in dark areas of each subfigure.

We compare the REM tracking performance of our pro-
posed algorithm with the existing method, which uses dis-
tributed Kalman filter together with the PI consensus filter
and a randomly chosen system matrix A [1]. We utilize the
Mean Absolute Error (MAE) as an evaluation criteria for
REM recovery performance. The MAE is defined as:

MAE =
1

N

N∑
a=1

|ŷa(s)− ya(s)| (29)

where N is the total cell number in the REM, and ŷa(s) is
the estimation of ya(s) in (30). Fig. 5 shows the comparison
results: The high initial MAEs for both algorithms result

Fig. 4. Distributed tracking with estimated system matrix A for REM of
the moving radio transmitter.

from the random system initializations. The MAEs of both
algorithms then decrease due to the convergence of distribut-
ed Kalman filter. It is easy to see that our proposed algorithm,
which online estimates the system matrix A, has lower
estimation MAE, and outperforms the existing algorithm [1]
that uses the random system matrix A.

Fig. 5. MAE comparison of our proposed algorithm with the distributed
method for REM of the moving transmitter.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we studied distributed estimation and track-
ing of dynamic REM, which is modeled by radio signal
propagation model as uncertain Gaussian random fields.
Without localizing the radio transmitter, we developed dis-
tributed consensus-based Kalman-EM filtering techniques to
estimate the unknown system parameters and to generate
the REM heat map. Simulation results showed satisfactory
performance of the proposed method, where spatial corre-
lated shadowing effects are clearly recovered. Future work
includes experimental validation of the proposed tracking
algorithm using mobile robotic sensors with optimized data
collecting schemes.

APPENDIX I
PRELIMINARIES

Graph Theory: We mainly explain the consensus related
graph notation. Given an index set I = {1, 2, ..., n}, an
undirected graph G consists of a triple (V, E ,A). V =
{Vi|i ∈ I} is a finite nonempty set of nodes. The edge set
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E = {Eij = (Vi,Vj)|i, j ∈ I}. We refer to Vi and Vj as the
tail and head of the edge (Vi,Vj). The weighted adjacency
matrix A = {Aij |Aij 6= 0⇔ Eij ∈ E ,Aij = 0⇔ Eij /∈ E}.
For simplicity, we assume Aii = 0 and ∀Aij ≥ 0, i 6= j. The
set of neighbors of node i is denoted by Ni = {j : Eij ∈ E}.
The graph Laplacian associated with the graph G is defined
as L(G) = L = ∆ − A. The diagonal matrix ∆ = [∆ij ]
where ∆ij = 0 for all i 6= j and ∆ii = deg out (Vi).
deg in (Vi) =

∑n
j=1Aji and deg out (Vi) =

∑n
j=1Aij are

called in-degree and out-degree of nodes Vi, respectively.
The Laplacian matrix always has a zero eigenvalue with the
right eigenvector of one, which denotes as λ1 = 0, wr =
1 = [1, 1, . . . , 1]T .

Radio Signal Propagation Model: We represent the radio
energy distribution in regular cells with each cell having a
signal strength value. The radio signal strength of the ath

cell with position s at time k is described as ( [14]),

ya(k, s) = P0(k)−La(k)−Sa(k, s)−Fa(k, s)−ιa(k) (30)

where
1) P0(k) is the transmission power of the Radio Frequen-

cy (RF) transmitters in dB,
2) La(k) is the free space propagation loss,
3) Sa(k, s) is the median scale shadow fading loss,
4) Fa(k, s) is the small scale fading, e.g. multi-path or

interference,
5) ιa(k) is the environmental noise.

Specifically, assuming the transmitter trajectories are known,
the free space propagation loss La(k) is commonly modeled
as

La(k)[dB] = L(d0) + 10Γ log(da(k)/d0), (31)

where d0 is the reference distance and da(k) is the distance
between the RF transmitter and the ath cell. The small scale
fading Fa(k, s) is usually modeled as log-norm distribution
and can be neglected for simplicity. According to [11] [12]
[14], the shadow fading Sa(k, s) for a propagation link from
the RF transmitter to the ath cell, can be modeled as

Sa(k, s) =

nc∑
b=1

ωab(k)xb(s) + εa(k, s), (32)

where xb(s), b = 1, ..., nc, is the attenuation occurring in cell
b of the propagation link at time k, which is predetermined
by the environmental geometry (assuming the environment
geometry is temporally fixed). nc is the number of cells
covered by the propagation link. ωab(k) is the weighting
ratio of the cell b. εa(k, s) is the model error.
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