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Abstract— We consider discrete-time distributed estimation
on a directed graph with switching topologies. Motivated by a
recent PI consensus filter, we modify the protocol and remove
the constraint on bi-directional information exchange and gain
conditions that require global topological information. The
protocol is then extended to switching topologies. Convergence
results for time-invariant inputs under both balanced directed
and general directed graphs are given for switching topologies.
Satisfactory simulation results are shown to validate theoretical
claims.

Index Terms— Distributed estimation, consensus filter, di-
rected graph, switching topology.

I. INTRODUCTION

Distributed estimation is a fundamental problem in net-
worked systems. Direct applications of conventional estima-
tion methods often need all-to-all communications, which
causes large communication burdens. Much attention has
been paid recently to consensus or gossip algorithms to relax
the all-to-all communication requirements to neighbor-to-
neighbor communications. Although the consensus protocol
[1] and the gossip algorithm [2] are able to estimate global
quantities in a distributed way, they are in lack of explicit
input signals thus cannot track time-varying inputs without
re-initialization. However, applications of distributed Kalman
filter [3] and cooperative control [4] need continuous estima-
tion of global quantities and call for distributed estimation
schemes for time-varying signals. Consensus filters open a
promising door to such dynamic distributed estimation [4]–
[6].

In general cases of distributed sensing, each agent has a
different input and the goal is to track the average of the set of
inputs. The design of consensus filters aims to find dynamic
evolutions converging to the input average in a distributed
way. In [3], [5], [7], Olfati-saber and co-authors introduced a
distributed low-pass consensus filter and a distributed high-
pass consensus filter, which are able to track the average of
inputs of all sensors in a network. In the case that the input to
sensors are not identical, estimation error exists. Progresses
were made in [4], [6], [8] to reduce the estimation error. In
[4], [6], Freeman et. al. proposed a PI consensus filter in
continuous-time form, which is able to converge accurately
to the average of the inputs when they are time-invariant.
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In [9], the discrete-time counterpart of the PI consensus
filter was derived and successfully applied to dynamically
merging feature-based maps in robot networks. However, this
discrete-time PI consensus filter has a gain condition requir-
ing information on the spectrum of the Laplacian matrix
of the graph, which is a centralized quantity and normally
unavailable in a distributed network. In [10], a consensus
filter is proposed for distributed map merging under switching
topologies. However, the time interval between switching is
larger than the convergence time of the filter, i.e., switching
happens when the filter almost converges to the desired value.
As to arbitrary switching, the system may lose stability even
though it is convergent and stable under a fixed topology
[11].

In this paper, we introduce new consensus filters for
distributed averaging on a network and extend our previous
works on continuous-time consensus filters [12], [13] to
discrete-time versions. By a proper design of the co-state
dynamics to compensate the network switching, accurate
convergence results are reached on directed graphs with
arbitrary switching topologies. Compared to existing work,
the contribution of the paper includes:

1) The proposed protocols work on general directed
graphs, which extends the undirected graph limitation in [9].

2) The proposed consensus filters allow arbitrary switching
topologies with guaranteed convergence, which is in contrast
to existing consensus filter work in this field [3]–[8].

3) The gain condition for the proposed filters is very mild
and requires no global information on the graph structure,
while the gain condition proposed in the recent work [9]
depends on the graph Laplacian.

The rest of this paper is organized as follows: In Section
II, preliminaries on graph theory and consensus filters are
introduced. A consensus filter on a general graph with a fixed
topology is proposed and theoretically analyzed in Section
III. In Section IV, the second consensus filter is proposed and
theoretically analyzed to solve distributed estimation problem
on switching topologies. Numerical simulations presented
in Section V validate the theoretical results. Section VI
concludes this paper.

II. PRELIMINARIES

A. Fundamental Knowledge on Graphs

A directed graph G(V,E,A) is denoted by (V,E,A),
where V is the set of nodes, E is the set of edges with E ⊆
V ×V , and A = [aij ] is the weighted adjacency matrix. The
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in-degree and out-degree of a node in the directed graph is
defined as degin(vi) =

∑n
j=1 aji and degout(vi) =

∑n
j=1 aij

respectively. The directed graph G is said to be balanced
if the in-degree equals the out-degree for each node in the
graph. A special case of balanced graph is undirected graph,
which bears the property of aji = aij for all i, j. A directed
graph G is called strongly connected if there always exists a
sequence of consecutive edges starting from a given node i to
another given node j, where node i and node j could be any
node in the graph only if i ̸= j. A directed graph G is called
connected if there is an undirected path between any pair of
nodes. The degree matrix ∆ = [∆ij ] is a diagonal matrix
with ∆ij = 0 for all i ̸= j and ∆ii = dout(vi) for all i. The
Laplacian matrix L of the graph G is defined as L = ∆−A.
For a directed graph, the rank of its Laplacian matrix is equal
to (n−1), where n is the dimension of the Laplacian matrix
L if the graph contains a spanning tree. The stochastic matrix
of the graph G is defined as P = [pij ] such that pij = 0 for
j /∈ N(i), pij ≥ 0 for ∀i, j, and

∑
j∈N(i) pij = 1 for ∀i.

For a balanced graph, containing a spanning tree is equiv-
alent to being connected. A directed graph with topology
series {G1(V1, E1, A1), G2(V2, E2, A2), ...Gk(Vk, Ek, Ak)}
with V1 = V2 = ... = Vk = V , is called jointly-containing-
spanning-tree if the union of the topologies

∑k
i=1 Gi, defined

as
∑k

i=1 Gi = G(V,
∪k

i=1 Ei,
∑k

i=1 Ak), has a spanning tree
[14]. Particularly, if all topologies in the topology series are
balanced,

∑n
i=1 Gi having a spanning tree [14] is equivalent

to being connected. In this case, this set of topologies is
called jointly connected [15].

B. Graph Centrality

Centrality defines the relative importance of a node on
a graph. There are several different measures of centrality,
such as degree centrality, betweenness centrality, pagerank
centrality [16], [17]. In this paper, we particularly consider
the pagerank centrality. The pagerank centrality of node i has
the following definition:

α(i)dout(vi) =
∑

j∈N(i)

wjiα(j) (1)

where α(i) ≥ 0 denotes the pagerank centrality of the ith
node, dout(vi) represents the out-degree of node i, wji is the
weight for the edge from i to j. For all nodes in the graph,
the vector α = [α(1), α(2), ..., α(m)]T satisfies,

αTL = 0 (2)

As the Laplacian matrix of a graph always has a zero
eigenvalue, Eq. (2) implies the pagerank centrality vector α is
the left eigenvector of L corresponding to the zero eigenvalue
(referred to as zero left eigenvector from now on). Clearly,
the centralities of all nodes on a balanced connected graph
are identical since 1 = [1, 1, ..., 1]T is always the zero left
eigenvector of L for balanced graphs. In addition, it can be

justified that the centrality of a node with zero out-degree
equals zero, meaning that this node has no impact to others
since there is no out flow from it.

C. An Existing Consensus Filter

In [6], Freeman et al. proposed an average PI consensus
filter in continuous time. This filter is extended to discrete
time in [9] for undirected graph with a fixed topology, which
writes,

x(n+ 1) = (1− hγ)x− hLx+ hLλ(n) + hγu

λ(n+ 1) = −hLx(n) + λ(n) (3)

where u ∈ Rm is the input vector, x(n) ∈ Rm is the decision
variable at time n and λ(n) ∈ Rm is the co-state, L is the
Laplacian matrix of the communication graph, h ∈ R+ and
γ ∈ R+ are constants satisfying

3

2
µmax(L) ≤ γ ≤ 3

2h
(4)

where µmax(L) is the maximum eigenvalue of the Laplacian
matrix L.

Remark 1: The consensus filter (3) provides a means for
distributed estimation of global quantities. Compared with
consensus protocols, which does not have an explicit input,
Protocol (3) can track the estimation under time-varying input
signals. Also, compared with some existing consensus filters,
such as the low-pass consensus filter [3]–[8], Protocol (3)
converges to the average of static inputs ideally. However,
there are still some limitations with Protocol (3):

1. This protocol limits to undirected communication graphs
with a fixed topology. However, directed graph (includes
undirected graph as a special case) and switching graphes
are more general descriptions of distributed networks with
directional communication, possible link failure and re-
connections.

2. The gain condition in (4) depends on the maximum
eigenvalue of the Laplacian matrix L, which is a global
information and is difficult to obtain.

III. CONSENSUS FILTERING ON DIRECT GRAPHS WITH A
FIXED TOPOLOGY

A. The Protocol

We proposed the following discrete-time consensus filter
for direct graphs with a fixed topology,

xi(n+ 1) = (1− γ)ui(n) + γ
∑

j∈N(i)∪{i}

wijxj(n)

− (1− γ)
n∑

k=0

∑
j∈N(i)

wij

(
xi(k)− xj(k)

)
(5)

where xi(n) represents the ith decision variable at time n and
is initialized randomly, ui(n) is the ith input, N(i) represents
the neighboring set of the ith node, −1 < γ < 1, wij > 0
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for j ∈ N(i), wii = 1 −
∑

j∈N(i) wij > 0, and wij = 0 for
j /∈ N(i) ∪ {i}.

Its realization writes,

xi(n+ 1) = (1− γ)ui(n) + γ
∑

j∈N(i)∪{i}

wijxj(n)

−(1− γ)λi(n+ 1)

λi(n+ 1) = λi(n) +
∑

j∈N(i)

wij

(
xi(n)− xj(n)

)
(6)

with the initialization λi(0) = 0 for all i.
Protocol (5) can be written in the following matrix form,

x(n+ 1) = (1− γ)u(n) + γPx(n)− (1− γ)
n∑

k=0

Lx(k) (7)

where P = [wij ] is the stochastic matrix defined on the graph
and L is a Laplacian matrix defined as L = I − P with I
denoting the identity matrix of an appropriate size.

B. Convergence Results

We have the following theorem for this protocol (7) with
time-invariant inputs.

Theorem 1: For the consensus protocol (7) or its realiza-
tion (6), where L is a Laplacian matrix defined as L = I−P
with P being a stochastic matrix on the communication
graph, −1 < γ < 1 and α is the pagerank centrality of the
graph (i.e. α is a zero left eigenvector of L), x(n) converges
to average consensus with the common value αTu

αT 1
for time-

invariant u(n) = u (where u is a constant vector).
Proof: See Appendix I.

Remark 2: For balanced graphs, the pagerank centrality
is identical in all dimensions thus the protocol (7) reaches
distributed averaging with identical weights.

IV. CONSENSUS FILTERING ON A GRAPH WITH
SWITCHING TOPOLOGIES

In this section, we modify the proposed consensus filter by
introducing an additional term to compensate for the topo-
logical switching. We first consider the case on a balanced
graph and then investigate the result on a general graph.

A. The Protocol

For graphs with switching topologies, we propose the
following protocol,

xi(n+ 1) = (1− γ)ui(n) + γxi(n)

−(1− γ)
n∑

k=0

∑
j∈N(i,k)

wij(k)
(
xi(k)− xj(k)

)
−γ

n∑
k=0

∑
j∈N(i,k)

wij(k)
(
xi(k)− xi(k − 1)

−xj(k) + xj(k − 1)
)

(8)

where xi(n) represents the ith decision variable at time n,
ui(n) is the ith input, N(i, k) represents the neighboring set
the ith node at time k, −1 < γ < 1, wij(k) > 0 for j ∈
N(i, k) and wij(k) = 0 otherwise.

Its realization writes,

xi(n+ 1) = (1− γ)ui(n) + γxi(n)

−(1− γ)λi(n+ 1)− γyi(n+ 1)

λi(n+ 1) = λi(n) +
∑

j∈N(i,n)

wij(n)
(
xi(n)− xj(n)

)
yi(n+ 1) = yi(n) +

∑
j∈N(i,n)

wij(n)
(
xi(n)− xi(n− 1)

−xj(n) + xj(n− 1)
)

(9)

with the initialization λi(0) = 0 and yi(0) = 0 for all i.
In a compact matrix form, the protocol writes,

x(n+ 1) = (1− γ)u(n) + γx(n)− (1− γ)
n∑

k=0

L(k)x(k)

−γ
n∑

k=0

L(k)
(
x(k)− x(k − 1)

)
(10)

where −1 < γ < 1, L(k) is the Laplacian matrix at time k.

B. Convergence Results for A Balanced Graph with Switch-
ing Topology

On the proposed protocol (10) with time-invariant inputs,
we have the following theorem,

Theorem 2: For the consensus protocol (10) or its realiza-
tion (9), where −1 < γ < 1, L(k) is a Laplacian matrix
defined as L(k) = I − P (k) with P (k) being a stochastic
matrix on the communication graph at time k, x(n) converges
to average consensus with the common value 1Tu

l (where l is
the dimension of the vector u) for time-invariant u, provided
there exists an infinite sequence of uniformly bounded, non-
overlapping time intervals, across which the graph is balanced
and jointly connected.

Proof: See Appendix II.

C. Convergence Results for A General Directed Graph with
Switching Topology

For a general graph with switching topologies, the switch-
ing family may not share a common pagerank centrality.
In this situation, the discrete-time protocol (10) still reaches
consensus. However, the common value is a result combining
the impact of the topological structure across time. On this
point, we have the following theorem.

Theorem 3: For the consensus protocol (10) or its re-
alization (9), where −1 < γ < 1, L(k) is a Laplacian
matrix defined as L(k) = I − P (k) with P (k) being a
stochastic matrix on the communication graph at time k,
x(n) converges to consensus for time-invariant u(n) = u
(u is a constant vector), provided that there exists an infinite
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Fig. 1. A directed graph with a fixed topology
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Fig. 2. Protocol (7) on a directed graph with a fixed topology with time-
invariant inputs: (a). Time profile of x(n). (b). Time profile of λ(n).

sequence of uniformly bounded, non-overlapping time inter-
vals, across which the graph is jointly-containing-spanning-
tree. The common value of consensus is γµ∞

1−γ , where

µ∞ =
1

n
1T lim

n→∞

∏
P (n)P (n− 1)...P (1)

(x(1)
γ

− x(0)
)

.
Proof: See Appendix III.

V. SIMULATIONS

In this section, we use simulations to validate the theoreti-
cal conclusions. We consider the proposed protocols under a
fixed topology and switching topologies with time-invariant
inputs.

For the case with fixed topology, we perform simulations
on a small scale network with 10 nodes to show the per-
formance (the network topology is shown in Fig.1). For
simplicity, the stochastic matrix P = [wij ] is chosen such
that wij = 1

1+d(i) for j ∈ N(i) ∪ {i} with d(i) denoting
the number of inflow links connected to node i [18], [19].
The graph centrality in this case can be computed as α =
[0.5446, 0.0901, 0.0451, 0.0113, 0.0225, 0.7211, 0.0376,
0.0225, 0.1915, 0.3662]. In the simulation, the input u is
set as u = [5.2312, 32.0100, 12.6290, 28.0824, 23.5652,

Fig. 3. The balanced graph with switching topologies used in the simulation
study.
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Fig. 4. Protocol (10) on a balanced graph with switching topologies with
time-invariant inputs: (a). Time profile of x(n). (b). Time profile of λ(n).
(c) Time profile of y(n).

2.0058, −3.4135, 14.2183, −23.3582, −2.5974]. Simulation
results are plotted in Fig. 2 by running protocol (7) with
γ = 0.5. From this figure, it can be observed that x
successfully reaches consensus with the common value at
the input average weighted by centrality.

For the case with balanced switching topologies, the four
different topologies indicated in Fig. 3 are employed with
each topology running for one iteration in turn in a cycle.
Each existing link is assigned with the weight 0.4. This
simulation considers the same time-invariant input u as in
the fixed topology case, and γ = 0.5. As shown in Fig. 4,
x converges to the desired average by running Protocol (10)
with time-invariant inputs.

For the general directed graph, we choose the switching
topologies as shown in Fig. 5, which are not balanced. With
the same input and the same γ as in the case with balanced
switching topologies, as shown in Fig. 6 x in Protocol (10),
also converges to consensus for time-invariant inputs. The
time evolution of the co-states are also plotted in Fig. 6.
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Fig. 5. The general graph graph with switching topologies used in the
simulation study.
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Fig. 6. Protocol (10) on a general graph with switching topologies with
time-invariant inputs: (a). Time profile of x(n). (b). Time profile of λ(n).
(c) Time profile of y(n).

VI. CONCLUSION

In this paper, consensus filters running on switching di-
rected graphs were investigated. Theoretical results proved
the convergence to the weighted average of inputs in different
scenarios. Numerical simulations validated the results.

APPENDIX I
PROOF OF THEOREM 1

We first define k0 = 1−γ
γ , then γ = 1

1+k0
. Substituting γ

with k0 in (7) yields,

x(n+ 1)− x(n) = −k0
(
x(n+ 1)− u(n)

)
− Lx(n)

−k0

n∑
k=0

Lx(k) (11)

Define s(n) = x(n) + k
∑n

k=0 x(k). Then we have

s(n+ 1)− s(n) = x(n+ 1)− x(n) + k0x(n+ 1)

= −k0
(
x(n+ 1)− u(n)

)
− Lx(n)− k0

∑n
k=0 Lx(k)

+k0x(n+ 1) = k0u(n)− L
(
x(n) + k0

∑n
k=0 x(k)

)
= k0u(n)− Ls(n) (12)

Therefore,

s(n+ 1) = k0u(n) + (I − L)s(n) = k0u(n) + Ps(n) (13)

For the time instant one step before, we have,

s(n) = k0u(n− 1) + Ps(n− 1) (14)

Subtracting (14) from (13) yields the following by noting that
u(n) = u(n− 1) = u,

s(n+ 1)− s(n) = P
(
s(n)− s(n− 1)

)
(15)

That is, for the new variable p(n) = s(n) − s(n − 1), its
dynamics follow the linear consensus protocol and converge
to the average weighted by the zero left eigenvector of P , i.e,
limn→∞ p(n) = 1

αT 1
αT p(0). Multiplying αT on both sides

of (12) yields,

αT p(n+ 1) = k0α
Tu(n) = k0α

Tu (16)

Therefore, we conclude that limn→∞ p(n) = 1
αT 1

αT p(n) =
k01
αT 1

αTu. Now, let us consider p(n) = s(n) − s(n − 1) =

x(n) + k0
∑n

i=0 x(i)− x(n− 1)− k0
∑n−1

i=0 x(i) = x(n)−
x(n − 1) + k0x(n) = (1 + k0)x(n) − x(n − 1). Thus, we
have

x(n) =
1

1 + k0
x(n− 1) +

1

1 + k0
p(n) (17)

with limn→∞ p(n) = k01
αT 1

αTu. Noting that the linear system
(17) with | 1

1+k0
| < 1 (i.e., |γ| < 1) is BIBO and ultimately

converges to limn→∞ x(n) = 1
k0

limn→∞ p(n) = 1
αT 1

αTu,
meaning that the protocol (7) reaches average consensus
weighted by the zero left eigenvector of L.

APPENDIX II
PROOF OF THEOREM 2

Define k0 = 1−γ
γ and then k0 > 0, γ = 1

1+k0
. Eq. (10)

can be written as the following by multiplying (1 + k0) on
both sides,

(1 + k0)x(n+ 1) = x(n) + k0u(n)− k0

n∑
k=0

L(k)x(k)

−
n∑

k=0

L(k)
(
x(k)− x(k − 1)

)
(18)
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Define s(n) = x(n) + k0
∑n

k=0 x(k) and p(n) = s(n) −
s(n− 1). With (18), we have,

p(n) = (1 + k0)x(n)− x(n− 1)

= k0u(n− 1)− k0
∑n−1

t=0 L(k)x(k)

−
∑n−1

k=0 L(k)
(
x(k)− x(k − 1)

)
(19)

Also, from Eq. (19), we have

p(n+ 1) = k0u(n)− k0
∑n

t=0 L(k)x(k)−
∑n

k=0 L(k)
(
x(k)

−x(k − 1)
)

(20)

Accordingly, we have,

p(n+ 1)− p(n) = −k0L(n)x(n)− L(n)
(
x(n)

−x(n− 1)
)
= −L(n)

(
k0x(n) + x(n)− x(n− 1)

)
= −L(n)p(n) (21)

Therefore,

p(n+ 1) =
(
I − L(n)

)
p(n) = P (n)p(n) (22)

According to the results on discrete time consensus protocols,
we concludes that p(n) converges to consensus as n goes
to infinity. Multiplying 1T , which is the common zero left
eigenvector of L(k) at all time instants, on both sides of
(20) yields that 1T p(n + 1) = k01

Tu(n) = k01
Tu as the

1TL(k) = 0T for all k0 for balanced graphs. Therefore, we
conclude that

lim
n→∞

p(n) =
k01

Tu

l
1 (23)

with l representing the dimension of the vector u. Recalling
the definition s(n) = x(n) + k0

∑n
k=0 x(k) and p(n) =

s(n)− s(n− 1), we have p(n) = x(n)−x(n− 1)+ k0x(n),
i.e., x(n) = 1

1+k0
x(n−1)+ 1

1+k0
s(n) = γx(n−1)+γs(n).

For this BIBO system with s(n) as the input and x(n) as
the output, under the condition that |γ| < 1, we know that
x(n) is bounded and x(n) stabilizes to limn→∞ x(n) =
γ

1−γ
k01

Tu
l 1 = 1

k0

k01
Tu
l 1 = 1Tu

l 1, which is the average
consensus of u. This concludes the result.

APPENDIX III
PROOF OF THEOREM 3

Define k0 such that γ = 1
1+k0

. Then, define s(n) =
x(n) + k0

∑n
k=0 x(k), p(n) = s(n) − s(n − 1) =

(1 + k0)x(n) − x(n − 1). By following the same pro-
cedure as in the proof of Theorem 2, we get p(n +
1) =

(
I − L(n)

)
p(n) = P (n)p(n). For this linear dif-

ference equation, limn→∞ p(n) = limn→∞
∏

P (n)P (n −
1)...P (1)p(1) = limn→∞

∏
P (n) ·P (n − 1)...P (1)

(x(1)
γ −

x(0)
)
. Note that p(n + 1) = P (n)p(n) reaches consen-

sus for p(n) according to the conclusions on discrete-
time linear consensus protocols. Therefore, limn→∞ p(n) =
1
n1

T limn→∞
∏

P (n)P (n−1)...P (1)
(x(1)

γ −x(0)
)
= 1µ∞.

Note that x(n) = γx(n − 1) + γp(n). This difference

equation with p(n) as the input converges provided that
−1 < γ < 1. The ultimate value of x(n) can be obtained
as limn→∞ x(n) = γ

1−γ limn→∞ p(n) = γµ∞
1−γ 1. This con-

cludes the result.
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