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Abstract— In this paper, we study the synchronization prob-
lem of networked uncertain Lagrangian systems on directed
communication topologies. For the nominal model, we propose
a backstepping-based synchronization design for heterogenous
Lagrangian systems on digraphs with a spanning tree. We relax
the feedback gain constraints on the distributed synchronization
control law which encompasses the existing double integrator
consensus design as a special case. For the uncertain model,
we develop a distributed adaptive redesign assuming that the
uncertainty in each agent dynamics can be expressed as a linear
parametrization. Simulation results show the effectiveness of the
proposed method.

I. INTRODUCTION

In multi-agent cooperative control, distributed synchro-

nization usually refers to steering a specific variable of group

members to a common value across the network using local

information. In the passed few years, numerous papers have

been published on the distributed synchronization problem.

For the directed communication topologies, system matrix

analysis is very useful for the linear consensus models

[1][2], but it only offers analytic conditions for the consen-

sus rather than the design procedure. Originated from the

nonlinear control framework [3], constructive approaches are

very powerful in the synchronization control design, e.g.,

passivity-based design [4] [5], backstepping-based design

[6], and contraction analysis-based design [7]. The con-

structive approaches generally rely on the symmetry of the

communication topologies and cannot apply to the directed

communication topologies with a spanning tree.

For robotic systems, the Lagrangian model represents a

typical class of robotic systems, such as ground vehicles,

aircrafts, and robot arms. Recently, the synchronization de-

sign of Lagrangian systems increasingly attracts research at-

tentions. In [8], the leaderless synchronization design of La-

grangian systems is considered on undirected communication

topologies. The authors of [9] consider synchronization of

Lagrangian systems with non-holonomic constraints. In [10],

the passivity-based synchronization of [5] has been extended

from balanced communication topologies to strongly con-

nected topologies. The authors of [11] consider coordinated

tracking of Lagrange systems. All of the works mentioned

above cannot apply to directed communication topologeis

containing a spanning tree, due to the intrinsic symmetry

requirement of the nonlinear control design tools.

In this paper, we study the synchronization design for

the networked heterogenous Lagrangian systems on general
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directed communication topologies. Taking advantage of the

spectral properties of the Laplacian matrix, we construct

a Lyapunov function for the single integrator consensus

on directed graphs. Using backstepping in a distributed

fashion, we solve the synchronization design for the nominal

Lagrangian system model on directed graphs with a spanning

tree. The backstepping-based design provides us a control

Lyapunov function for the synchronization analysis, which

makes the distributed robust and adaptive redesign imple-

mentable. To handle the model undertainties, we extend the

adaptive control design [12] into the distributed redesign with

respect to parametric model uncertainties.

The contribution of the proposed design has two folds.

First, our backstepping-based framework overcomes the sym-

metry loss of directed communication in nonlinear system

synchronization, which is challenging for most constructive

control designs. The deducted control law for Lagrangian

systems encompasses the double integrator consensus prob-

lem as a special case. Second, the flexibility of backstepping

technique relaxes the lower bound gain condition imposed on

the distributed control law [1]. In our method, each agent’s

control law is independent of the graph Lapalcian matrix,

which is more realistic in cooperative control scenarios.

The subsequent sections are organized as follows. Sec-

tion II introduces the related graph theory and the spectral

properties of the graph Laplacian matrix. In section III, we

formulate the networked Lagrangian system synchronization

and the distributed adaptive redesign problem. Section IV

describes how to design the synchronization control law by

the backstepping technique. In section V, we develop the

distributed adaptive redesign technique. Section VI shows the

simulation results. In section VII, we present the conclusion

and future works.

II. PRELIMINARIES ON GRAPH THEORY

Given an index set I = {1, 2, ..., n}, a digraph (directed

graph) G consists of a triple (V, E ,A). V = {vi|i ∈ I} is

a finite nonempty set of nodes. The edge set E = {eij =
(vi, vj)|i, j ∈ I}. We refer to vi and vj as the tail and head

of the edge (vi, vj). The weighted adjacency matrix A =
{aij |aij 6= 0 ⇔ eij ∈ E , aij = 0 ⇔ eij /∈ E}. For simplicity,

we assume aii = 0 and aij ≥ 0, i 6= j. The set of neighbors

of node i is denoted by Ni = {j : eij ∈ E}.

The graph Laplacian associated with the graph G is

defined as L(G) = L = ∆ − A. The diagonal matrix

∆ = [∆ij ] where ∆ij = 0 for all i 6= j and ∆ii =
∑n

j=1
aij .

The Laplacian matrix always has a zero eigenvalue with the
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right eigenvector of one. We denote as λ1 = 0, wr = 1 =
[1, 1, . . . , 1]T .

A digraph has a spanning tree if there exist at least one

node that all the other node could reach it following the edge

directions. If a digraph has a spanning tree, then its graph

Laplacian matrix has a simple zero eigenvalue associated

with an eigenvector 1, rank(L) = n − 1 and all of the

other eigenvalues have positive real parts [13]. We denote

as Re(λk) > 0, k = 2, . . . , n.
Lemma 1: If a digraph G has a spanning tree and the as-

sociated graph Laplacian is L, then there exists a symmetric

positive definite matrix P satisfying the equation

PL + LT P = Q ≥ 0, (1)

where Q is a positive semidefinite matrix.

Proof: Let J be the Jordan form of L, i.e., L = T−1JT ,

where T is a full rank matrix associated with the Jordan

transformation. If the digraph has a spanning tree, we can

choose a suitable T that J = diag{0, J1}, where −J1 is

a (n − 1) × (n − 1) Hurwitz matrix [13]. So, there exists

a symmetric positive definite matrix P1 satisfying P1J1 +
JT

1
P1 = Q1 > 0 (Theorem 4.6 in [14]). Then, we choose

([15] Chapter 4, Theorem 4.29)

P = TT diag{1, P1}T, (2)

such that

PL + LT P = TT

[

0 0
0 P1J1 + JT

1
P1

]

T

= TT

[

0 0
0 Q1

]

T = Q ≥ 0. (3)

III. PROBLEM FORMULATION

A. Nominal Model

A group of agents with Lagrangian dynamics are modeled

as [16]

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = ui, i ∈ I, (4)

where qi ∈ R
m is the vector of the ith agent’s gener-

alized configuration coordinates, ui ∈ R
m is the vector

of generalized forces acting on the system, Mi(qi) is the

m × m symmetric, bounded positive definite inertia matrix,

i.e., ∃α, β > 0 such that ∀i ∈ I

αI ≤ Mi(qi) ≤ βI, and
1

β
I ≤ M−1

i (qi) ≤
1

α
I, (5)

Ci(qi, q̇i)q̇i is the symmetric matrix of Coriolis and cen-

tripetal torques which satisfy

‖ Ci(qi, q̇i) ‖≤ cmax ‖ q̇i ‖, (6)

for some cmax > 0,∀i ∈ I, and gi(qi) is the vector of

gravitational torques. Ṁi − 2Ci is skew symmetric [16],

which means

q̇T
i (Ṁi − 2Ci)q̇i = 0, ∀ q̇i ∈ R

m. (7)

Assumption 1: The group communication topology is a

static digraph which has a spanning tree.

Assumption 2: The group reference velocity vd and v̇d are

accessible to every agent, where vd is a bounded differen-

tiable function mapping from R to R
m.

Problem 1: Under the Assumptions 1 and 2, design a dis-

tributed control law ui(v
d, v̇d, qi, q̇i, qj , q̇j), j ∈ Ni,∀i ∈ I

for system (4) so that as t → ∞, qi → qj , q̇i → vd,∀i, j ∈ I.

B. Uncertain Model

Due to parameter perturbation or model reduction, model

uncertainties usually exists for the Lagrangian systems. From

[16][17], the parameter uncertainties of Lagrangian model

can be expressed as a linear parametrization, shown as,

Miq̈i + Ciq̇i + gi + φi(qi, q̇i, v
d, v̇d)θi = ui, (8)

where i ∈ I, φi(qi, q̇i, v
d, v̇d) is a known matrix of piecewise

continuous function, ‖ φi(qi, q̇i, v
d, v̇d) ‖ is bounded, and θi

is a vector of unknown constants.

Every agent estimates the unknown θi by θ̂i and constructs

an updating law
˙̂
θi = Γiτi(v

d, v̇d, qi, q̇i, qj , q̇j , θ̂i), j ∈
Ni, where the adaptation gain matrix Γi is positive def-

inite. Our goal is to design a distributed adaptive control

ui(v
d, v̇d, qi, q̇i, qj , q̇j , θ̂i), j ∈ Ni with the updating scheme

τi to synchronize the uncertain systems (8).

Problem 2: Under Assumptions 1 and 2, assume

ûi(v
d, v̇d, qi, q̇i, qj , q̇j), j ∈ Ni is the distributed control

law for the nominal systems (4) to synchronize, design an

additional distributed control ũi(v
d, v̇d, qi, q̇i, qj , q̇j , θ̂i), j ∈

Ni and the update scheme τi(v
d, v̇d, qi, q̇i, qj , q̇j , θ̂i), j ∈ Ni,

such that the control ui = ûi + ũi ensures for the uncertain

system (8) to achieve qi → qj , and q̇i → vd,∀i, j ∈ I, as

t → ∞.

IV. BACKSTEPPING DESIGN FOR THE LAGRANGIAN

SYSTEM SYNCHRONIZATION

In this section, we develop the backstepping-based syn-

chronization design for the nominal Lagrangian systems. We

first present the results in Theorem 1, then we illustrate how

to deduct the control law by backstepping.

A. Main Theorem

Theorem 1: Under Assumptions 1 and 2, Problem 1 is

solved with the distributed control law

ui = Miv̇
d + Civ

d + gi + k1(v
d − q̇i)

−k0Mi

∑

j∈Ni

aij(q̇i − q̇j)

−k0(Ci + k1)
∑

j∈Ni

aij(qi − qj), (9)

where i ∈ I, k0, k1 > 0. That is, for system (4), as t → ∞,

qi → qj , q̇i → vd,∀i, j ∈ I.

The proof is given in Section IV-C.

Remark 1: Theorem 1 encompasses as a special case the

exsiting popular double integrator consensus design in the

literature [1] [18], when Mi = I, Ci = 0. All these existing
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consensus algorithms have feedback gain conditions on each

agent’s control law when the communication topologies are

directed graphs with a spanning tree. These feedback gain

conditions depends on the graph Laplacian matrices, which

means each agent has to know the knowledge of the group.

In contrast, (9) is truly distributed since the gains k0 and

k1 only need to be positive. As long as the communication

topology has a spanning tree, the control law of each agent

does not depend on any other group information.

Remark 2: When the relative velocity measurement is

unavailable for the control law design, we can remove the

term k0Mi

∑

j∈Ni
aij(q̇i − q̇j) in (9) through increasing the

feedback gain k1, following the same procedure of Theorem

2 in [19].

B. Backstepping-based Control Design

For convenience, let pi = q̇i and we rearrange the

coordinates of the model (4) in a compact form as

q = [qT
1
, . . . , qT

n ]T , p = [pT
1
, . . . , pT

n ]T ,

M = diag{M1(q1), . . . ,Mn(qn)},

C = diag{C1(q1, q̇1), . . . , Cn(qn, q̇n)},

g = [g1(q1), ..., gn(qn)]T , u = [uT
1
, . . . , uT

n ]T ,

then we obtain

q̇ = p (10a)

ṗ = −M−1Cp − M−1g + M−1u. (10b)

We also denote the group reference as

v = [vdT
, . . . , vdT

]T
1×nm. (11)

In the following, we design the synchronization control

law using backstepping for the nominal system (10).

1) Step 1: For the first subsystem (10a), we take p∗ as a

virtual control input,

q̇ = p∗. (12)

Let

p∗ = −k0(L ⊗ Im)q + v. (13)

where k0 > 0 is the feedback gain, and v is defined in (11),

we have the Lyapunov function as

V0 =
1

2
qT

(

(LT PL) ⊗ Im

)

q, (14)

where P is defined in (2). Taking derivative of V0 along with

the trajectories of q̇ = −k0(L ⊗ Im)q + v gives

V̇0 = qT
(

(LT PL) ⊗ Im

)

(−k0(L ⊗ Im)q + v). (15)

Apparently, (L⊗Im)v = 0, since v is a vector with identical

elements. We have

V̇0 = −
k0

2
qT

((

LT QL
)

⊗ Im

)

q ≤ 0, (16)

where Q = PL + LT P is a positive semidefinite matrix

defined in (3). From Lemma 1, matrix Q has an eigenvector

1 associated with the simple eigenvalue 0, and all the other

eigenvalues are positive. It means Q and L have the same

Null space. From the invariance properties of eigenspace

[20], (L ⊗ Im)q ∈ Null{Q ⊗ Im} ⇒ q ∈ Null{L ⊗ Im} ⇒
(L⊗Im)q = 0. Therefore, we can rewrite the derivative (16)

as

V̇0 ≤ −
k0λ2(Q)

2
‖ q̃ ‖2

2
. (17)

where q̃ = (L ⊗ Im)q, λ2(Q) denotes the smallest positive

eigenvalue of Q. From (14), we also have

λmin(P )

2
‖ q̃ ‖2

2
≤ V0 ≤

λmax(P )

2
‖ q̃ ‖2

2
(18)

where λmin(P ) and λmax(P ) denote the smallest and largest

positive eigenvalue of matrix P , respectively. According to

Theorem 4.10 in [14], q̃ = 0 is exponentially stable, which

means qi → qj exponentially, as t → ∞,∀i, j ∈ I. From

(12)(13), q̇i → vd as q̃ → 0,∀i ∈ I.

Remark 3: The transformation (1) manipulates the spec-

tral structure of L so that Q has a zero eigenvalue associated

with eigenvector 1, and all the other eigenvalues are positive.

That is, matrix Q has a similar spectral as an undirected

graph Laplcacian matrix. This property enables the construc-

tion of the Lyapunov function (14).

2) Step 2: Following the backstepping procedure, we

define the error signal

z = p − p∗, (19)

and we want to regulate z to zero, so that when qi synchro-

nizes, pi will achieve the group reference vd.

Differentiating both sides of (19) yields

ż = ṗ − ṗ∗ = −M−1C(z + p∗) + M−1u − M−1g − ṗ∗

Then, we consider the system,

q̇ = z + p∗ (20a)

ż = −M−1C(z + p∗) + M−1u − M−1g − ṗ∗, (20b)

with the Lyapunov function

V = V0 +
k

2
zT Mz, (21)

where k > 0 is a free parameter to be chosen. Taking

derivative of (21) with respect to the trajectories of (20) gives

V̇ = qT ((LT PL) ⊗ Im)q̇ + kzT Mż +
k

2
zT Ṁz

= qT ((LT PL) ⊗ Im)z + qT ((LT PL) ⊗ Im)p∗

+
k

2
zT (Ṁ − 2C)z

+kzT M(−M−1Cp∗ − M−1g + M−1u − ṗ∗).

Since M and C are block diagonal matrices, we have

zT (Ṁ − 2C)z =
n

∑

i=1

zT
i (Ṁi − 2Ci)zi = 0. (22)

The second equation in (22) is from (7). Then, it follows that

V̇ = qT ((LT PL) ⊗ Im)z + qT ((LT PL) ⊗ Im)p∗

+kzT (−Cp∗ − g + u − Mṗ∗). (23)
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In (23), let

u = Cp∗ + g + Mṗ∗ − k1z, k1 > 0, (24)

we have

V̇ ≤ −
k0

2
λ2(Q) ‖ (L ⊗ Im)q ‖2

2

+qT ((LT PL) ⊗ Im)z − kk1z
T z

≤ −
k0

2
λ2(Q) ‖ (L ⊗ Im)q ‖2

2
−kk1z

T z

+
1

2ǫ1
qT

(

(LT Q1L) ⊗ Im

)

q +
ǫ1
2

zT z, ǫ1 > 0,

where Q1 = PLLT P . Since Q1 is positive semidefinite,

rank n − 1 and has 1 as an eigenvector with the simple

eigenvalue 0, we obtain,

V̇ ≤ −
ǫ1k0λ2(Q) − λn(Q1)

2ǫ1
‖ (L ⊗ Im)q ‖2

2

−
2kk1 − ǫ1

2
zT z (25)

where λn(Q1) denotes the largest eigenvalue of Q1. Choos-

ing suitable k0, k, k1 and ǫ1 that

ǫ1 >
λn(Q1)

λ2(Q)k0

and k1 > ǫ1
2k

(26)

yields V̇ ≤ 0. This finishes the backstepping design proce-

dure.

C. Proof of Theorem 1

With the control law (24), we have the derivative of the

Lyapunov function (21) negative semidefinite with respect

to the trajectories of system (10), by choosing parameters as

(26). Denote

x = [((L ⊗ Im)q)T , zT ]T , (27)

where z is defined in (19). Apparently, ‖ x ‖2= 0 means

qi = qj , q̇i = vd,∀i, j ∈ I. From (21), we have

V ≥ min{
1

2
λmin(P ),

kα

2
} ‖ x ‖2

2

V ≤ max{
1

2
λmax(P ),

kβ

2
} ‖ x ‖2

2

where P is defined in (2), and α, β are defined in (5) as the

lower and upper bound for the norm of the inertia matrix

Mi(qi), respectively. λmin(P ) and λmax(P ) represent the

smallest and largest eigenvalue of P , respectively. Mean-

while, from (25), we have

V̇ ≤ −k3 ‖ (L ⊗ Im)q ‖2

2
−k4z

T z

≤ −min{k3, k4} ‖ x ‖2

2

for some k3, k4 > 0. According to Theorem 4.10 in [14], the

nominal system (20) is exponentially stable at x = 0. Denote

a1 = min{ 1

2
λmin(P ), kα

2
}, a2 = max{ 1

2
λmax(P ), kβ

2
} and

a3 = min{k3, k4}, the convergence rate is estimated as

‖ x ‖2≤

(

a2

a1

)
1

2

‖ x0 ‖2 e−
a3

2a2
t. (28)

In distributed form, (24) is written as (9). Particularly,

k0, k1 only need to be positive in (9), since for any k0, k1 >
0, we can always find a large enough k to satisfy (26).

This finishes the proof of Theorem 1.

Remark 4: From the estimation (28), a1, a2 depend on the

system properties such as graph Lapalcian structure and the

inertial matrix. To increase the convergence rate, we have

to increase simultaneously the two parameters k0, k1 in the

control law, because it is the minimum of k3 and k4 in a3

that decides the convergence rate.

V. DISTRIBUTED ADAPTIVE REDESIGN TO ACCOUNT

FOR MODEL UNCERTAINTIES

Backstepping design procedure provides a control Lya-

punov function which leads to the adaptive redesign [12] to

account for model uncertainties.

Theorem 2: Under Assumptions 1 and 2, Problem 2 is

solved under the control law

ui = ûi − φiθ̂i, (29a)

˙̂
θi = Γiφ

T
i zi, (29b)

zi = q̇i − vd +
∑

j∈Ni

(qi − qj), ∀i ∈ I,

where ûi is the nominal control law (9), Γi is the adaptive

gain matrix. That is, for system (8), as t → ∞, qi → qj , q̇i →
vd,∀i, j ∈ I.

Proof: For convenience, we rearrange the coordinates

of (8) in the compact form the same as the one in the

backstepping design in Section IV-B, we obtain

q̇ = p (30a)

ṗ = −M−1Cp − M−1g + M−1(u + Φθ) (30b)

where Φ = diag{φ1, . . . , φn} and θ = [θT
1
, . . . , θT

n ]T . Then,

following the backstepping procedure, we have

q̇ = z + p∗ (31a)

ż = −M−1C(z + p∗) − M−1g − ṗ∗ + M−1(u + Φθ)(31b)

where z = p−p∗, p∗ is defined in (13). For system (31), we

consider the Lyapunov function

Va = V0 +
k

2
zT Mz +

k

2
θ̃T Γ−1θ̃ (32)

where Γ = diag{Γ1, . . . ,Γn} is the adaptation gain, and

θ̃ = θ − θ̂ is the estimation error. Calculate derivative of Va

with respect to the trajectories of system (31), take u = û+ũ,

we have

V̇a = qT ((LT PL) ⊗ Im)z + qT ((LT PL) ⊗ Im)p∗

+kzT (−Cp∗ − g + û − Mṗ∗)

+kzT (ũ + Φθ) + kθ̃T Γ−1 ˙̃
θ

If choosing û as the nominal control law (9), and ũ = −Φθ̂,
we have

V̇a ≤ −k3 ‖ (L ⊗ Im)q ‖2

2
−k4z

T z + kzT Φθ̃ + kθ̃T Γ−1 ˙̃
θ.

for some positive k3, k4. With
˙̃
θ = −ΓΦT z, we obtain

V̇a ≤ −k3 ‖ (L ⊗ Im)q ‖2

2
−k4z

T z ≤ 0.
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Since vd and ‖ φi ‖ are bounded, the trajectories (L ⊗
Im)q, z, θ̃ are all bounded. According to the Invariance-

like Theorem (Theorem 8.4 in [14]), we can conclude ‖
(L ⊗ Im)q ‖2

2
→ 0 and zT z → 0 as t → ∞, which is

equivalent to qi → qj , q̇i → vd, as t → ∞,∀i, j ∈ I.

Remark 5: When the model uncertainties cannot be ex-

pressed as a linear parametrization, we can apply the dis-

tributed Lyapunov redesign [19] for the robustification, but

Lyapunov redesign only ensures the bounded convergence

performance.

Remark 6: To improve the transient performance, we can

incorporate the adaptive redesign and nonlinear damping

together [12], as

ũi = −φiθ̂i − γizi ‖ φi ‖
2

2
, (33)

Take derivative of Va in (32) with respect to the trajectories

of system (31), and choose ui = ûi + ũi, û as the nominal

control law (9), and ũi as the redesign (33), we have

V̇a ≤ −k3 ‖ (L ⊗ Im)q ‖2

2

−k4z
T z − k

n
∑

i=1

γi ‖ zi ‖
2‖ φi ‖

2

+k
n

∑

i=1

zT
i φiθ̃i + k

n
∑

i=1

θ̃T
i Γ−1

i
˙̃
θi,

for some k3, k4 > 0. Still choose
˙̃
θi = −Γiφ

T
i zi, we have

V̇a ≤ −k3 ‖ (L ⊗ Im)q ‖2

2
−k4z

T z

−k
n

∑

i=1

γi ‖ zi ‖
2‖ φi ‖

2≤ 0.

Following the same procedure as the proof of Theorem 2, we

can prove the convergence of synchronization. The damping

term −γizi ‖ φi ‖2

2
will fortify the adaptive process and

smoothen the transient trajectories. We will show this point

in the simulation.

VI. SIMULATIONS

As shown in Fig. 1, assume the group has four two-link

manipulators and the communication topology is a digraph.

For convenience, we set the link weights aij = 1, j ∈ Ni,

i, j ∈ {1, 2, 3, 4}.

(a) Group topology (b) Robot model [21]

Fig. 1. Group of two-link robots

As shown in Fig. 1(b), the two-link manipulator model

[21] has two degrees-of-freedom, the generalized coordinates

q = [θ1, θ2]
T . The detailed modeling process is discussed

in [16]. We choose the parameters as the Table 5.1 in

page 129 of [21] and we set the reference velocity vd =
[ 0 2 sin(πt) ]T , 0 for Angle 1st and 2 sin(πt) for Angle 2nd.

The nominal control law is chosen as (9) with k0 = k1 = 5.

The synchronization performance is shown in Fig. 2.
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Fig. 2. Joint angle trajectories: Synchronization of the nominal model. The
group reference v

d = [ 0 2 sin(πt) ]T .

In the uncertain model, we perturbed 10% of the model

parameters, Fig. 3 shows the synchronization performance is

sensitive to the model uncertainties: synchronization cannot

be achieved.
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Fig. 3. Joint angle trajectories: Synchronization of the uncertain model.
The group reference v

d = [ 0 2 sin(πt) ]T .

To represent the model uncertainties in the linear paramet-

ric form, we choose the method presented in Page 1578 of

[16]. After the adaptive redesign (29) is adopted, the angle

trajectories are shown in Fig. 4. In the updating law (29b),

we choose the gain Γi = 50. We observe from Fig. 4 that the

synchronization is achieved after the parameter adaptation,

but the transient adjustment trajectories are quite erratic due

to the adaptive process.
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Fig. 4. Joint angle trajectories: Synchronization of the uncertain model
using adaptive redesign. The group reference v

d = [ 0 2 sin(πt) ]T .

To improve the transient performance, we add the non-

linear damping as (33) with γi = 20. Fig. 5 shows that

transient trajectories become smoother during the parameter

adaptation.

0 5 10 15 20
0.5

1

1.5

2

2.5

Time (sec)

A
n
g
le

 (
ra

d
)

(a) Adaptive plus nonlienar damping: Joint 1 
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Fig. 5. Joint angle trajectories: Synchronization of the uncertain model
using adaptive redesign plus nonlinear damping. The group reference v

d =
[ 0 2 sin(πt) ]T .

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we develop a distributed backstepping-based

synchronization design for uncertain networked Lagrangian

systems on directed communication topologies. To account

for model uncertainties, we apply adaptive control in a

distributed fashion. Backstepping-based design overcomes

the symmetry loss of directed graph structure and relax

the feedback gain conditions of the synchronization control.

Future work will extend to switching topology and sampled

data scenario.
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