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ABSTRACT

In this paper, we study the consensus output tracking control
for multi-agent systems with high-order dynamics under directed
communication topology. Time-varying reference is assumed to
be available to a subgroup of a team. A leader-follower scheme
is applied and robust consensus control is developed so that the
reference is treated as disturbances to those agents with no ac-
cess to the reference. The control scheme avoids estimation of the
derivatives of neighbor’s states through measurement as done in
previous work and guarantees a finite L,-gain from the reference
to an transformed output. Simulation results show satisfactory
performances.

1 INTRODUCTION

Recently, increasing attention has been paid to coordinated
control of multi-agent systems due to its numerous potential
applications in space-based interferometers, combat, surveil-
lance, reconnaissance systems, hazardous material handling,
and distributed reconfigurable sensor networks. Consensus, to
achieve an agreement on certain quantities of interest, is a crit-
ical problem in coordinated control of multiple agents. Based
on eigenvalue analysis, the consensus problem was studied in
[6,7,17,20-22,24,26,28,31]. The passivity-based framework
in [1] provides an explicit way for finding Lyapunov functions on
undirected communication graphs. In [4] [5], the authors study
an output synchronization condition for balanced communica-
tion topologies based on passivity. In [15], a model transforma-
tion is used to transform the original system into a reduced-order
system so that a sufficient condition can be obtained for all agents
to reach consensus with a desired H., performance.

These results are based on the fact that the consensus equi-

librium is a weighted average or a weighted power mean of the
initial conditions of all agents’ states. Thus, all agents achieve
consensus to some unknown constant. However, there are appli-
cations that need all agents to achieve a desired common refer-
ence, which may be time-varying. To track a time-varying con-
sensus reference, most existing consensus algorithms rely on the
assumption that all agents know the time-varying group refer-
ence.

Consensus with a constant reference is studied in [11]
with undirected switching inter-vehicle communications, and in
[12, 16] under a directed fixed interaction topology. Consen-
sus algorithm with a time-varying reference is proposed in [9]
with a variable undirected interaction topology. In [23,25], tak-
ing consensus reference as a virtual leader, consensus tracking
algorithms are proposed to track a time-varying consensus ref-
erence with a directed topology. In these work, the estimate
of the neighbors’ velocity, which is obtained by calculating nu-
merical differentiation of the local neighbors states, is needed
by each agent to achieve consensus tracking. The dynamics of
agents considered in these work are single-integrator or double-
integrator. In [30], consensus problem of multi-agent systems
with higher-order dynamics is studied. However, the same linear
model applies to each agent. In [27], the authors study /th-order
(I £ 3) consensus algorithms, present the idea of higher-order
consensus with a leader, and introduce the concept of an /th-
order model-reference consensus problem.

We consider the consensus output tracking under more gen-
eral conditions: the dynamics of agents are modeled as higher-
order linear systems, and they may be different among agents.
Moreover, we assume that time-varying tracking reference is
available to a subgroup of a team that has a spanning tree com-
munication topology. A reduced-order transformation is intro-

Copyright © 2010 by ASME



duced to transform the consensus output tracking problem into a
finite L,-gain control problem, which is then solved using robust
control techniques. Comparing to the existing work on consen-
sus output tracking, our proposed method can achieve consensus
tracking of a time-varying reference for agents that are modeled
as higher-order dynamics. Also, we achieve it by using robust
consensus control techniques without estimation of the deriva-
tives of neighbors’ states through measurement as done in [25].
A performance index in terms of an L,-gain is guaranteed from
the reference to the transformed output.

The subsequent sections are organized as follows: Section
2 introduces the related graph theory and Preliminaries provides
the statement of Consensus Output Tracking problem. In section
3, the main results are given on consensus output tracking. Sec-
tion 4 shows the simulation results. In section 5, we present the
conclusion.

2 Preliminaries and Problem Formulation
2.1 Graph Theory in Consensus

A digraph G consists of a triple (V,E,4), where V is a
finite nonempty set of nodes, £ € 42 is a set of ordered pairs
of nodes defined as edges, and a weighted adjacency matrix 4 =
[a;;] with nonnegative adjacency elements g;;. The node indexes
belong to a finite index set I = {1,2,...,n}. An edge of G is
denoted by ¢;; = (v;,v;), with the weight a;;, that is ¢;; € £ <=
ajj > 0, and we assume a;; =0 and a;; = 1,i # jforall i,j € I,
in unspecified. The set of neighbors of node v;; is denoted by
N, ={vi € vV (V,‘,Vj) € E}.

A directed path in a digraph is a sequence of edges as
(Vil >Vi2)7 (v,-z,vi3), . (v,-m7v,~m+l ), where Vi; € vV and €ijiji S
E,j=1,...,m. A directed graph has a directed spanning tree if
there exists at least one node that all the other node could reach
it following directed path directions.

The graph Laplacian associated with the graph G is defined
as

L(G)=L=A-14 ey

The diagonal matrix A = [A;;] where A;; = 0 for all i # j and
Aj; = deg ,, (vi). Since every row sum is zero, the Laplacian
matrix always has a zero eigenvalue with the right eigenvector of
one. We denote as

M=0, wo=1=(1,1,...,1)T )

Lemma 1. Ifadigraph G = (V,E, A) has a spanning tree and
with a Laplacian matrix L, there exists a non-singular matrix
M such that L = M~ JM, where J is the Jordan block with J =
diag{J,,0} where —J| is a (n—1) x (n— 1) Hurwitz matrix.

Proof. Since the digraph G = (V, E, 4) has a spanning tree, one
of eigenvalues of L is zero and others are greater than zero. The

Jordan Canonical Form Theorem ( [18]) guarantees that there
exists a non-singular matrix M such that L = M —1yM, where J
has the form J = diag{J;,0}.

2.2 Finite L,-Gain

Definition 1. ( [29]) Let G : Ly, — Lo,, where Ly, is the ex-
tended Ly space. Then G is said to have finite Ly gain if there
exist finite constants Y and by such that for all T > 0

T T
LG Pdr < [ P dibn, Vue Lo ()

G is said to have finite L, gain with zero bias if by in (3) is equal
to zero.

2.3 Problem Formulation
Let x; € R? be the state of the ith agent. We consider that the
dynamics of agents have the general form:

xz = A'ix'i + biu; @)
Yi = CiXi,

where the system matrix A; is of dimension p X p, the input ma-

trix b; € RP, and the output matrix ¢; is of 1 x p. The transfer

function from the input u to the output y is

H,' (S) = Cj (SI 7Al')71 b,‘ =

&)

We make the following assumptions:

Assumption 1. The systems (5), i = 1,...,n, have a uniform
relative degree: r, which is defined by r = degQ; (s) — degP; (s)
([8]).

Assumption 2. The system matrices A;, i = 1,...,n, are sta-
ble, i.e., the eigenvalues of A; are located on the left half of the
complex plane.

Assumption 3. Suppose that the consensus reference, denoted
by &4, satisfies

E;f zé((;(t’&ad) (6)

where fo(-,-) is r — 1 times differentiable and dr;;fo (2,84 (2)) is
bounded.

We have the following two different assumptions on the
communication graph:
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Assumption 4. The communication graph contains a span-
ning tree, and the reference is available to all agents.

Assumption 5. The communication graph contains a span-
ning tree, and the reference is available to at least one root agent
of the spanning tree.

Under Assumptions 1-3 and 4 or 1-3 and 5, the Consensus
Output Tracking problem is to design distributed control laws,
ui (x;,x;), jE€N;, i=1,...,n, such that the outputs y; of all agents
converge to the time-varying reference y,.

3 Main Results
By Assumption 1, we have ( [10])

Akp. — — _
c,Alrlj,l E k=0,....r—2 7
CiA,' bl' =S 7é 0.
Taking derivative of y; r times with respect to 7 gives
yl(r) = c,-Afx,- + c,-A;_lb,'ul- (8)
= c,-Afx,- + siu;.
The decentralized state feedback controllers
1 r
up=— (—ciAlxi +vi), 9)
reduces the input-output map into the following linear form
W= (10)

3.1 Adding Consensus Tracking Reference as a Vir-
tual Leader

We introduce the consensus reference (6) as a virtual leader
with the output y,. We name the virtual leader as the (n+ 1)th
agent without loss of generality. Prim’s algorithm ( [3, 19]) or
Kruskal’s algorithm ( [14]) can be applied to find all root agents
to a spanning tree. By Assumption 4 or 5, the (n+ 1)th agent is
the root agent of the expanded spanning tree. Thus, the Laplacian
matrix L = [lA,J] corresponding to the new graph is a (n+ 1) x
(n+ 1) matrix with [, 1) =0,i=1,...,n.

Denoting y,.1 = y, = &4, the dynamics

yf::g] = Vn+1 (11)

is the same as the dynamics of tracking reference (6) when

Vil = fo(rfl) (t,€4).Note that if the tracking reference is a con-
stant, fo (¢,€4) in (6) is zero. Thus, v, is zero.

Lety=[y1,...,Ynr1]” € R""!. The dynamics of the output
yofall n+1 agents is

=, (12)
where v = [vi,...,vp1]7.

3.2 Transformation to Stabilization Problem

From Lemma 1, there exists a non-singular matrix M e R!
such that I = M~1/M, where J is the Jordan form with J =
diag{J},0} where —J} is a n x n Hurwitz matrix.

From the definition of J, it is easy to see that

~ 1, ~
J= |:01><n:| Jl [In Onxl] . (13)

Thus, the Lapalace matrix L can be represented by

o ~ 1 ~ ~
L=m 1[01” }Jl (1 0n1 | M. (14)
Xn

We employ a dimension-reduced transformation
Znxt = [In Onx1 | My. 15)
Differentiating it r times with respect to time gives
2 =1y 051 | M. (16)

Substituting (12) into (16) yields

2 =1 O | M. (17)
Let
_ r—1 I, PRI | ST l (r—1)
v=WM [OMJJIMM { | ]dfo , (13)

0"1“} and
W =diag{wi,...,wyt1} withw; >0,i=1,...,n+ 1. We obtain
that

where d is the n+ 1th element of the vector M~} [

2" = By, (19)

where B = Jj [I,, O,lxl]MWM’l { Ly ]
len
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In the case when W is an identical matrix, the input ma-
trix B in the system (19) is J1. Note that the second term in (18)
picks a particular element in the null space of the one-dimension-
reduced transformation (15) in order to have v, = féril). To
solve the consensus output tracking problem, a distributed con-
trol is required. Thus, the control ¥V in the system (19) has the
following form:

V=—

Kz, (20)

™~

=1

To verify it, we substitute (20) into the first term in (18),
which gives

WM—I |:01n :|JA1ﬁ

1xn
. ) A
— -1 -1
= -WM Olin:| J] Zklz( )
I=1
r AR R @21
==Y kWm | "y [ Ot | My
=1 Ixn
P
=Y KWiy.

I=1
Since W is diagonal, from (21), we can see that the consen-
sus controller uses the neighbors’ information only. Also, from
(21), W takes a role of weighting coefficients of each agent’s dis-
tributed controllers.

Since £ has a decomposition (14) and from the definition of
z, we have Ly =M~! {0[" ] J1z. Based on this relationship, we

Ixn

can conclude that z = 0 yields Ly = 0. That is, the consensus
output is achieved. Thus, the consensus output is transformed
into a stability problem for the system (19) using control (20).

3.3 Consensus Output Tracking with All Agents Hav-
ing Access to £ "
Firstly, we solve the consensus output tracking problem de-
fined in Section 2.3 under Assumptions 1-3 and 4. We assume
that all agents can access the reference. Thus, the information

~1) . .
fér ) is available to all agents.
For convenience, we rearrange the coordinate in a compact

T
form Z = [zf,..., (Z(r71)> T € R™", then the system (19) can

be written in a compact form:

7 =AzZ+Bzv (22)
010 ---0 0
001 ---0
where Ay = and By = From the definition

of B, it is easy to see that rank (B) = n. Thus, the pair (Az,Bz) is
controllable.

Theorem 1. Under Assumptions 1-3 and 4, if there exist
scalars ki i =1,...,r, and a rn X rn symmetric positive definite
matrix P such that

® <0, (23)

where

0 ZP(Az—Bz([kl,...,kr] ®In))
+(Az = By([ki,.... k] QL) P,

and the notation ® < 0 represents that the symmetric matrix © is
negative definite,
then the distributed controller

! JEN;

I T .
uj=— (-CiAfxi —&-difé b Y kawi Y lij) (24)
=1

0n><1

where d; is the ith element of the vector M~ { 1

] , solves the

consensus output tracking problem.

Proof. Choose a Lyapunov function candidate as follows:
V(t)=2"(t)PZ(t). 25)

Taking time derivative of V (¢) along with the solutions of (22)
with controllers v = ([ki,. ..,k ®1,)Z gives

V(t) =2ZT (t)P(Az — Bz([ky,...,k]®L,)) Z (1)

=77 (1)0Z(1), (26)

where C) = P(Az—Bz([ki,....k]®L,)) +
(Az —Bz([ki,...,k]®1,))" P. By the assumption that ® < 0,
we have

V() < hax (©) | Z (1), @7)

where A (@) is the largest eigenvalue of ®. Since ® < 0, A (®).
From (27), the system (22) is exponentially stable by Lyapunov
stability theorem ( [13]).

Based on the statement in the last paragraph in Section 3.2,
from the stability of (22) we can conclude that consensus output
tracking problem is solved.
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3.4 Consensus Output Tracking with fé”l) Known by
Partial Agents

In the previous section, the consensus output tracking prob-
lem is solved under an assumption that all agents can access the
reference. Though it achieves consensus output tracking asymp-
totically, it is not practical. It is reasonable that only some agents
can access to the reference. In this section, we solve the con-
sensus output tracking problem under Assumption 5. The infor-

1)

mation féri is only available to at least one of the root agents.

)

Thus, for other agents that cannot access this information, fér_l
is treated as disturbances.

Defined a (n+1) X (n+ 1) matrix H = diag{h;} as h; = 1
if L(i,(n+1)) #0, h; =0if L(i,(n+1)) =0 and A4 1 = 1. To
keep controller distributed, we apply the following controller

v== YWyt | [E00. )
-1

Substituting the controller (28) and u,, | = E,,Ep into (16) and
considering the relationship H =1 — (I — H) gives

) = Bv+ Pyo (29)

where ® = fo(rfl), v = —Z,Clkiz“’l) and P, € R" =
[In 0,1 } M (X,41 —H)M~"'[014,,1]. Comparing it to the sys-
tem (19), a disturbance term appears.

We rearrange the coordinate in a compact form Z =

T
[,..., (z(’”)) |7 € R™", (29) can be written into:
Z:Azz+Bzu+PZm 30)

where P; = [OT,OT, “ee ,PET.

We focus on the state z = [I,”O,,X(,,l)n] Z to see if the map-
ping from the disturbance ® to the controlled output z(¢) has
finite L,-gain Y > 0 or equivalently, the closed-loop system satis-
fies the following dissipation inequality

T T
/||z(t)||2dt<yz/ lo(@)|2di, Yoely, ¥T>0.
0 0

Theorem 2. Under Assumptions 1-3 and 5, if there exist
scalars vy, ki i = 1,...,r, and a symmetric positive definite ma-
trix Pz satisfying

|:®—|—C5CZ PPZ:| <0 31)

PIp —y

where

® :P(AZ_BZ([kla---vkr] ®In))

+(Az = By([k1,.... k] L) P’
then the distributed controller
1 ; —1) w A
ui=— | —CAlxi+hidify” =Y kawi Y I (32)
Si I=1 JEN;

which reaches the each agent’s neighbor information only, solves
the consensus output tracking problem and the following L,-gain
performance inequality holds

T R T
/0 |Ly||”dt < A (S1) yz/o o (1)|[*dt, Vo € Ly,.
Proof. Choose a Lyapunov function candidate as follows:
V(t)=2" (t)PZ(1). (33)

Firstly, we proved the stability of the system (30 with ® = 0 in
the proof of Theorem 1. Now, we discuss the performance of the
system (30) with disturbance ®(r).

Taking derivative of V (¢) along with the solutions of (30)
with controllers v = ([ki,...,k,] ® I,)Z with respect to ¢ gives

V(t) =2ZT (t)P(Az — Bz([k1, - .- k] ®In))2z (1)
=71 (1)0Z(1) ¥ |0~ 5PLPZ()| | (34)
+LPPPLP 4 0]

By Schur Complement Formula [2], (31) is equivalent to
0+CLc,+y2PP,PIP <0. (35)

Substituting (35) into (34) yields

. 2
V(1) <P wll = llzll; =¥ H‘”— %PZTPZ@HZ (36)
<Pwll3 = llzll3.

Note that the left-hand side of (36) is the derivative of V
along the trajectories of the system (30). Integrating (36) yields

2V (Z(x)) -2V (Z(0))

(37)
<V g Iwlzde = [ llzllzdr,
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where Z (¢) is the solution of (30) for a given ® € £; [0,0). Using
V(Z) > 0, we obtain

J5 IzI3d < [ Iwll3 dr +2V (Zo). (38)

which is equivalent to the mapping from ® to z has finite L,-gain
Y.

From the definition of z, we have Zy = [ln 0,1 } Jiz. Thus,
we have [|Zy||, < Amax (/1) Yll@]),-

4 Simulation
We consider a group of agents with 3rd order linear dynam-
ics:

Xi =Ax;+Bu;, i=1,2,3,4,5

39
inCx,', ( )
010 0
whereA= (001 |,B=10 andC:[lOO]
000 1

We consider that the communication topology contains more
than one possible spanning trees shown in Figure 1. The corre-
sponding Laplacian matrix is

2 -10-1 0
0 100 —1
L=|0-110 0. (40)
0 001 —1
1000 1

69000

Figure 1.  Communication Topology with Spanning Trees

We assume that the desired output tracking trajectory is
€4 (¢t) = sin(t). Figure 1 shows us that there are 2 possible span-
ning tree with different leaders,3 -2 —+5— 1 —4 with4asa
leader,and4 — 5 — 1 — 2, 3 — 2 with 2 as a leader. We assume
that both agents 4 and 2 are able to access the reference as shown
in Figure 2. The Laplacian Matrix L of the new digraph with the

Figure 2. The Communication Topology after Adding a Virtual Leader

virtual leader is

(41)

From Lemma 1, there exists a non-singular matrix M

such that L. = M~! {OI" :|f1 (1, 01 | M where

Ixn

2.3478 1.028900
—1.02892.3478 0 0

1= 0 0 20
0 0 01

0 0 000.3044

S OO

(42)

(=)

We apply Theorem 2 to calculate controller as follows:

U= 7k124y — kzi,)'l — k3£j/'

0
—sin(7) —kj (x2(1) —sin(z))
ko (x2(2) — cos(1)) — ks (12(3) + sin1)
+ 0
—sin () — k1 (x4(1) —sin(2))
—kp(x4(2) —cos(t)) — k3(x4(3) + sin(z)
0

which guarantees that the outputs of all agents achieve consensus
and follow the desired trajectory sin (), which is verified in Fig.
3 and 4. If €;(¢) is available to Agent 4 only, the Laplacian
Matrix L of the new digraph with the virtual leader is

2 ~10-10 0
010010

. lo-110 0 o0

=109 002 -1-1 43)
1000 1 0
0000 0 0
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From Theorem 2, the distributed control is

U= —kll:y — kzlzy — k3l:jf
0
0
0
—sin(r) —kj(x4(1) —sin(z))
)

—ky(x4(2) — cos(t)) — k3 (x4(3) +sin(r)
0

which solves the consensus output tracking problem. Fig. 5 and
6 show that the performance is a little different from the case
when &, () is available to both Agent 2 and 4. We can see that
when the reference is available to more agents, the performance
of consensus tracking is better.

Outputs

Figure 3. Consensus Output Tracking with &d available for Agents 2 and
4

5 Conclusions

In this paper, we study the consensus output tracking con-
trol of multi-agent systems with higher-order dynamics under
directed communication topologies. A reduced-order transfor-
mation is found to transform the consensus problem to a stabi-
lization problem. When the tracking trajectory is time-varying,
the reference is treated as disturbances for those agents that can-
not access this information and the consensus output tracking
problem is then solved using robust control techniques. The per-
formance of consensus output tracking is measured by an L;-
gain. Simulation shows the effectiveness of our proposed algo-
rithm and that the performance can be improved by increasing
the number of agents that can access the reference.

|
os!

Tracking Errors

Figure 4. Tracking Errors with Ed available for Agents 2 and 4

Outputs

Figure 5. Consensus Output Tracking with &d available for Agent 4
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