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Abstract  Our objective is to develop a team of autonomous mobile robots that are
able to operate in previously unfamiliar outdoor environments. In these
environments, the robot teams should be able to cooperatively localize
even when DGPS is not consistently available, to autonomously generate
rough elevation maps of their terrain, and to use these generated maps
to plan multi-robot paths that enable them to accomplish their mission
objective, such as reconnaissance and surveillance or perimeter security.
This paper briefly outlines our approaches to achieving this objective,
along with some of our implementation results on our team of four
ATRV-mini mobile robots.
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1. Introduction

In practical applications of teams of mobile robots in outdoor terrains,
a serious consideration is the navigation of the robots across previously
unfamiliar terrain. For nearly all applications, these robots must be
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able to move safely to avoid navigation hazards. However, for many
applications safe navigation alone is not sufficient; the robots are also
required to find efficient paths through their terrain based upon their
mission requirements. These robots may need to operate for a period of
time in an outdoor area, and may need to develop knowledge about the
outdoor terrain. For example, reconnaissance and surveillance tasks may
require the robots to set up security patrols based upon terrain visibility.
Exploration tasks may require robots to search an outdoor area for an
object or feature of interest. Military applications may require a robot
team to move from point to point within given boundaries along the
most efficient route possible.

All of these practical applications require the robot teams to be able
to 1) localize within the outdoor environment, 2) map their terrain suffi-
ciently to enable efficient path planning, and 3) plan their paths accord-
ing to the mission goals. A significant amount of research has addressed
these individual and related problems, including localization, mapping
for indoor planar environments, cross-country and road-following navi-
gation, following trajectories roughly specified by a human operator, and
path planning for both indoor and outdoor environments given a terrain
map. In particular, the cooperative localization and mapping issue has
been very extensively studied. However, most of this prior research has
addressed the indoor environment. Very little prior research has ad-
dressed the complete problem of developing approaches that enable a
team of robots to be immediately placed in a previously unfamiliar out-
door environment, to generate sufficient knowledge of the terrain for safe
and efficient navigation, and to derive efficient multi-robot path plans.

A key challenge in this research is enabling the robot team to au-
tonomously develop a terrain map of their outdoor working environment.
Commonly available Digital Elevation Maps (DEMs) are not provided at
the terrain resolution needed for safe and efficient robot navigation. The
motion of a robot across a terrain using the Differential Global Position-
ing System (DGPS) to make position and elevation measurements will
not operate in environments that include trees, buildings, steep hills, and
so forth that generate a multi-pathing problem for DGPS. Even if con-
tinual DGPS could be guaranteed, robots would still need an additional
mechanism for recognizing obstacles and unsafe navigation regions that
should not be entered. In many applications, human operators could
mark unsafe regions on an image roughly correlated to the DGPS posi-
tions, but this approach does not address the need to have a map model
with sufficient elevation detail to enable efficient, repeated navigation
across the working area.
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An ideal solution would be to automate the challenging aspects of
this problem so that the robot team can indeed be placed in a new,
outdoor environment and operate successfully according to the mission
requirements. Our research is aimed at developing the algorithms and
the overall system that will enable this type of application to be solved
with robot teams. Our approach takes advantage of the heterogeneous
distributed sensing capabilities afforded by a team of multiple robots.
Robots should be able to assist each other as needed to provide collabo-
rative sensing capabilities that enable them to accomplish their mission.

The problem statement for the robot team that we are addressing is as
follows: given an unknown outdoor environment with incomplete DGPS
availability and unsafe navigation regions, develop an elevation map of
the terrain marked with the unnavigable areas and use this map to plan
multi-robot paths that satisfy the mission objectives (such as patrol
paths). For the purposes of this research, the unsafe navigation regions
are considered to be positive obstacles (e.g., trees, large rocks, etc.) and
areas whose slope or local roughness exceeds a pre-specified limit. For
now, we are not addressing the recognition of negative obstacles (e.g.,
holes in the ground or pools of water) or hidden obstacles (e.g., in grassy
areas), since much recent work is addressing this issue and it is expected
that these approaches can easily be inserted into our system.

The organization of this paper is as follows: Section 2 gives an overview
of the experimental setup. The next three sections then outline the ap-
proaches to the three key issues in this research — multi-robot localiza-
tion in Section 3, multi-robot mapping in Section 4, and multi-robot
path planning in Section 5. Examples of the results of our implementa-
tion to date are given in Section 6. We conclude with summary remarks
in Section 7.

2. Robot Team and Experimental Setup

The experimental platform (see Figure refsensorsuite) is a team of
four ATRV-Mini wheeled mobile robots with 4-wheel differential-drive
skid-steering. The experimental setup consists of a wireless mini-LAN,
a Local Area DGPS (LADGPS), a software platform (Mobility from
RWI) and codes developed in-house under Linux to read and log the
data for the sensors on each robot. The wireless LAN is set up outdoors
between an Operator Console Unit (OCU) and the robots. The OCU
consists of a rugged notebook equipped with a BreezeCOM access point
and antennas. Each robot has a BreezeCOM station adapter and an
antenna. The LADGPS is formed by the base station/antenna hardware
connected to the OCU and remote stations/antennas directly mounted
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Figure 1.  The ATRV-Mini sensor suite and experimental setup. The sensor suite
consists of encoders, DGPS, a compass and a PTZ camera. The experimental setup
depicted in the second photo consists of an operator console unit, a DGPS base station
and a base station antenna. See text for further details.

on each robot. Each robot’s station receives differential corrections from
the base station such that LADGPS accuracy of up to 10 centimeters is
obtainable. The distributed CORBA-based interface offered by Mobility
ensures that querying the sensor slots of particular robots is done in a
transparent decentralized manner by simply appending the robot’s ID
to all such queries.

The sensor suite is comprised of encoders that measure the wheel
speeds and heading, DGPS, and a magnetic compass. Two of the robots
are equipped with a pan-tilt-zoom (PTZ) capable camera for visual per-
ception and the remaining two robots are equipped with a SICK scanning
laser rangefinder.

3. Distributed EKF Localization

In outdoor environments, errors introduced due to distance traveled
can be significant and unpredictable. This is a direct consequence of the
undulatory nature of the terrain of travel and the uncertainties intro-
duced into sensor data. These challenges make it comparatively difficult
to realize successful navigation in unstructured outdoor environments.
Motivated by these factors, our approach is an Extended Kalman Filter
(EKF) based multi-robot heterogeneous localization framework similar
to that developed in Roumeliotis and Bekey, 2000, but differing in the
following ways: 1) the kinematic model of the robots is nonlinear, 2) no
absolute positioning system capable of providing relative pose informa-
tion is assumed to be available, and 3) the robots traverse on uneven
and unstructured outdoor terrain. In the first case, a kinematic model
that sufficiently captures the nonlinear vehicle motion is key to efficient
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use of sensor data and is central to successful autonomous navigation.
A nonholonomic robot with a nonlinear kinematic model performs sig-
nificantly better as the model efficiently captures the maneuvers of the
robot. In the second case, even though we consider systems including
DGPS, it only provides absolute position information for a single robot
subject to the number of satellites in view at any given time. DGPS is
not guaranteed to be continually available.

When some robots of the team do not have absolute positioning ca-
pabilities or when the quality of the observations from the absolute po-
sitioning sensors deteriorate, another robot in the team with better po-
sitioning capability can assist in the localization of the robots whose
sensors have deteriorated or failed. In such cases, if relative pose infor-
mation is obtained, casting the EKF-based localization algorithm in a
form such that the update stage of the EKF utilizes this relative pose
thereby provides reliable pose estimates for all the members of the team.
Under this approach, at least one of the robots must maintain global po-
sitioning. (In future work, we will be examining how to maintain this
constraint as the robots perform their primary mission.) We obtain rel-
ative pose information through one of two ways — a scanning laser range
finder-based, and a vision-based cooperative localization approach.

In the case of cooperative localization via laser, consider the two-robot
cases where robot #2 has a scanning laser range finder. The localiza-
tion process proceeds as follows. First, robot #2 identifies robot #1
and acquires a range and bearing laser scan. Then, after the necessary
preprocessing to discard readings that are greater than a predefined
threshold, the range and bearing to the minima identified in the laser
profile of robot #1 are determined. Finally, from the range and bearing
pertaining to the minima, the pose of robot #2 is inferred and relative
pose information is available for use.

In the case of vision-based cooperative localization, the robot’s camera
is used to provide relative position information. In the case where two
robots are performing cooperative localization with the camera-equipped
robot #1 lacking in absolute positioning capability, relative position in-
formation is obtained as follows. First, robot #1 searches the vicinity
for another robot (say, robot #2) whose pose is known (this is deter-
mined via communication). Robot #1 then visually acquires robot #2
using an object recognition algorithm. The algorithm identifies the cen-
troid of the robot within the image frame using a color segmentation
scheme and marks its pixel coordinates on that frame. An incremental
depth-from-motion algorithm (see Fregene et al., 2002 for more details)
computes the depth for a window within the frame that encloses these
coordinates. The required relative position is inferred from the computed



6

depth and the bearing of robot #2 relative to robot #1 is approximately
determined from the lateral displacement between the enclosed pixel co-
ordinates and the coordinates of the frame’s optical center. The robot
states are then updated. More details on these approaches are available
in Madhavan et al., 2002.

4. Multi-Robot Mapping

Incremental terrain mapping takes place via four main processes. An
incremental dense depth-from-camera-motion algorithm (which is an
adaptation of the work reported in L. Matthies, et al., 1989) is used
to obtain depth ranges to various features in the environment. The rel-
ative pose of the robots at these locations are associated with particular
depth information. An elevation gradient of the terrain is determined
by fusing GPS altitude information and vertical displacements obtained
from inclinometer pitch angles. The depth and elevation information
are then registered with their associated covariances. The terrain map
is updated to incorporate the registered values at their proper coordi-
nates. The covariances associated with each measurement provides the
confidence the algorithm has in that measurement. In the case of over-
lapping areas, this confidence determines whether or not the map is
updated. The overall schematic diagram of the algorithm is shown in
Figure 2. More details on our approach are available in Fregene et al.,
2002.

5. Multi-Robot Path Planning

Our multi-robot path planning approach operates as follows. First,
each robot plans its own path independently using D*. The path is
broadcast to all other robots, so every robot knows all path informa-
tion. Under our approach, the paths that are planned for each robot are
fixed, i.e., the following steps will not alter the (z,y) sequences of the
paths. Instead, we define velocity profiles so that, while robots follow
their paths, they insert delays as required to avoid collisions. Once the
paths are planned, the collision check is then executed. If the collision is
a time-space collision, that is, two or more robots reach the same point
at the same time, an N-dimensional coordination diagram (CD) is con-
structed with collision regions marked as obstacles in the diagram. D*
searches for a free trajectory in the coordination diagram. The trajec-
tory is then interpreted into a velocity profile for each robot, and the
performance index of the current trajectory solution is calculated. Since
the searching in CD is distributed across the robots, each search can take
a different cost function to minimize based upon differences in priorities
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Figure 2.  The overall terrain mapping scheme

between robots at intersections. Then the performance index and veloc-
ity profile are broadcast to all other robots. An evaluation is done to
get a minimum value of the performance index, and the corresponding
velocity profile is chosen. More details on our approach are available in
Guo and Parker, 2002.

6. Experimental Results

We have implemented portions of this approach for multi-robot lo-
calization, mapping, and path planning in outdoor environments using
distributed sensing. We briefly mention some of these results here, re-
ferring the reader to Fregene et al., 2002; Madhavan et al., 2002; Guo
and Parker, 2002 for more details.

Figures 3 and 4 show the results for the laser-based cooperative lo-
calization described in Section 3. Figure 3 shows the estimated paths of
robots #1 and #2. The pose standard deviations of robot #2 in Figure
4 demonstrate the utility of the relative pose information in accomplish-
ing cooperative localization. At time = 21 seconds, DGPS becomes
unavailable as indicated by the rise in the z standard deviation. It can
be seen that as a result of the laser-based relative position information,
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Figure 3. EKF estimated robot paths. The solid line denotes the estimated path
of robot #2 and the dotted line that of robot #1. (S1,E1) and (S2,E2) denote the
start and end positions for robots #1 and #2, respectively.

there is a sharp decrease in the position standard deviations of robot
#2 (marked by arrows). As the motion of the robot is primarily in the
z direction when the corrections are provided, the resulting decrease in
the z standard deviation is noticeable compared to those in y and ¢.

Figure 5 shows a partially updated terrain map that was developed
by two robots, Augustus and Theodosius, using the mapping procedure
outlined in Section 4. Although this update is still performed offline for
now, it shows the elevation profile across the area traversed by each
robot, with prominent features within the robot’s field of view during
the motion segment being marked on the map.

Our multi-robot motion planning algorithm has been implemented in
a 3D vehicle planner and control simulation environment. For typical
multi-robot paths, collisions will occur if the paths are planned sepa-
rately. Therefore velocity planning is necessary to resolve potential col-
lisions. The velocity planning (D* search in coordination diagram) on a
typical 117 x 95 x 99 grid took about 4 minutes. No consideration was
given to reduce computation time in the software implementation. The
velocity profiles for a typical example will give several solutions. For ex-
ample, for a three-robot situation, one solution would be to insert three
unit time delays for robot 2 at the beginning of its movement, a second
solution is to insert four unit time delays for robot 3 at the beginning of
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the pose of robot #2. The external corrections offered by the laser-based localization
scheme are marked by arrows.
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its movement, and a third solution is identical to the first. The differ-
ences in schedules are caused by assigning different priorities to robots.
Since the first index is the smallest, the corresponding set of velocity
profiles are chosen for each robot. It should be noted that although
more complicated velocity profiles (with many stop-move schedules in
the middle of the velocity profile) can be generated by the described
algorithm, from a practical concern, based on the same or a comparable
performance index value, it is preferred to have delays at the beginning
of the velocity profiles, or to be consolidated, instead of requiring a lot
of move-stop-move procedures during the robot movement. This can be
achieved by smoothing zig-zag paths in the searching algorithm. Exper-
imental work is underway to implement this algorithm on our group of
ATRV-mini all-terrain mobile robots.

7. Summary

In this paper, we have briefly outlined our approach toward using
distributed heterogeneous sensing to achieve cooperative localization,
mapping, and path planning in outdoor terrains using teams of mobile
robots. We have sketched our algorithms toward achieving this goal
and have given some initial results from implementation on our team
of ATRV-mini robots. Our ultimate objective is to generate teams of
mobile robots that can be placed in a previously unfamiliar outdoor envi-
ronment, and use their distributed sensing capabilities to localize them-
selves, generate an approximate elevation map, and generate multi-robot
paths that enable them to accomplish their intended objectives, such as
perimeter security, reconnaissance and surveillance, and exploration.
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