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Abstract— This paper addresses the problem of determining
a collision-free path for a mobile robot moving in a dynami-
cally changing environment. By explicitly considering kinematic
model of the robot, the family of feasible trajectories and their
corresponding steering controls are derived in a closed form.
Then, a new collision avoidance condition is developed for the
dynamically changing environment, it consists of a time criterion
and a geometrical criterion, and it has explicit physical meanings
in both the transformed space and the original working space.
By imposing the avoidance condition, one can determine the
corresponding steering angle for collision avoidance in a closed
form. Such a path meets all boundary conditions, is continuous,
and can be updated in real time once a change in the environment
is detected. Simulations show that the proposed method is
effective.

I. INTRODUCTION

In the real-world applications, it is desirable that mobile
robots are capable of exploring or moving within a dynamic
environment. In addition, the environment is usually uncertain
as complete information and future trajectories of obstacles
cannot be assumed apriori. In this context, the problem natu-
rally arising is how to real-time plan a collision-free path in
the presence of dynamically moving objects and with a limited
sensing range. A preferred solution to the problem would be
one that takes kinematic constraints into consideration, explic-
itly handles dynamically moving objects, and is analytical.

Standard motion planning approaches [1], such as potential
field [2] and vector field histogram [3], are developed to deal
with geometrical constraints, more specifically, holonomic
systems in the presence of static obstacles. For nonholonomic
systems such as mobile robots, their kinematic constraints
make time derivatives of some configuration variables non-
integrable, and hence a collision-free path in the configuration
space is not necessarily feasible (that is, may not achievable
by steering controls) [4], [5]. Up to now, most of the existing
results deal with nonholonomic systems and object avoidance
in one of the two ways. One way is to exclusively focus upon
motion planning under nonholonomic constraints. Without
considering obstacles, many algorithms have been proposed,
for instance, differential geometry [6], differential flatness [7],
input parameterization [8], [9], [10], optimal control [11].

The second way is to modify the result from a holonomic
planner so the resulting path is feasible. For example, the
online suboptimal obstacle avoidance algorithm in [12] is
based on Hamilton-Jacobi-Bellman equation [13], [14], it
admits stationary obstacles, a planned path is holonomic and
its feasibility has to be verified for a chosen nonholonomic
mobile robot. The nonholonomic path planner in [15] is based
on the same principle, that is, a path is generated by ignoring
nonholonomic constraints and it is then made feasible via
approximation by using a sequence of such optimal path
segments as those in [16].

Exhaustive search or numerical iteration based methods
have also been used to deal with nonholonomic constraints and
collision avoidance. The search based algorithm [17] involves
discretization of the configuration space in order to build and
search a graph whose nodes are small axis-parallel cells, two
cells are called to be adjacent if there is a feasible path segment
between them, and these path segments are constructed by
discretizing the controls and integrating the equations of
motion. In [18], nonholonomic motion planning is formulated
as a nonlinear least squares problem in an augmented space,
obstacle avoidance is included as inequality constraints, and a
solution is found numerically. In [19], trajectory planning (so
called kinodynamic planning) is pursued by considering first-
order differential equations and static obstacles and by finding
appropriate inputs through a random tree search.

There have been a few results on dealing with moving
obstacles. It is proposed in [20] that, if the entire trajectories of
the moving obstacles are known apriori, an (n+1) dimensional
configuration-time space can be formed by treating the time as
an state variable and recasting the dynamic motion planning
problem into a static one. In [21], kinodynamic motion plan-
ning with moving obstacles is done using a randomizd motion
planner in which a control is chosen randomly from the set
of admissible values to integrate equation of motion and, if
the resulting local trajectory is collision free, its endpoint is
put into a probabilistic roadmap. Similar to the approach in
[17], the random motion planning of [21] is a search method.
In [22], the dynamic motion planning problem is decomposed
into two subproblems: a static path planning problem and a



velocity planning problem. However, this approach requires
complete information (including future trajectories), and its
solution is not guaranteed. To the best of our knowledge,
there has been no comprehensive result on motion planning for
nonholonomic systems operating in a dynamical and uncertain
environment.

In our recent work [23], a new analytic solution to mobile
robot trajectory generation in the presence of moving obstacles
is proposed. Specifically, it has been shown that, for a car-
like mobile robot (and others in the (2, 4) chained form),
a family of 6th-order piecewise-constant polynomials can
be used to describe feasible trajectories (for which steering
controls are explicitly found) and that, upon satisfying all
boundary conditions, collision-free trajectories can be ex-
pressed in terms of one parameter. In this article, we simplify
the method in [23] and use a 5th-order piecewise-constant
polynomials to parameterize the feasible trajectories. Based on
the developed new collision avoidance criterion, we determine
the corresponding steering angle so as to generate a collision-
free trajectory. The resulting trajectory is continuous, and the
corresponding steering controls are piecewise continuous. As
a result of the piecewise representations used, the paradigm
works if obstacles have varying speeds and if on-board sensors
has a limited range.

II. PROBLEM FORMULATION

In this paper, we shall consider the general problem of
trajectory planning for mobile robots in a dynamic and
changing environment. As shown in figure 1, possible 2-D
environmental changes are due to limited ranges of on-board
sensors and to appearance and/or motion of objects. To solve
the problem, one can make the following choices without loss
of any generality:

• The robot under consideration is represented by a 2-
dimensional circle with center at O(t) = (x, y) and of
radius r0. Its motion is controlled but nonholonomic and
is represented by the velocity vector vr(t). The range of
its sensors is also described by a circle centered at O(t)
and of radius Rs.

• The ith object, i = 1, · · · , n, will be represented by a
circle centered at point Oi(t) and of radius ri, denoted
by Bi(Oi(t), ri). For moving objects, the origin Oi(t)
is time varying and moving with linear velocity vector
vi(t).

• The robot starts at initial position Oo and initial orienta-
tion θ0, moves collision free, and arrives at final position
Of and with final orientation θf .

Intuitively, the trajectory planning problem has at least one
solution if the robot is capable of moving sufficiently fast and
if there exists a finite time instant Tf > 0 such that the free
space is connected and Of �∈ Bi(Oi(t), ri) for t ≥ t0 + Tf

and for all i = 1, · · · , no.
However, the general trajectory planning problem is phys-

ically ill-posed as its solution will require apriori knowledge
of both the objects’ present and future motion information. To
overcome this difficulty while making the proposed method
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Fig. 1. A general setting of trajectory planning in the presence of moving
obstacles

practically implementable, we use piecewise constants and
functions to represent arbitrary functions. Specifically, within
a specified period of time t ∈ [t0+kTs, t0+(k+1)Ts) (where
Ts is often small),

• Velocity vi of the ith object is constant, denoted by vk
i .

• Only the objects in the range of sensors are considered.
• Trajectory and control of the robot are chosen to be

functions with piecewise constant parameters.

In some applications, not only is the sensor range limited, the
final position Of may not be fixed either and thus can also
be represented by a piecewise constant function. Therefore,
trajectory planning or re-planning is done for a snapshot of
figure 1, and is constantly updated. To do so efficiently online,
the proposed piecewise-constant parameterization must yield
analytical solutions.

A. Robot Modeling

In this paper, a new paradigm is proposed to plan trajectories
and avoid moving obstacles for nonholonomic mobile robots.
In the new paradigm, kinematic models of the car-like robots
are explicitly considered in trajectory planning.
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Fig. 2. A car-like robot

The car-like robot is shown in figure 2, its front wheels
are steering wheels, and its rear wheels are driving wheels
but have a fixed orientation. The distance between the two



wheel-axle centers is l, the midpoint along the line connecting
the axle centers is set to be the guidepoint (GP ), and the
whole vehicle is physically within a circle of radius R and
centered at the guidepoint. Trajectory planning will be done
for the guidepoint. Let the generalized coordinates be q =
[x y θ φ]T , where (x, y) are the Cartesian coordinates of the
guidepoint, θ is the orientation of the robot body with respect
to the x axis (that is, the slope angle of the line passing through
the guidepoint and center of the back axle), φ is the steering
angle, and let ρ be the radius of the (back) driving wheels. Its
kinematic model can be given by:


ẋ
ẏ

θ̇

φ̇


 =




ρ cos(θ) − ρ
2 tan(φ) sin(θ) 0

ρ sin(θ) + ρ
2 tan(φ) cos(θ) 0

ρ

l
tan(φ) 0

0 1




(
u1

u2

)
,

(1)
where u1 is the angular velocity of the driving wheels, and u2

is the steering rate of the (front) guiding wheels. The kinematic
model (1) has singularity at φ = ±π/2, which does not occur
mathematically or in practice by limiting the range of φ within
(−π/2 π/2). The range of θ is also set within (−π/2 π/2)
to ensure an one-to-one mapping of following transformations
of coordinates and inputs:

z1 = x − l

2
cos(θ),

z2 =
tan(φ)

l cos3(θ)
,

z3 = tan(θ),

z4 = y − l

2
sin(θ),

(2)

and

u1 =
v1

ρ cos(θ)
,

u2 = − 3 sin(θ)
l cos2(θ)

sin2(φ)v1 + l cos3(θ) cos2(φ)v2.
(3)

Under the transformations, kinematic model (1) can be mapped
into the so-called chained form, that is,

ż1 = v1

ż2 = v2

ż3 = z2v1

ż4 = z3v1

(4)

In this paper, we use the car-like robot as the example and
adopt the chained form in solving the problem of trajectory
planning. The proposed steering paradigm for trajectory plan-
ning and object avoidance has the following features:

• Kinematic models (and possibly dynamic model) of
robots are explicitly considered.

• Motion of objects are represented by piecewise constant
velocities, and collision avoidance criterion is defined
analytically and thus less conservative than the existing
methods.

• Piecewise constant parameterization will be used to de-
fine trajectory and steering control, and their solutions are
obtained in closed-form.

III. PROPOSED STEERING PARADIGM

The proposed paradigm consists of three basic steps, and it
is based on the two corner stones of steering and collision-
free criterion (newly defined for moving objects). On one
side, it begins with kinematic model, that is, steering strate-
gies are used to find out the class of physically achievable
trajectories. On the other hand, collision avoidance criterion
can be explicitly developed for moving objects. As the third
step, a specific class within all achievable trajectories will first
be parameterized and then solved using the object avoidance
criterion.

A. Feasible Trajectories

A trajectory is feasible if it satisfies both the boundary
conditions imposed and dynamics of the kinematic model (if
it exists). The chained form in equation (4) is used as the
standard one to study and determine trajectories that observe
the kinematic model. The following result shows a general
class of feasible trajectories in terms of transformed state z.
The proof can be done by direct computation.

Lemma 1: : Consider the kinematic model in chained form
(4). Then, given any boundary conditions z(t0) = z0 =
[z0

1 , z0
2 , z0

3 , z0
4 ]T and z(tf ) = zf = [zf

1 , zf
2 , zf

3 , zf
4 ]T (for some

tf > 0), there exist inputs v1 = C (for some non-zero
constant C) and v2 to make any trajectory z4 = F (z1) (in
the z1 − z4 plane) feasible provided that z0

1 �= zf
1 and that,

through transformation (2), function z4 = F (z1) also satisfies
all the boundary conditions in the original state space.

Remark 3.1: If zf
1 = z0

1 , v1 = 0 which causes a singularity
in determining v2. In this case, the singularity can be avoided
by choosing an intermediate point zm with zm

1 �= z0
1 = zf

1 and
by proceeding with planning two paths in the z1 − z4 plane.
♦

Lemma 1 shows that, by making z4 = F (z1) conform the
boundary conditions (x0, y0, θ0, φ0) and (xf , yf , θf , φf ) in the
original state space, the steering problem can be solved. In
this paper, for a feasible trajectory, the following boundary
conditions on boundary points, slopes, and curvatures are
applied: given z4 = F (z1),

z0
1 = x0 − l

2 cos(θ0), F (z0
1) = y0 − l

2 sin(θ0),
dz4
dz1

∣∣∣
z1=z0

1

= tan(θ0), d2z4
d(z1)2

∣∣∣
z1=z0

1

= tan(φ0)
l cos3(θ0)

, (5)

zf
1 = xf − l

2 cos(θf ), F (zf
1 ) = yf − l

2 sin(θf ),
dz4
dz1

∣∣∣
z1=zf

1

= tan(θf ), d2z4
d(z1)2

∣∣∣
z1=zf

1

= tan(φf )
l cos3(θf ) .

(6)

Remark 3.2: The above boundary conditions on the second-
order derivatives, together with those on first-order derivatives,
are equivalent to boundary curvatures (κ) of the trajectory as

κ = d2z4
dz2

1
/

[
1 +

(
dz4
dz1

)2
]3/2

. ♦

B. Criterion for Avoiding Dynamic Objects

To illustrate the criterion in the proposed steering paradigm,
consider the robot (of coordinates (x(t), y(t))) and the ith
object (of coordinates (xi(t), yi(t))) in figure 3 for the period



t ∈ [t0 + kTs, t0 + (k + 1)Ts). In the figure, the robot is

moving at a vector velocity vr
�
= [ ẋ(t) ẏ(t) ]T (which is to

be determined), the object has an initial location Oi = (xk
i , yk

i )
where xk

i = xi(t0 + kTs) and yk
i = yi(t0 + kTs), and point

Oi is moving at a known constant velocity vk
i

�
= [ vk

i,x vk
i,y ]T .
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Fig. 3. Steering paradigm: robot and the ith object

To develop a criterion for collision avoidance, we define the
robot velocity relative to that of the ith object as

vk
r,i

�
= vr − vk

i =
[

vk
r,i,x

vk
r,i,y

]
=

[
ẋ − vk

i,x

ẏ − vk
i,y

]
. (7)

Using the relative velocity, figure 3 is transformed into figure
4 in which the object is “static.” According to figure 4, the
collision avoidance criterion in the y − x plane should be: for
x′

i ∈ [x′
i, x′

i] with x′
i = xk

i − ri − R and x′
i = xk

i + ri + R,

(y′
i − yk

i )2 + (x′
i − xk

i )2 ≥ (ri + R)2,

where x′
i = x− vk

i,xτ , y′
i = y − vk

i,yτ , and τ = t− (t0 + kTs)
for t ∈ [t0+kTs, t0+T ], with T being the time for the mobile
robot to complete its maneuver.

))('),('( tytx

k
irv ,

rv

k
iv-

ir R+

k
iO ),( k

i
k
i yx=

'
ix x tauvk

xi ,= -

'
iy y tauvk

y,1= -

'
ix '

ix

Fig. 4. Relative velocity of the robot with respect to the ith obstacle

It follows from state transformation (2) that, given any
steerable path z4 = F (z1), the corresponding feasible path
in the x − y plane is

y = F (x − 0.5l cos(θ)) + 0.5l sin(θ).

Thus, the corresponding collision avoidance criterion in the
transformed z4 − z1 space is: whenever xk

i ∈ [z′1,i +
0.5l cos(θ) − ri − R, z′1,i + 0.5l cos(θ) + ri + R],
(

z′4,i +
l

2
sin(θ) − yk

i

)2

+
(

z′1,i +
l

2
cos(θ) − xk

i

)2

≥ (ri + R)2, (8)

where z′1,i = z1 − vk
i,xτ and z′4,i = z4 − vk

i,yτ .
Note that, although θ can be determined from z3 and z3 can

be obtained as a result of applying lemma 1, exact mapping
from z to (x, y, θ) should not be used to numerically solve
the problem of trajectory planning by imposing criterion (8).
Instead, we choose to develop a new criterion only in terms of
z1 and z4 (or z′1 and z′4) so that analytical solution can be found
for the problem of trajectory planning. To this end, note that all
possible locations of point (z′1,i, z

′
4,i) are on the left semi circle

centered at (xk
i , yk

i ) and of radius l/2 for θ ∈ [−π/2, π/2]. As
shown in figure 5, plotting a family of circles of radius (ri+R)
along the left semi circle renders the region from which the
robot must stay clear, and the region is completely covered by
the unshaded portion of the circle centered at (xk

i , yk
i ) and of

radius (ri + R + l/2). Mathematically, the proposed collision
avoidance criterion in the z4 − z1 plane is:

(z′4,i − yk
i )2 + (z′1,i − xk

i )2 ≥
(

ri + R +
l

2

)2

, (9)

provided that

z′1,i ∈ [xk
i − ri − R − 0.5l, xk

i + ri + R]. (10)

It is apparent from figure 5 that criterion (9) implies criterion
(8). Once a steering method is chosen, the time interval during
which criterion (9) should be imposed to avoid collision can
be found from (10). That is, the proposed collision avoidance
scheme has two parts: time criterion (10), and geometrical
criterion (9).
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Fig. 5. Illustration of the collision avoidance criterion in the transformed
plane

C. A Solution to Feasible Collision-Free Trajectory

Let Ts be the sampling period such that k = T/Ts is an
integer, then for k = 0, · · · , k̄−1, a specific candidate class of



feasible trajectories are parameterized by a quintic polynomial
function as

z4(z1) = F (z1) = akf(z1), (11)

where ak = [ak
0 , ak

1 , · · · , ak
5 ] is a constant vector to be deter-

mined, and f(z1) = [1, z1(t), (z1(t))2, · · · , (z1(t))5]T is the
vector composed of basis functions of z1(t). Let the steering
control v1(t) be

v1(t) = C =
zf
1 − z0

1

T
, (12)

then, for k > 0, we can obtain the boundary condition at time
instant t = t0 + kTs as:

zk
1 = z0

1 +
k(zf

1 − z0
1)

k
,

zk−
2 = zk−1

2 +
∫ t0+kTs

t0+(k−1)Ts

vk−1
2 (t)dt,

zk
3 = zk−1

3 +
zf
1 − z0

1

k
zk−1
2 (13)

+
zf
1 − z0

1

T

∫ t0+kTs

t0+(k−1)Ts

∫ s

t0+(k−1)Ts

vk−1
2 (t)dtds,

zk
4 = zk−1

4 +
zf
1 − z0

1

k
zk−1
3 +

Ts

2
zf
1 − z0

1

k
zk−1
2

+
∫ t0+kTs

t0+(k−1)Ts

∫ τ

t0+(k−1)Ts

∫ s

t0+(k−1)Ts

Cvk−1
2 (t)dtdsdτ.

Remark 3.3: The notation for boundary condition zk−
2 has

been used to express the computed value of z2 at time instant
t = t0 + kTs based on the steering control vk−1

2 (t) for t ∈
[t0+(k−1)Ts, t0+kTs]. At time instant t = t0+kTs, we will
determine whether the boundary condition zk−

2 will satisfy the
developed obstacle avoidance criterion. If not, we will change
the value of zk−

2 to zk+

2 at time instant t = t0 + kTs which is
computed out using the obstacle avoidance condition (will be
clearly shown shortly), and then according to new established
boundary conditions zk+

2 , zk
3 and zk

4 , the coefficients ak and
the corresponding steering control vk

2 (t) for the time interval
t ∈ [t0 + kTs, t0 + (k + 1)Ts] will be determined.

To this end, the coefficients can be obtained by applying
boundary conditions either (5) or (13) and (6) as:

(ak)T = (Bk)−1Y k, (14)

where

Y k =




zk
4

zk
3

zk
2

yf − l
2 sin(θf )

tan(θf )
tan(φf )

l cos3(θf )




,

Bk =




1 zk
1 (zk

1 )2 (zk
1 )3 (zk

1 )4 (zk
1 )5

0 1 2zk
1 3(zk

1 )2 4(zk
1 )3 5(zk

1 )4

0 0 2 6zk
1 12(zk

1 )2 20(zk
1 )3

1 zf
1 (zf

1 )2 (zf
1 )3 (zf

1 )4 (zf
1 )5

0 1 2zf
1 3(zf

1 )2 4(zf
1 )3 5(zf

1 )4

0 0 2 6zf
1 12(zf

1 )2 20(zf
1 )3




,

and zk
2 takes the value of zk−

2 or zk+

2 based on obstacle
avoidance condition.

By (11), since z4(z1) = fT (z1)ak = fT (z1)(Bk)−1Y k,
noting the expression of Y k, we can further have

z4(z1) = f1(z1)zk
2 + f2(z1), (15)

where f1(z1) and f2(z1) are functions depending on z1(t) and
boundary conditions zk

4 , zk
3 , zf

4 , zf
3 , zf

2 , zk
1 and zf

1 as follows:

f1(z1) = fT (z1)(Bk)−1
[

0 0 1 0 0 0
]T

,

f2(z1) = fT (z1)(Bk)−1
[

zk
4 zk

3 0 zf
4 zf

3 zf
2

]T
.

Let the centers of objects Oi be located at (xk
i , yk

i ) at t =
t0 + kTs, and that these objects are all moving with known

constant velocities vk
i

�
= [ vk

i,x vk
i,y ]T for t ∈ [t0 + kTs, t0 +

(k+1)Ts)]. To satisfy the obstacle avoidance criterion (9), we
will determine the value of zk

2 based on the following second-
order inequality (or inequalities): ∀i ∈ {1, · · · , nk

o}, where nk
o

is the number of obstacles that are in the sensor range of robot
at time instant t0 + kTs,

min
t∈[t∗

i
,t

∗
i ]

g2(z1(t), k)(zk
2 )2 + g1,i(z1(t), k, τ)zk

2 +

g0,i(z1(t), k, τ)|τ=t−t0−kTs
≥ 0, (16)

where [t∗i , t
∗
i ] ⊂ [t0+kTs, T ] is the time interval during which

xk
i ∈ [z1(t)−vk

i,xτ−ri−R, z1(t)−vk
i,xτ+0.5l+ri+R]. (17)

In (16), functions g2(·), g1,i(·) and g0,i(·) are defined as
follows:

g2(z1(t), k) = [f1(z1)]2,
g1,i(z1(t), k, τ) = 2f1(z1)

[
f2(z1) − yk

i − vk
i,yτ

]
,

g0,i(z1(t), k, τ) =
[
f2(z1) − yk

i − vk
i,yτ

]2
+(z1(t) − xk

i − vk
i,xτ)2 − (ri + R + 0.5l)2.

with

x0
i = xi(t0), y0

i = yi(t0); xk
i = x0

i + Ts

k−1∑
j=0

vj
i,x,

yk
i = y0

i + Ts

k−1∑
j=0

vj
i,y, if k > 0.

If zk−
2 in (13) satisfies (16), we will let zk

2 = zk−
2 , otherwise,

we pick up a zk+

2 according to (16) as the value of zk
2 . It is

obvious that by adjusting the boundary condition zk
2 , i.e., the

corresponding steering angle φk, and the curve shape will be
changed to evade the obstacles.



Once we obtain ak using (14), correspondingly, the steering
input vk

2 (t) for t ∈ [t0 +kTs, t0, (k +1)Ts] can be determined
as follows: let

vk
2 (t) = C0 + C1(t − t0 − kTs) + C2(t − t0 − kTs)2

where Cj , j = 0, 1, 2, 3 are constants. Directly integrating (4)
yields

z1(t) = zk
1 + C(t − t0 − kTs)

z2(t) = zk
2 + C0(t − t0 − kTs) +

C1

2
(t − t0 − kTs)2

+
C2

3
(t − t0 − kTs)3

z3(t) = zk
3 + Czk

2 (t − t0 − kTs) +
CC0

2
(t − t0 − kTs)2

+
CC1

6
(t − t0 − kTs)3 +

CC2

12
(t − t0 − kTs)4

z4(t) = zk
4 + Czk

3 (t − t0 − kTs) +
C2zk

2

2
(t − t0 − kTs)2

+
C2C0

6
(t − t0 − kTs)3 +

C2C1

24
(t − t0 − kTs)4

+
C2C2

60
(t − t0 − kTs)5 (18)

On the other hand, substituting z1(t) = zk
1 + C(t− t0 − kTs)

into z4 = akf(z1) yields

z4(t) = b0 + b1(t − t0 − kTs) + b2(t − t0 − kTs)2

+b3(t − t0 − kTs)3 + b4(t − t0 − kTs)4

+b5(t − t0 − kTs)5, (19)

where b0 =
∑5

i=0 ak
i (zk

1 )i, b1 = ak
1C + 2ak

2Czk
1 +

3ak
3C(zk

1 )2 + 4ak
4C(zk

1 )3 + 5ak
5C(zk

1 )4, b2 = ak
2C2 +

3ak
3C2zk

1 + 6ak
4C2(zk

1 )2 + 10ak
5C2(zk

1 )3, b3 = ak
3C3 +

4ak
4C3zk

1 + 10ak
5C3(zk

1 )2, b4 = ak
4C4 + 5ak

5C4zk
1 , and b5 =

ak
5C5. Then, in light of (14), we can solve for constants Ci

in vk
2 (t) by comparing expressions (19) and (18). The result

renders the steering inputs as:

vk
2 (t) = 6[ak

3 + 4ak
4zk

1 + 10ak
5(zk

1 )2]C
+24[ak

4 + 5ak
5zk

1 ](t − t0 − kTs)C2

+60ak
5(t − t0 − kTs)2C3. (20)

Following the above derivations, we can obtain the follow-
ing theorem, the main result of the paper, and it provides
an analytical solution to the problem of finding a feasible
collision-free trajectory.

Theorem 1: : Consider a nonholonomic car-like robot of
(1) and operating in the presence of circular moving obstacles
that are centered at Oi and of radius ri. Then, for any
given boundary conditions q0 = [x0, y0, θ0, φ0]T and qf =
[xf , yf , θf , φf ]T with φ0 = φf = 0, as defined by (5)
and (6), and satisfying the conditions that x0 − l

2 sin(θ0) �=
xf − l

2 sin(θf ) and that |θ0−θf | < π, a collision-free path can
be generated analytically by undertaking the following steps:
(i) For k = 0, · · · , k − 1, determine recursively constants

zk
2 by ensuring the following second-order inequality (or

inequalities) (16)

(ii) A feasible, collision-free path of form (11). in the trans-
formed state is found by solving ak according to (14).

(iii) The steering inputs to achieve path (11) are given by (12)
and (20), for t ∈ (t0 + kTs, t0 + (k + 1)Ts].

(iv) The corresponding feasible, collision-free Cartesian tra-
jectory is given by y = F (x− 0.5l cos(θ)) + 0.5l sin(θ),
where θ can be found in closed form from state transfor-
mation (2) under steering inputs (12) and (20) and control
mapping (3).

IV. SIMULATION

In this section, the proposed steering algorithm is simulated
to illustrate its effectiveness. In the simulations, the following
settings are used:

• Robot parameters: R = 1, l = 0.8 and ρ = 0.2.
• Boundary conditions: q0 = (0, 0, π

4 , 0) and qf =
(17, 10,−π

4 , 0).
• Moving obstacles: n0 = 3,

O1(t0) = [5, 0]T , O2(t0) = [9, 4]T , O3(t0) = [19, 10]T

and ri = 0.5 for i = 1, 2, 3.
• Design parameters: t0 = 0, T = 40 seconds, and Ts = 10

seconds.
• Speeds of obstacles:

v0
1 = [0, 0.4]T , v1

1 = [0.5, 0.2]T , v2
1 = v3

1 = [0.2, 0.2]T ,

v0
2 = [−0.5, 0]T , v1

2 = [0.6, 0.1]T , v2
2 = v3

2 = [0.6, 0.1]T ,

v0
3 = [−0.2,−0.1]T , v1

3 = [−0.2, 0.1]T , v2
3 = v3

3 = [−0.1, 0.1]T .

All quantities conform to a given unit system, for
instance, meter, meter per second, etc.

In the simulation, the robot’s sensor has a limited range
Rs = 7 so the robot detects the presence of objects 1, 2 and
3 intermittently. Sampling period Ts is chosen to account for
speed changes of objects detected, and nk

o is introduced to
account for emergence and disappearance of various objects
in the sensing range of the robot. It is obvious that, when Ts

elapses or nk
o increases, the proposed algorithm needs to be

applied to update the trajectory and its corresponding steering
controls. The evolution of planned trajectories are plotted in
figures 6 and 7. Specifically, at t = 0, n0

o = 1 (object 1 only)
and the corresponding trajectory is shown by path 1 in figure
6, and it is kept until either Ts elapses or nk

o changes. At time
instant t = 2.8, object 2 is detected by the robot sensor, and n0

o

becomes 2 (objects 1 and 2). Accordingly, using the proposed
algorithm and at t = 2.8, the value of z2 (correspondingly the
value of φ) is updated instantaneously, and for t ∈ [2.8, 10] the
robot will be commanded to follow the path 2 given in figure
6. It is clear from figure 6 that, if robot followed path 1 for the
entire time interval t ∈ [0, 10], a collision between the robot
and object 2 will occur around t = 8 second. The rest evolution
of planned trajectories is conceptually the same. In particular,
at t = 10, we have n1

o = 2(objects 1 and 2) and hence the
trajectory is kept. Within the interval t ∈ [10, 20), objects 1
and 2 gradually move out of the sensing range, nonetheless
the robot trajectory can remain to be path 2 in figure 6 (or,



one could choose to replan the trajectory). At t = 20, n2
o = 0

(no object), the algorithm chooses to change z2 (φ) again so
that robot will follow follow path 3. Around t = 25, objects
1 and 3 are detected, n2

o is updated to be n2
o = 2, and z2 is

updated again by the algorithm and the robot follows path 4.
At t = 30, n3

o = 1 (object 3), the z2 is changed again and the
robot is commanded to follow path 5. The variation of φ is
shown in figure 7.
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Fig. 6. Collision-free path of robot (solid line), obstacle 1 (dotted line),
obstacle 2 (dashdot line) and obstacle 3 (dashed line)
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Fig. 7. Entire trajectory of φ(t)

V. CONCLUSION

In this paper, a new collision avoidance paradigm is pro-
posed to solve the problem of real-time trajectory generation.
While the robotic platform is chosen to be a 4-wheel car-like
mobile vehicle, the proposed paradigm uses the chained form
as the basic model and therefore is applicable to other nonholo-
nomic systems. Based on a piecewise constant polynomial pa-
rameterization of all feasible trajectories, the proposed scheme
prevents any collision by checking a time criterion and then
a geometrical criterion, and it yields analytical solutions to
collision-free path(s) and the corresponding steering controls.
The piecewise constant representation of feasible trajectories
and steering controls enables the proposed method to admit
such changes in a dynamical environment as speed change
of obstacles, limited sensor range (and the corresponding

appearance and disappearance of obstacles), and resetting of
terminal conditions.
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