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Detection Performance of Chaotic Spreading LPI Waveforms

Jin Yu and Yu-Dong Yao

Abstract—Low probability of intercept (LPI) performance
of a direct-sequence (DS) spread-spectrum (SS) system with
chaotic spreading sequences is investigated in this paper. Several
intercept receivers, including energy detectors, synchronous and
asynchronous, coherent and noncoherent structures, which are
typically used to detect binary DS SS signals, are examined here
to detect the presence of chaotic DS SS signals. A simple detection
approach using a binary correlating function to detect nonbinary
chaotic sequences is proposed. The expressions of detection proba-
bilities of chaotic spreading signals using those intercept receivers
are derived. Comparisons between systems using chaotic and
binary sequences are given in terms of the LPI performance, and
the performance improvement with chaotic spreading sequences
is observed.

Index Terms—Chaos, low probability of intercept (LPI), spread
spectrum (SS).

I. INTRODUCTION

N A hostile environment, a commercial or military inter-

ceptor may try to detect the presence of radio frequency (RF)
energy and then to determine the location of its transmitter. Al-
though direct-sequence (DS) spreading signals have generally
good low probability of intercept (LPI) performance, there still
exist some intercept detectors, which are able to determine the
presence of DS spread-spectrum (SS) signals and even extract
their carrier frequencies [1], [2]. Energy detectors (radiome-
ters) determine the presence of radio transmissions based on
the energy level between signal-plus-noise (H; ) and the noise-
only hypothesis (Hy). This is not an optimal detection method
since it overlooks some known information of the signals. Using
known features of the signals, such as chip rates and carrier
frequencies [3], the problem of detecting weak SS signals has
been formulated as a composite likelihood-ratio hypothesis test
(an optimum intercept receiver), and explicit solutions for the
DS SS systems using binary pseudo-noise (PN) sequences have
been presented in [4]. Recently, the signal interception problem
is also studied with a self-recovering receiver for DS SS sig-
nals with unknown spreading codes and its performance is ana-
lyzed and presented in [5]. To improve the security of the DS SS
systems, nonbinary and nonperiodic chaotic sequences, which
have been investigated in [2] and [6]—[8] are desirable for covert
communications because their pseudo-random waveforms can
be very useful in disguising signals as noise. Another advan-
tage of using chaotic sequences is the large number of available
spreading sequences for multiple-access applications [2].
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Binary DS SS signals have been investigated extensively in
terms of their LPI performance [1], [3], [4]. The LPI perfor-
mance bounds for SS systems with error-correcting coding are
evaluated in [9]. However, the LPI performance of chaotic sig-
nals is only examined considering simple energy detections [2].
In this paper, various intercept receivers, which have been used
for the detection of binary DS SS signals, are examined for de-
tecting chaotic DS SS signals, in which the chaotic sequence is
unknown and information data are not of interest. A simple bi-
nary detection scheme is proposed to detect chaotic sequences,
which significantly reduces the complexity of chaotic detectors.
This approach is also applicable to any DS SS system with mul-
tilevel spreading sequences. We also study the energy detectors
in detecting chaotic signals and present the LPI performance.
After the introductory section, Section II describes a chaotic
system model. The LPI performance of the chaotic signals is an-
alyzed in Section III. Numeric results are shown in Section IV
and comparisons with DS SS systems using binary sequences
are also presented in this section. Finally, concluding remarks
are given in Section V.

II. CHAOTIC SYSTEM MODEL
A. Chaotic Sequences

In conventional DS SS systems using binary PN sequences,
squaring the spread signals or using code clock extraction tech-
niques can wipe out the spreading sequence and leave out the un-
spread modulated carrier. Thus, the communication is subject to
interception by adversary receivers [2]. In order to improve the
covertness of the communications, noise-like chaotic spreading
sequences can be used to conceal the signals. Chaotic sequences
are usually generated using discrete chaotic maps, such as the
logistic map, triangular map, and exponential map [6]-[8]. The
logistic map is one of the simplest and most widely studied

Tpt1 = azn (1l — x,) 1

where 0 < z,, < 1,0 < o < 4, and « is called a bifurcation
parameter. Depending on the value of «, the dynamics of this
system can change dramatically, exhibiting periodicity or chaos.
For 0 < « < 3.57, the sequence {z,,} is periodic with a period
2™ for some integer m; while for 3.57 < a < 4, the sequence
is, for all practical purposes, nonperiodic and nonconverging
[2], [6]-[8]. The histogram of the noise-like chaotic sequences
in some cases has been proven to follow a certain probability
density distribution (pdf) [2]. For example, the sequences based
on the chaotic triangular map are uniform over the interval [0, 1].
The pdf of the sequences generated from the logistic map takes
the following expression:

f(@n) = ————. @)

T/ Tn(l — xy)
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To change the chaotic sequence range into [—1, 1] for bipolar
signaling, the following transform is taken, a,, = 2z, — 1.
The corresponding pdf of a,, is f(a,) = (1/(m+/(1 — a2))).
The sequence {a,,} is used as the chaotic spreading sequences
throughout this paper.

B. Detection Schemes

Based on incident waveforms, an intercept receiver must de-
cide between the signal-plus-noise (H7) and the noise-only hy-
pothesis (Hy)

_ 2Pa(t) cos(wot + ¢) + n(t), H
0={a m SR

where P is chosen such that PE [aQ(t)] is the average signal
power, wg = 27 fy is the carrier frequency, ¢ is the carrier phase,
uniformly distributed in [0, 27), n(t) is additive white Gaussian
noise (AWGN) with single-sided spectral density Ng W/Hz, T
is the observation time, and

oo

Z anp(t — nT, — €T,)

n=—oo

a(t) =

in which T is the chip period and p(t) is a unit-amplitude pulse
of duration 7. second. The chip epoch €T is modeled by a
random variable ¢, uniformly distributed in [0, 1). We assume
that a binary correlating function (Sign(a,(¢))) is used to de-
tect a nonbinary chaotic sequence (a,(¢)). This approach is pro-
posed in this paper to simplify the receiver structure and repre-
sents a practical implementation approach.

III. LPI PERFORMANCE OF MULTILEVEL SIGNALS

The configurations of intercept detectors depend on the
amount of known features of the signals. For example, an en-
ergy detector only assumes that the signals occupy a bandwidth
of W and exist for a time duration 7. Other intercept receivers
could use the known features of the SS signals, such as the
carrier frequencies, chip rates, and T' = NT,., where N is the
number of chips in one observation. In the optimum detection
for binary sequences, a receiver implements a likelihood ratio
test (LRT), which is a procedure based on statistical signal
testing of hypotheses [1], [3], [4]. In the following, we evaluate
five intercept receivers for chaotic signal detection, considering
coherent (known ¢) and noncoherent, synchronous (¢ = 0) and
asynchronous detections, and energy detections.

A. Synchronous Coherent Intercept Receiver

When synchronous coherent intercept receivers are used to
detect the presence of chaotic signals, both the chip epoch €T,
and the carrier phase ¢ are assumed to be known, and we have
z(t) = r(t) cos(wot + ¢) at the receiver side. For binary se-
quence detection, [3] developed a likelihood ratio test. For non-
binary sequence detection (using binary correlation), following
[3], we are able to establish that the decision between Hg and

H can be made based on
PT, 2V P Hy
) co zZAo 4
Ny No Hy

N
SICIE
7j=1

where A is a threshold and r; = f It DI z(t)dt. For typical
chip signal-to-noise ratio (SNR) below —5 dB, we have an ap-
proximated expression for log-LRT [1]

H,
A=) 2= ). 5
;J;OO %)

For large values of N, A can be approximated as Gaussian for
both noise alone and signal-plus-noise cases and this approxi-
mation is quite accurate [1], [3]. Therefore, the detection prob-
ability Pp can be determined via a @ function. For the random
variable )\, we are able to find its mean and variance

my = N(N()TC)(OS + 7005k’1)7 k=0,1

0% = N(NoT.)? [0.5 + (2Cve + Dy2) 6r.1]

where C' = E [a2] /E| [a2] /E?[|an]], 6k, is
the Kronecker delta function, which implies the presence of a
signal (Hy) for k = 1 or the absence of the signal (Hy) for
k = 0, and the chip SNR

k=01

PT.E[|a,|]

No (6)

p [T
Ve = —/ Ela,(t)Sign(a,(t))]dt =

No Jo
Notice that in deriving or implementing (6), we assume that a bi-
nary correlating function (Sign(a,(t))) is used to detect a non-
binary chaotic sequence (a,,(t)). Therefore, the detectors for bi-
nary spreading sequences are applied directly to detect the pres-
ence of chaotic spreading signals. This approach is proposed in
this paper to simplify the receiver structure. Otherwise, an op-
timum chaotic receiver structure, which requires the exact corre-
lating functions matching to the received sequences, is not fea-
sible because of the infinite sequence combinations of the non-
binary chaotic signals. In deriving the detection probability, we
first find a threshold level \( by setting an acceptable false alarm
probability Pra. Using the obtained )\, the detection proba-
bility Pp is derived as a function of Pga

Q_I(PFA) — 2N’YCC
Pp = v 7
b Q( V1 +4C, + 2D2 M

where Q(z) = [7°(1/V2m)exp(—t?/2)dt. It is also inter-
esting to note that this binary correlating approach and its re-
lated performance analysis are applicable to any DS SS system
with multilevel spreading sequences.

B. Synchronous Noncoherent Intercept Receiver

In this case, the carrier phase ¢ is modeled as a random
variable with a uniform distribution in [0,27). While the
coherent detection is not possible, [3] and [4] investigated a
receiver with matched filters followed by envelope detectors.
We use this structure combined with our proposed approach of
binary correlating for noncoherent detection of chaotic signals
(or multilevel spreading signals). Following [3] and [4] and the
derivation steps in Section III-A, we have the same decision
rule as (5) with

R 2
rj = rI]—I—rQJ_
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where
(+1)Te
)= [ v [
Qj 1Te 0

We further derive the mean and variance of A and obtain

m,\ = N(NOT)(l-l-’YCC(Sk,l), k=
03 = N(NoT.)? [1 + (2Cv. + 0.5D2) 61] . k=

The detection probability of the chaotic signals is finally derived
as

®)

—Q Q™ Y(Pra) — VN~.C
V1+2C07.+05D2 ]

Notice that v, in (8) is obtained using the binary decorrelating
method.

C. Asynchronous Coherent Intercept Receiver

In some practical cases, the chip epoch is unknown and is
modeled as a random variable uniformly distributed in [0, 7).
Reference [3] examined this considering two possible epoch
values (0, 0.57.) and approximated the detection probability av-
eraging over results obtained under the two epoch values. This
is equivalent to a two-point quantization of the chip epoch. For
chaotic signal (or multilevel spreading signal) detections, in this
paper, we first derive a conditional detection probability for a
given chip epoch €T.. The final detection probability is obtained
through averaging over all possible epoch values. For a given
epoch €T, the Log-LRT decision variable can be found to be

N-1

A= Z {PT(,2 [ez(ak —ar+1)” + aiyy
+2(ar — ak+1)ak+lf}

+n3 4+ 2V PnrT.(age + arpr (1 — 6))} )

where n; = ﬁfOT” n

of \ are derived as in

t) cos 2 fotdt. The mean and variance
mx = N(NoT.) (0.5 +7.C(1 — 2e + 2¢*)6r,1), k=0,1
03 & N(NoT.)? (0.5 + 2C7.(1 — 26 + 2¢*)6k,1) , k=0,1

and the detection probability conditioned on € is

Jo— Q' (Pra) — V2N(1 — 2¢ + 2¢*)7.C
Ple ™ VI+4C(1 = 2¢ + 2E2),

efo,1). (10)

Finally, the detection probability of the signals using an asyn-
chronous coherent receiver is

— ' [ Q7 (Pra) — V2N(1 — 2€ + 2¢*)7.C
' = /0 @ ( VI+A4C( — 2¢ + 2E%)7, de

(1)

D. Asynchronous Noncoherent Intercept Receiver

‘When both the chip epoch and carrier phase are random vari-
ables, following (18) and (19) in [4], the Log-LRT decision vari-
able can be derived as (see Appendix I)

N-1

A= PTZ’Z

N—1
X E (ar — agy1)
k=0

X [Tcak+1\/1_9 + N(ngcos¢ + ngsin gb)]
N-1
+ 2V PT. Z ag+1(nr cos ¢ + ng sin ¢)
k=0
+N (n% + ng?)
where ng = /2 fo ) sin 27 fotdt. We further derive the
mean and variance of \ and have

my = N(NoT.) (1 +7.C(1 —2e+ 262)6k’1) , k=0,
03 & N(NoT.)? (1 +2C.(1 — 26 + 26?)83,1) , k=0,1.

(ap — aps1)? + aiﬂ] + 2V PTee

12)

The derivations of m, and o3 are given in Appendix I. The

detection probability of the signals conditioned on ¢ is found

as
PD‘F = Q <Q_

and the average detection probability of the signals using an
asynchronous noncoherent receiver is

1 —
P_D:/ Q(Q 1(PFA)—\/N(1—26+262)%C> e
J0
(14)

V1+2(1 - 2¢ + 2€2)Cy.
Note that these detection probabilities [(7), (8), (11), and (14)]
are applicable to any DS SS system with multilevel spreading
sequences or chaotic sequences.

Y(Ppa) — \/N(l — 2¢ + 2€2)y.C (13)
V142(1 - 2e +2€2)C,

E. Energy Detector

The block diagram of an energy detector can be found in
[1] and [2]. It consists of a bandpass filter (BPF), a square-law
device, a finite-time integrator, a sampler that samples the in-
tegrator output at the end of the integration interval 7', and a
threshold comparison device [1]. If the sampler output is greater
than the threshold value K, a decision is made that signal plus
noise was present; if it is smaller than K, a decision is made that
noise alone was present [1]. The threshold is typically obtained
by setting the probability of false alarm. In a chaotic (or multi-
level) DS SS system, the output of the integrator of the energy
detector is

2 [T,
V= FO/0 P2 (1) dt (15)
which can be rewritten as
9 N—=1 (i4+1)T. )
V= ; /T r2(t)dt. (16)
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When the integrator time-bandwidth product WT is large, V is
also approximated as Gaussian, and this approximation is quite
accurate [1], [3]. The mean and the variance of V' are derived in

PE[a2]
NoW

my= 2WT<1 + 6k,1 s k=0,1

P2T?Var(a? PTE[a?
02 =AWT+ <4 Ng( 2) 4 g N£ "]> k1, k=0,1.

The derivations of my- and o%, are presented in Appendix II.
Using the @Q-function, the false alarm and detection probability
are expressed as

K -2WT
Py = _— 17
and
Q' (Pra) — 4/ Y.
Pp=Q e (18)

where v, = PI.E [a%] /Ny, G = Var [a2] /E? [a2], W =
2T 1 and K is the threshold value and can be set based on a
predetermined false alarm probability, and 7. is the predetection
average chip SNR. Note that the detection probability of binary
PN signals is expressed with G = 0.

IV. NUMERICAL RESULTS

Numerical results of the LPI performance for chaotic signals
with sequences generated using the logistic map are presented
in Figs. 1 and 2. For the chaotic sequences generated from the
logistic map (1), we have G = 0.8, C = 0.79, and D = 0.32,
and for those from the triangular map, we obtain G = 0.52,
C = 0.67, and D = 0.36. Note that for binary sequences,
G =0,C = 1,and D = 0. The LPI performance curves
of binary PN-based SS signals are also given in Fig. 1 for
comparison purposes. From Fig. 1, we observe that chaotic
signals have better LPI performance than binary PN signals.
The improvement is about log,,(1/C") = 1 dB for a logistic
map and 1.7 dB for a triangular map in terms of chip SNR as
shown in Fig. 3. Notice that the LPI performance improvement
of chaotic signals (the decrease of the detection probability) is
due to the binary detection of the nonbinary sequences (i.e., a
sequence mismatch). When only energy levels are considered
for energy detectors, chaotic signals and binary PN signals are
observed to have the same LPI performance as shown in Fig. 1.
Fig. 2 compares the LPI performance of chaotic signals with
synchronous/asynchronous and coherent/noncoherent detec-
tions. It is observed that the synchronous noncoherent detector
and the asynchronous coherent detector give similar detection
probabilities, while the synchronous coherent detector and the
asynchronous noncoherent detector give the highest and lowest
detection probabilities, respectively. LPI performance of the
signals with different spreading sequences under synchronous

10° T T T o>

-5~ Engergy L . L L
+- Coherent-binary +
A Noncoherent-binary
—+— Coherent-chaotic ¥
A~ Noncoherent-chaotic

Detection Probability
5

-30 -25 -20 -15 -10 -5
SNR(chip)
Fig. 1. LPI performances of various intercept receivers with Py = 0.01 and
N = 1000.
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Fig. 2. LPI performances of intercept receivers for synchronous and

asynchronous cases with Ppy = 0.01 and N = 1000.

coherent detectors are compared in Fig. 3. Simulation results
are also shown in this figure and a good agreement with the
analytical results is seen.

V. CONCLUSION

A simple detection method using a binary correlating func-
tion to detect nonbinary chaotic (or multilevel) sequences is
proposed in this paper. The chaotic signals are evaluated in
terms of LPI performance (detection probabilities) consid-
ering synchronous/asynchronous and coherent/noncoherent
intercept receivers and energy detectors. Comparisons with
binary PN-based SS signals are made and LPI performance
advantages of chaotic signals are observed. Notice that binary
detection of nonbinary sequences (multilevel or chaotic) leads
to nonoptimal detection performance. Optimal detection for
multilevel or chaotic sequences will be further investigated.
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Fig. 3. LPI performances of various sequences under synchronous coherent
detectors with Pry = 0.01 and N = 1000, theoretical versus simulation
results.
APPENDIX [
PROOF FOR ASYNCHRONOUS NONCOHERENT INTERCEPT
RECEIVER

Instead of approximating the detection probability by av-
eraging over results obtained under the two epoch values
(0,0.5T,) as in [3], we first derive a conditional detection prob-
ability for a given chip epoch €7, and then the final detection
probability is obtained through averaging over all possible
epoch values. Considering that binary phase shift keying
(BPSK) is used and the carrier phase is independent from one
chip to the next, following the derivation in [4] we obtain

A(Z(1) =k1Eq 6

N-1 1971
X ¢ exp Z ln{ — —
{ { k=0 Q 2m

q=0

27 9 (kDT .
X exp | — / r(t)a
/0 No Jir, !

)

where k1 is a constant, Q = 2, ak = 1, and a} = —1. Thus, we
obtain

N-1
AZ(t)) = klEq’gg{eXp{ > I
k=0

1! 2 1/2
x{a qzz:ofo [Fo [r%k%—rék] ]}}} (20)

where Io(z) is the zeroth-order modified Bessel function and

x cos(27 fot + 0)dt

(k+1)T.
T = / r(t) cos(2m fot)dt
Jrr.

and

(k+1)T.
TOR = / r(t) sin(27 fot)dt.
Jrr.

Then, (20) can be simplified as [4]

N-1
A(Z(t) = k1Eq e {exp { Z N2 [rTk + rok] }} . 2D
k=0 0

Let 7 = €T and substitute this into r7; and rqy. Scaling g
and rq by /2, we obtain

kT,
e =V?2 r(t 4 7) cos(2m fo(t + 7))dt

kT.—1

(k+1)Te—7
+ ﬁ/ r(t+ 7) cos(2m fo(t + 7)) dt
kT,

= \/I_’(akT cosp + ap41(T. — 7)cosp) + ny
and

TQk :\/5

kT,
r(t + 1) sin(27 fo(t + 7))dt
kT.—1

(k+1)T.—7
+V2 r(t + 7)sin(27 fo(t + 7))dt
kT,

=VP(ap7sin ¢ + apy1(Te — 7)sin ¢) + ng.
We also have
T%k =Pcos? ¢ (G%TQ + a%+1(TC — T)2
+2akak+1T(Tc — ’7'))
+n2 4 20 VP (a7 + apsr (T, — 7)) cos ¢ (22)
and
rék =Psin® ¢ (a7 + a1 (T. — 7)°
—|-20,kak_|_17'(TC — 7'))

+ng) + 2oV P(art + ape1(Te — 7)) sing.  (23)
Let 1 = 77, + 78, and we obtain
’I“]% = Plapt + ap41(T. — 7'))2 + (n% + né)
+ 2V P(apt + apr (T2 — 7))
X (nrcos¢ + ngsin ¢). (24)

Summing 7, 5 = 0,..., N — 1, and substituting 7 = €7, into
(24), we obtain

N—1 N-1
A= Z 7”,% = PJTC2 [Gz(ak — ak+1)2 + ai+1]
k=0 k=0
N—1
+ 2V PT.e Z (ak — aps1)
k=0
X [Toaps1V P + (ng cos ¢ + ngsin ¢)]
N—1
+2VPT. Z ak+1(nrcos¢ + ngsin @)
k=0

+ N (1} +nd). (25)

Since ¢ is a uniform random variable in [0, 27), the mean value
of \is
my = E[M|¢€]
=PNTE [a7](1+ 2¢* — 2¢) + NE [n] + ng)|

= N(NoT.)(1 + (1 4 26* = 2¢)7.C) (26)
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and the variance can be found as

02 = Var(\e) = E[N%|e] — E*[\|¢] (27)
where
B\l = NE{ P2(ax7 + aya (T, - 7))*
+ 4P (n% + né) (apT + ap41(T. — 7'))2
2
+ (nF +n2)"}. (28)
Substituting (26) and (28) into (27), we obtain
Var(\e) = N{PQVar {(ar7 + ap1(T. — 7))?}
+ 2PNoT.E [(arT + ar41(T. — 7))?]
+ Var [n% + né] }
~ N(NoT.)? (1 +2C7.(1 — 26+ 2€%)) . (29)

APPENDIX I
PROOF FOR ENERGY DETECTOR

When signals exist, 7(¢) can be rewritten as [1]
r(t) = (V2Pa(t) cos ¢ + v2ny(t)) cos(wot)
—(V2Pa(t)sin ¢ + V2ne(t)) sin(wet)  (30)

where n;(t) and ng(t) are baseband white Gaussian noise pro-
cesses with two-sided power spectral densities Ny /2 over fre-
quency range | f| < W/2 [1]. Therefore, the mean value of V'
can be found as in (31), shown at the bottom of the page. Fol-
lowing [1] and [10], we have

o} = JSV—IO; /OT (1 - %) (Ru(z) — B2[w(z)]) da.

Assuming that the chaotic chips are independent of each other,
we obtain

N-1 ,(n '

o= STy (T

VTN T T
n=0 Y "te

X (Ru(z) —

(32)

E?[w,(2)]) dz (33)
where

wp(z) = Pa? + 2v/ Pa,, cos ¢nr(x)

+2VPa, sin ¢ng (z) + n2(z) + ng)(z)
which gives

Elwn(z)] = PE [ay] + NoW. (34)

The autocorrelation function is

Ry (x) = Elwn (t)wn(t + )]
= E{P%i +2Pa’ (nj(t) +ng(t)
+ni(t+ z) + ng(t + z))
+ 2Pa2ni(t)ng(t + z)
+2Pa2ng(tng(t + =) + (ni(t) + ng (1))
x (nf(t+z) + n(t+x)) }
= P?E [a}] + 2PE [a}] NoW 4+ 4PE [al] R, ()
FOR(x) + w (35)
where
Rs(a) = 202 (x) + LV (36)
and
R,.(x) = 0.5NyWsinc(W). (37)

Substituting (34)—(37) into (33), we have

N-1 n "
02_£Z T
VTN T T
n=0 7 "te

X {4PE [ai] R, (z) + 4R2(z) + P*Var (ai) }d:v
wewr [T T

T TNZ /0 (1 B T)
x {PE [a2] NoWsine(Wa)

+ 0.5N3W2sinc®(Wz) + 0.5P*Var (a?) }dfv-

(38)
For a large value of WT', (38) can be simplified as
8T P2T2V 2
0% = — (PE [a2] + 0.5N,W) + 4% (39)
Ny Ng
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/(n+1)T
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IIM

(V2Pa,, cos ¢ + V/2n1(t)) cos(wot) — (V2Pa,, sin ¢ + V2ne(t)) sin(wot)] dt

(n+1)T.
/ E [nF(t) + ng(t)] dt} =2WT <1 +
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NoW
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