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Abstract— An efficient channel allocation policy that priori-
tizes handoffs is an indispensable ingredient in future cellular
networks in order to support multimedia traffic while ensuring
quality of service requirements (QoS). In this paper we study
the application of a reinforcement-learning algorithm to develop
an alternative channel allocation scheme in mobile cellular net-
works that supports multiple heterogeneous traffic classes. The
proposed scheme prioritizes handoff call requests over new calls
and provides differentiated services for different traffic classes
with diverse characteristics and quality of service requirements.
Furthermore, it is asymptotically optimal, computationally inex-
pensive, model-free, and can adapt to changing traffic conditions.
Simulations are provided to compare the effectiveness of the
proposed algorithm with other known resource-sharing policies
such as complete sharing and reservation policies.

Index Terms— Channel allocation, cellular multimedia net-
works, handoffs, Markov decision processes, dynamic program-
ming, reinforcement learning.

I. INTRODUCTION

ADVANCES in wireless mobile networks have fueled the
rapid growth in research and development to support

broadband multimedia traffic and user mobility. Since the
available radio resources are scarce, an efficient allocation
policy is an essential ingredient in order to accommodate
the increasing demands for wireless access. Other motivations
include the increasing need to support broadband multimedia
traffic and user mobility as well as to ensure quality of
service (QoS) requirements in a complex dynamic environ-
ment. Issues that make this problem more complicated are
the traffic heterogeneity, i.e., diverse traffic characteristics
and QoS requirements; as well as the time-varying nature
of the network traffic. To increase the allocation efficiency
of radio resources, at the network planning level, there is a
migration from macro-cells to micro-cells and even pico-cells.
As a result a substantial portion of traffic in each cell results
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from calls migrating from one cell to another (handoffs).
However, due to the scarcity of the available resources and
the co-channel interference, there is a possibility that a call
in progress may be dropped due to handoff failure because of
network congestion.

Two important connection-level performance metrics are
new call blocking probability and call dropping probability.
We consider call dropping as a result of handoff failure due to
insufficient resources after initiating a handoff request. These
two metrics are always conflicting. From a user point of view,
dropping a call in progress due to a handoff failure is more
undesirable than rejecting a new call. Therefore, an optimal al-
location policy that prioritizes handoff requests over new calls
is required to maximize the network throughput and guarantee
the quality of service for both active and new calls/sessions. In
this paper the QoS is considered to be a function of blocked
calls and handoff failures. Multimedia traffic is defined in
terms of traffic characteristics and resource requirements,
e.g. bandwidth requirements. Resource allocation has been
widely studied in several disciplines including engineering,
computer science, and operation research. In cellular networks,
the efficient use of radio channels is affected by several
factors including power control, user mobility pattern, handoff
initiation process, and handoff scheduling policy. Two related
schemes are the adopted channel assignment scheme among
cells and the channel allocation strategy for different traffic
classes, i.e., admission control policy.

Several schemes have been proposed in the literature for
channel assignment ranging from complete partitioning, e.g.,
fixed channel assignment (FCA) to complete sharing, e.g.,
dynamic channel assignment (DCA) and their extensions [1],
[2] and references therein. Recently reinforcement learning
[3], [4] has been applied to this problem [5], [6]. In these
schemes, a call is admitted, with no differentiation between
new calls and handoffs, if a channel is available such that
the channel reuse constraint is not violated. Since rejecting
a new call is less serious than dropping an ongoing call,
a tremendous research effort has been devoted to allocation
policies that prioritize channel assignment to handoff requests
without significantly increasing the new call blocking rates
[2], [7]–[14].

One well-known method that prioritizes handoff over new
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call requests is the guard channel, cutoff priority, guard
threshold, or trunk reservation policy. The basic idea is to
a priori reserve certain number of channels in each cell to
handle handoff requests besides allowing the handoff requests
to first compete with the new calls for the remaining channels.
However since reducing the handoff failures cannot be attained
without sacrificing the blocking probability of new calls,
the adopted reservation policy has to answer two questions:
how many channels should be reserved in each cell and
whether they should be a priori reserved [2], [7]–[9] or
dynamically changed to adapt to traffic conditions [10], [11].
For a single traffic class, the optimal policy that minimizes
a weighted linear function of blocking probabilities has a
simple structure of threshold type [12]. The optimal threshold
can be determined using analytical models [13] and the
theory of Markov decision processes (MDP) [15], [16], e.g.,
dynamic programming [12], [13], [17] or linear programming
[14]. For multiple traffic classes, there is a class of policies
known as coordinate convex policies [18]. However, under
certain performance indices, the optimal policy is no longer
of coordinate convex type [18], [19]. MDP approach can be
used to formulate such problem for which the optimal policy
search can be performed via dynamic programming or linear
programming techniques [20]. All these methods are off-line,
static and are based on the assumption that traffic parameters
are not changing over time. Furthermore, they rely on the
assumption of the knowledge of a perfect analytical state
transition and cost model which is not easy to find espe-
cially in a complex dynamically changing environment. For
such dynamically changing networks supporting several traffic
classes with time varying characteristics and requirements, the
problem complexity is substantially high, i.e., the state-action
space becomes exponentially growing, and exact solutions
using traditional optimization techniques become intractable.
This is known in literature as the “Curse of Dimensionality"
[17]. In this paper we study the application of an average
cost reinforcement learning (RL) methodology [21] to develop
a channel allocation policy that prioritizes the admission of
handoff requests over new call requests. The performance of
the proposed algorithm is compared with the optimal guard
channel and complete sharing policies. The RL scheme is a
stochastic approximation to dynamic programming algorithms
(DP) and can be implemented as an on-line “allocation policy"
that learns from direct interactions with the network. Also,
it has a number of other advantages: simple implementation,
model-free, since there is no need for prior knowledge or
estimation of the network dynamics, and self-adjusting to
time varying traffic conditions. The remainder of this paper
is organized as follows. The next section describes the traffic
model and the performance measures used; and formally
defines the optimization problem to be solved. Section 3
presents the reinforcement learning solution. We first introduce
briefly the average cost semi-Markov decision process and
then develop an allocation policy based on reinforcement
leaning approach for multiple traffic classes and for a single
traffic class. Simulations and numerical results are given in
Section 4 for two scenarios. In the first scenario we simulate
the learning scheme for multiple traffic classes. A comparison
with complete sharing policy, both analytical and simulation,

are also given. In the second scenario we consider a single
traffic class for which we give the analytical exact optimal
solution. Then, we run the discrete event simulator for our
learning scheme and compare its performance with the cor-
responding results for complete sharing and optimal guard
policies. Finally, in Section 5 we present conclusions and
future work.

II. TRAFFIC MODEL AND PROBLEM DESCRIPTION

A. Traffic Model

Consider a cellular network with a fixed number of channels
(or bandwidth units) where the service region is divided into
small cells with a general spatial layout. Here the concept
of channel is used in a generic sense independent of the
access technology used whether frequency division multiple
access (FDMA), time division multiple access (TDMA), or
code division multiple access (CDMA). Multimedia traffic is
defined in terms of their traffic characteristics and resource
requirements, e.g. bandwidth requirements. We consider K
different classes indexed by k = 1, 2, . . . ,K where each
class is characterized by a set of traffic parameters: mean
arrival rate, bandwidth requirement (number of channels),
mean service time, and a weighting factor indicating the
relative importance of each class or its priority level.

There are two sources of type-k traffic in each cell based on
the call originating location: new call arrivals, i.e., calls orig-
inated within the cell, and handoff request arrivals, i.e., calls
migrating from neighboring cells into that given cell. Under
the assumption of spatial uniform traffic conditions and fixed
channel assignment strategy between cells, the traffic model of
a cellular system can be decomposed into independent cells or
clusters [14]. Consider a typical cell with C channels; then the
traffic within that cell can be modeled using a C-server system
which is an extension of Erlang’s loss model [18], [19]. Fig. 1
(a) shows a particular cell within a cellular system and Fig. 1
(b) shows an equivalent heterogeneous channel traffic model
in which the C-channels, available in the cell, are represented
as C-servers. There are two arrival streams for each class: one
representing an aggregate traffic stream for handoff requests
into the cell with mean arrival rate λHk and the other stream
represents the new call arrival within the cell with mean arrival
rate λNk. The arrival rate matrix is given by,

Λ =
[
λ1 λ2 · · · λk · · · λ2K

]
, (1)

where

λk =

{
λNk, for 1 ≤ k ≤ K

λH(k−K), for K + 1 ≤ k ≤ 2K

For non-prioritizing techniques such as complete sharing
approach, there is no difference between new calls and hand-
offs. Therefore, the arrival rate vector is given by

Λ =
[
λ1 λ2 · · · λk · · · λK

]
, (2)

where
λk = λNk + λHk, ∀k ∈ {1, 2, . . . ,K}

Each call of type-k, whether a new call or handoff, requests
a fixed number of channels given by bk. These channels
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Fig. 1. Cellular system layout and traffic model.

are released simultaneously upon the call departure (whether
completion or handoff out of the cell). In multimedia networks
this may corresponds to a constant bit rate (CBR) service type.
However for a variable bit rate (VBR) service class this may
represent the peak value or the effective value [22] of the
requested bandwidth. The requested band vector is,

b =
[
b1 b2 · · · bk · · · bK

]
(3)

Calls leave the cell (the queueing system) as a result of
successful call completion or as a result of handoff to one of
the neighboring cells. Since the system has finite capacity a
new call request or handoff request may be rejected. Without
loss of generality of the algorithm, we assume that blocked
calls are cleared from the system [18]. We assume that the ar-
rivals of class-k new call and handoff requests are according to
mutually independent Poisson processes. We also assume that
class-k call duration and the cell dwelling time, i.e., the time
until handing-off out of the cell, TDk and THk respectively,
are mutually independent and exponentially distributed with
means and respectively. TDk and THk are also independent the
arrival processes and other traffic classes’ times. The channel
holding time for class-k, Tk, is the minimum of the call

duration and time until handoff and can be expressed as

Tk = min (TDk, THk) (4)

The channel holding time PDF is given by

FTk
(t) = Pr {Tk ≤ t} = 1 − Pr {TDk > t, THk > t}

= 1 − e−(μDk+μHk)t
(5)

Thus, the channel holding time for class-k traffic is also
exponential with mean given by,

1
μk

=
1

μDk + μHk
(6)

So, the channel holding time vector is expressed as

T =
[
μ−1

1 μ−1
2 · · · μ−1

k · · · μ−1
K

]
(7)

B. Coordinate Convex Policies

The network state, n, can be defined by the vector

n =
[
n1 n2 · · · nk · · · nK

]
, (8)

where nk is the number of active calls of type-k traffic. The
system state space is a finite set given by

S =

{
n ∈ {0, 1, . . . , C}K |n · bT =

K∑
i=1

nibi ≤ C

}
(9)

Under a class of policies; known as coordinate convex poli-
cies [18], [20], such as complete sharing, complete partitioning
and subsets, the admission policy is completely specified with
a restricted set of states Σ ⊆ S. For example, in complete
sharing, a request is admitted if the requested number of
channels is available regardless of the request type. Therefore,
for complete sharing Σ = S. The natural evolution of the
stochastic process {n(t), t ≥ 0} represents a multidimensional
continuous-time Markov chain.

For coordinate convex policies, the admission rule is simple
and depends on the next state of the system. Let n+

k represent
the next state of the network when a new call or handoff of
type-k has arrived and has been accepted given that the current
state is n, i.e.,

n+
k =

[
n1 n2 · · · nk + 1 · · · nK

]
(10)

The admission decision depends on what the next state of
the system would be if the requested band is granted, and is
given by

βNk(n) = βNk(n) =

{
1, if n+

k ∈ Σ
0, elsewhere

(11)

where 1 means accept and 0 means reject. This means that the
admission rule is the same for both new call and handoff traffic
of type-k. To provide preferential treatment for handoffs,
the state definition needs to incorporate different variables
for new calls and handoffs of each type as if they are two
different classes. But this leads to doubling the state space
which increases the complexity of any solution procedure. For
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coordinate convex policies, the transition rate from state x to
state y is,

rxy =

⎧⎪⎨
⎪⎩
λk(x), if x = n ∈ Σ and y = n+

k ∈ Σ
xkμk, if x = n ∈ Σ and y = n−

k ∈ Σ
0, elsewhere

(12)

where λk(x) = λNkβNk(x) + λHkβHk(x) and n−
k =

[ n1 n2 . . . nk − 1 . . . nK ].
Following [19], according to the law of conservation of

flow, the equilibrium balance equations of any policy can be
expressed as:[

K∑
k=1

(λk(n) + nkμk)

]
p(n) =

K∑
k=1

(nk + 1)μkp(n+
k )

+
K∑
k=1

λk(n−
k )p(n−

k ),

∑
n∈ Σ

p(n) = 1

(13)

where p(n) is the statistical equilibrium time-average proba-
bility that the system occupies state n. This set of equations
cannot in general be solved by recurrence to find closed
form solutions for the equilibrium state probabilities. How-
ever, under coordinate convex policies, the equilibrium state
distribution has product form and expressed as [19]:

p {n = (n1, n2, . . . , nk, . . . , nK)} =
K∏
k=1

ρnk

k

nk!
G−1(Σ) (14)

where,

G(Σ) =
∑

n∈ Σ

[
K∏
k=1

ρnk

k

nk!

]
, ρk =

λk
μk

These results are still applicable even for arbitrary channel
holding time distributions due to the insensitivity property
[18]. In a most general class of policies, the admission rule
may deny service, based on the type of the traffic, even if
the requested band is available. In such cases, βNk(n) and
βHk(n) may be different and they represent the probability of
admitting a new call or a handoff request of type-k respectively
when the system is currently in state n. The new call and
handoff blocking probabilities experienced by each traffic type
can be expressed as,

BNk = 1 −
∑
n∈S

βNk(n)p(n)

BHk = 1 −
∑
n∈S

βHk(n)p(n)
(15)

C. The Optimization Problem

The objective of this study is to find a channel allocation
policy that minimizes a weighted linear function of new call
and handoff blocking probabilities of each type as defined by,

P =
K∑
k=1

{
wNk

λNk
λNk + λHk

BNk + wHk
λHk

λNk + λHk
BHk

}
(16)

Call departure
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Fig. 2. Traffic model embedded with call admission controller.
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Fig. 3. A sample path given the starting state is s and following a given
policy π, where at is the action selected at decision epoch t.

where wNk and wHk represent the relative weights or the
costs incurred when rejecting a new call or handoff of type-k.
wHk > wNk reflects the fact that rejecting a handoff is more
undesirable than blocking a new call. The aim of any admis-
sion control strategy is to determine the parameters, βNk(n)
and βHk(n), for all states, n ∈ S. Since the optimal policy
may not be coordinate convex, we need to look at a broad class
of control policies. However, as pointed in [20], the product
form solution does not exist for the equilibrium balance equa-
tions outside the class of coordinate convex policies. Another
class of algorithms, based on semi-Markov decision problems
(SMDP) [15], [16], allows the optimization over all policies.
If a perfect system model is known, the optimal solution of
SMDP can be attained via dynamic programming (DP) or
linear programming (LP) techniques for reasonable problem
size. However due to the high dimensionality of the problem,
the computational complexity of these traditional approaches
is prohibitive. Reinforcement learning, a class of successive
approximation methods, can be used to approximately solve
the SMDP incrementally on-line without a priori knowledge
of the system model. The RL allocation controller learns an
admission policy from direct interaction with the network as
depicted in Fig. 2. In the next section we present a class of
RL channel allocation schemes.

III. CHANNEL ALLOCATION POLICY USING

REINFORCEMENT LEARNING

In this section, we briefly review the semi-Markov deci-
sion problems (SMDP) under the average cost criterion [15],
[16]. Then, the prioritized handoff channel allocation problem
among different traffic classes is formulated as an infinite-
horizon finite-state SMDP under the average cost criterion.
Finally, a class of model-free schemes based on reinforcement
learning is used to obtain an asymptotically optimal allocation
procedure.
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A. Average Cost Semi-Markov Decision Problem

An SMDP is defined by the following three components:
a dynamic system, an immediate cost (reward) function, and
an objective function. The dynamic system is modeled as a
controlled Markov chain. At random points in time (decision
epochs) the controller observes the system state and selects an
action. As a result the system state will change as a function
of the current state, selected action, and external disturbance.
Also, the controller receives an evaluative feedback (reinforce-
ment) signal to reflect the immediate (stage) cost incurred.
The controller maintains an evaluative (objective) function for
each state (state value function), or for each state-action pair
(action value function), which is usually an accumulation of
the immediate costs incurred over time. There are three most
common definitions for the value functions: Finite-horizon
expected total cost, infinite-horizon expected discounted total
cost, and expected average cost. In the following we use
an expected average cost criterion. A deterministic stationary
policy is a mapping from states to actions, i.e., π : S → A
where S is a finite set of all states and A is a finite set of
all actions. Assume the system starts at state s0 = s and
following policy π, then the long-run average cost, or policy
gain, is given by

gπ(s) = lim
n→∞

E
{∑n−1

t=0 c
π
t (s)

}
E
{∑n−1

t=0 τt

} (17)

where cπt (s) is the cost incurred at decision time t given that
the starting state is s and the implementation policy is π. A
typical scenario for the evolution of the embedded Markov
chain is illustrated in Fig. 3.

For ergodic Markov decision processes, the average cost
exists and is independent of the starting state [16], i.e.,
gπ(x) = gπ(y) = gπ ∀x, y ∈ S and ∀π ∈ Π.

Here Π is the space of feasible policies and gπ is the long-
term average cost starting from any initial state and following
policy π. The controller objective is to determine a policy in
order to minimize the long-run average cost. Formally, we are
seeking a policy π∗ with corresponding long-run average cost
which is optimal, i.e., g∗ = min

π∈Π
gπ .

According to Bellman’s optimality principle [15], for finite
state and action spaces, an optimal policy has the property
that, whatever the initial state and decision are, the remaining
decisions must form an optimal policy with regard to the re-
sulting state from the first transition. The optimality equations
for the average cost semi-Markov decision process have the
following recursive form:

h∗(x) = min
a∈Ai

⎧⎨
⎩c(x, a) − g∗τ(x, a) +

∑
y∈S

p(y|x, a)h∗(y)
⎫⎬
⎭ ,

∀x ∈ S
(18)

where h∗(x) is an optimal average-adjusted state value func-
tion h∗ : S → �, c(x, a) is the expected immediate cost
incurred when being in state s and action a is selected; and
τ(x, a) is the average sojourn time until the next decision
epoch when being in state s and action a is selected. The state

transition probability p(y|x, a) is defined as the probability
that the state at the next decision epoch is y given that the
system currently in state x and performing action a. Solving
these equations results in the optimal values g∗ and h∗(x)∀x ∈
S. Knowing h∗(x)∀x ∈ S, the corresponding optimal policy
is determined by

π∗(x) = arg min
a∈Ai

{c(x, a) − g∗τ(x, a)

+
∑
y∈S

p(y|x, a)h∗(y)}, ∀x ∈ S
(19)

Another approach is to define a value function for each
available action in each state, or Q-values [23], as follows

Q∗(x, a) = c(x, a) − g∗τ(x, a) +
∑
y∈S

p(y|x, a)

× min
b∈Ay

{Q∗(y, b)}, ∀x ∈ S, x ∈ Ax
(20)

where h∗(x) = min
a∈Ax

Q∗(x, a), ∀a ∈ S.

The optimal action in each state is determined according to

π∗(x) = arg min
a∈Ax

Q∗(x, a) (21)

B. Reinforcement Learning Schemes

The computational complexity hinders the classical opti-
mization methods for solving the optimality equations, such
as linear programming and dynamic programming, to scale
well for practical dynamic networks. Reinforcement learning
can be used to learn an optimal policy on-line from direct
interactions with the environment by successively approxi-
mating dynamic programming algorithms. RL is a class of
algorithms that are capable of improving their performance
incrementally. There are two most common techniques for
solving reinforcement learning problems: Sutton’s temporal
difference [24] and Watkins’ Q-learning [23].

Temporal difference learning: The temporal difference
learning scheme is a successive approximation of the asyn-
chronous dynamic programming value iteration algorithm for
finding solutions of the system of equations (18). It learns
the state value functions iteratively using the sample values,
instead of the expected values, by the following incremental
averaging rule

hnew(x) = (1−α)hold(y)+α{c(x, a, y)−ĝτ(x, a, y)+hold(y)}
(22)

where α ∈ [0, 1] is the learning rate, or step size parameter
and the setting for α may be fixed or diminishing over time.

Q-learning: The controller uses the sample information to
incrementally update the state-action value function, to solve
the system of equations (20), using temporal difference as
follows

Q̂new(x, a) = (1 − α)Q̂old(x, a) + α{c(x, a, y)−
g∗τ(x, a, y) + min

b∈Ay

(Q̂old(y, b))} (23)

where again α ∈ [0, 1] is the learning rate. At each decision
epoch, the action selection is performed based on the estimated
Q-values in a number of ways to balance the exploration and
exploitation tradeoff. One selection rule is known as the greedy
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selection policy, where no exploration is made, an action is
selected in state x such that

π(x) = arg min
a∈Ax

{Q̂(x, a)} (24)

Another approach, called ε-greedy, is to select the greedy
action with a high probability and with a small probability,
ε, uniformly select among other actions. The later policy
has an advantage over the greedy policy with respect to
the the rate of convergence since it allows the Q-values to
be updated for non-greedy actions and maintains a balance
between exploiting information and exploring.

Average cost estimation: Since the controller has no infor-
mation about the long-run average cost g∗ it can be similarly
estimated online using the following update rule

ĝnew = (1 − β)ĝold+

β

c(x, a, y) + min
b∈Ay

Q̂(y, b) + min
a∈Ax

Q̂(x, a)

τ(x, a, y)

(25)

where β ∈ [0, 1] is another learning rate. Another way to
estimate g∗, using accumulated costs and times, is

ĝ =

n−1∑
i=0

c (si, ai, si+1)

n−1∑
i=0

τ (si, ai, si+1)

(26)

The above estimates can update the value of g∗ at each
decision epoch or only when selecting a greedy action.

The asymptotic convergence of reinforcement learning al-
gorithms is based on the assumption that all available actions
in each state are tried infinitely often. The selection of the
learning rates and the exploration-exploitation affects the rate
of convergence. For large state spaces, the Q-values can
be represented as a parameterized function using function
approximation methods, e.g., neural networks [4].

1) Multiple Traffic Class Case: In the multiple traffic
classes with prioritized handoff problem, one obvious ap-
proach to formulate the allocation problem is to treat the
new call and handoff of type-k traffic, 1 ≤ k ≤ K , as two
distinct classes. In what follows we use another more efficient
formulation based on the state aggregation. In aggregated
states we need only to use one variable for each traffic type
to indicate the number calls of that type, both new calls
and handoffs, in progress. This change results in a dramatic
reduction in the cardinality of the state space. Also, it allows
the states to be visited more often and updates the value
functions more often. Therefore, more accurate results can be
obtained. In this case, the system state at time, t, is defined as

n(t) =
[
n1(t) n2(t) · · · nk(t) · · · nK(t)

]
, (27)

where nk(t) is the number of on-going new calls of type-k
traffic at time t if 1 ≤ k ≤ K . The state space is a finite set
given by,

S =

{
n ∈ {0, 1, . . . , C}K |n · bT =

K∑
k=1

nkbk ≤ C

}
(28)

The decision epochs are defined to occur at discrete times
corresponding to the occurrence of external events (distur-
bance). There are three external events for type-k traffic:
new call arrival, handoff arrival, and call departure. Let
e = [e1 e2 . . . eK . . . e2K ] be an event
vector where ek ∈ {1, 0,−1} for 1 ≤ k ≤ K corresponds
to type-k new call arrival, ek = 1, type-k call departure,
ek = −1, or no change, ek = 0; and ek ∈ {1, 0} for
K + 1 ≤ k ≤ 2K corresponds to type-k handoff arrival,
ek = 1, or no change, ek = 0. At each decision epoch the
controller observes the system state and, based on the event
type, selects an action. Let Ax,e be a finite set of the available
actions in state x when event e occurs and given by

Ax,e =

⎧⎪⎨
⎪⎩
{1, 0}, if ek = 1 and x+

k ∈ S

{1}, if ek = 1 and x+
k /∈ S

{0}, ek = −1
(29)

where a = 1 means reject and a = 0 means otherwise (accept
or no-action).

Given the current state x, the current event e and the selected
action a; then the next state y is deterministically given by
y = f(x, e, a) where:

y =

⎧⎪⎨
⎪⎩

x, if ek = 1 and a = 1
x+
k , if ek = 1 and a = 0

x−k , ek = −1
(30)

The time from one decision epoch to the next decision
epoch is a continuous random variable with a conditional
probability distribution, Fτ (t|x), given the current state x
immediately after the decision. For the above settings, i.e.,
exponential inter-arrival and service times, Fτ (t|x) is also
exponential with expected time until the next decision epoch
(next event) given as

τ(x) =

[
K∑
k=1

xkμk +
2K∑
k=1

λk

]−1

(31)

The probability of the next event being an arrival or
departure of type-k, given the current state x, is expressed
as

p(x,e) =

{
λkτ(x), if ek = 1 and 1 ≤ k ≤ 2K
xkμkτ(x), if ek = −1 and 1 ≤ k ≤ K

(32)

When a request of type-k is rejected, the immediate (stage)
cost, c(x, e, a), incurred is⎧⎪⎨
⎪⎩

wNk, if ((ek = 1 and a = 1) and 1 ≤ k ≤ K)

wH(k−K), if ((ek = 1 and a = 0) and K + 1 ≤ k ≤ 2K)

0, elsewhere
(33)

A deterministic stationary allocation policy is a mapping from
states and events to actions, i.e., π : SxE → A where E is a
finite set of all events and A is a finite set of all actions.

The optimality equations for the average cost semi-Markov
decision process will have the following recursive form:

h∗(x) + g∗τ(x) = Ee

{
min
a∈Ai

{c(x,e,a) + h∗ (f (x, e, a))}
}
,

∀x ∈ S
(34)
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Fig. 4. Generic allocation strategy: transition rate diagram for a single traffic
class.

where h∗(x) is an optimal state dependent value function
h∗ : S → R. Solving these equations results in the optimal
values h∗(x), ∀x ∈ S and g∗. Knowing h∗(x), ∀x ∈ S, the
corresponding optimal policy is determined by

π∗(x,e) = arg min
a∈Ax,e

{c(x,e,a) + h∗ (f (x, e, a))} ,
∀x ∈ S and e ∈ E

(35)

We use a temporal difference approach TD(0) [24] to learn
an optimal policy. The relative value functions are estimated
on-line from the generated state-action sample sequence. Ini-
tially the controller parameters, value functions and policy
gain, are set to some values, e.g., zeros. At each decision
epoch the system state is observed and the state value function
is updated according to

hnew(x) = (1 − α)hold(x) + α{c(x,e,a) − gτ(x)
+ hold (f (x, e, a))}, (36)

where again α ∈ [0, 1] is the learning rate.
A number of variations are possible for the above basic

problem formulation approach by using different state def-
initions, e.g., expanded states, and/or changing the decision
epochs to correspond to all events or arrivals only.

State Expansion: We expand the state vector to incorporate
the event vector as part of the state definition, i.e., s = (n, e).
This change results in a dramatic reduction in the action space
cardinality although it increases cardinality of the state space.
When the requested band is available, two actions are possible
in each state to admit or reject the call request. This is useful
reduction if we learn use Q-learning to learn the action value
functions instead of the state value functions.

Decision Epochs: Changing the decision epochs to corre-
spond to the arrivals only, where actual decisions are required,
results in reduction in the cardinality of the event space. In
this case the system state may change several times between
decision epochs due to call departures and therefore the next
state is stochastically determined by the state transition prob-
ability. This change results in complications in the dynamic
programming algorithms since they need a prior knowledge
of a perfect transition and cost model. However, it helps the
learning schemes since they are model-free and there is no
need to learn or update the value functions at the departure
events.

2) The Single Traffic Class Case: For a single traffic class,
the transition rate diagram is shown in Fig. 4 for a generic
allocation policy. The optimal allocation policy that prioritizes
handoffs has a simple structure of guard threshold type.

In [12], it is proved that a guard channel approach is optimal
for a single traffic class, therefore βH1(i) = 1, for 0 ≤ i ≤ C,
and βN1(i) = 1, for 0 ≤ i ≤ G and zero otherwise. G is an
optimal threshold value.
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Fig. 5. Complete sharing: Transition rate diagram for two traffic classes with
different characteristics.
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new call and handoff blocking probabilities for each traffic type.

RL learning can be used to determine an asymptotically
optimal allocation policy on-line. Although we still can use the
above proposed scheme for multiple traffic classes when K =
1, in this subsection we propose another scheme for which the
controller only interacts with network when a new call arrives.
Following the results of [12], it is required only to search for
a control policy for new call arrivals. Therefore, the allocation
controller always accepts handoff calls if the requested band
is available. However, it uses reinforcement learning to learn
an admission policy for new call arrivals. The system state is
defined as the number of calls in progress (aggregated state)
which result in reducing the state space cardinality to be |C|
where C is the total number of channels available in the
cell. The decision epochs correspond to new call arrivals. The
system state may change several times between two decision
epochs as a result of handoff arrivals or call departures which
are considered as external disturbance. The system state space
is a finite set S = {0, 1, 2, . . . , C}. The action set available in
each state is a finite set As = {1 = reject, 0 = admit} for
s ∈ {0, 1, 2, ..., C − 1} and As = {0 = reject} for s ∈ {C}.
A deterministic stationary policy is a mapping from states
to actions π : S → A. Since the state transitions are now
random, we use the average adjusted Q-learning algorithm for
continuous time SMDP to learn an optimal admission policy
for new call arrivals. When a new call arrives, the system state
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is observed and a decision is made based the estimated action
value functions.

IV. SIMULATION AND NUMERICAL RESULTS

In this section the performance of the learning algorithm
will be demonstrated and compared with complete sharing
and optimal guard channel reservation. We use a discrete
event simulator to generate the traffic streams for new call
and handoff call requests according to mutually independent
Poisson processes. The channel holding times are exponen-
tially distributed.

A. Multiple Traffic Class Case

Consider a particular cell within a cellular network assigned
a fixed set of channels C = [50]. There are two types
of traffic classes, K = 2, each type has two differentiated
arrival streams: new calls and handoff requests. New calls and
handoffs of type-k arrive according to mutually independent
Poisson processes. The arrival rate matrix is

Λ =
[
λN1 λN2 λH1 λH2

]
=
[

20 10 10 5
]

(37)
Each call of type-k, whether a new call or handoff, requests

a number of channels given by bk and holds these channels
for an exponentially distributed time with mean 1/μk where

T =
[
μ−1

1 μ−1
2

]
=
[

1 1
]

(38)

and,
b =

[
b1 b2

]
=
[

1 2
]

(39)

For complete sharing policy, there is no difference between
new calls and handoffs. Therefore, the arrival rate vector is
given by

Λ =
[
λ1 λ2

]
=
[

30 15
]

(40)

where λk = λNk + λHk, ∀k. Let n = (n1, n2) be the
aggregated state of the system, where nk is the number of
active calls of type-k in the cell. The system state space is a
finite set given by

S =

{
(n1, n2) |

2∑
k=1

nkbk ≤ C

}
(41)

The transition rate diagram for a two-dimensional Markov
chain is shown in Fig. 5. The complete sharing admission
decision rule for type-k traffic is,

a =

{
0, if n+

k ∈ S

1, elsewhere
(42)

where a = 0 means accept and a = 1 means reject. The
steady-state blocking probabilities are given by

PB1 =
∑

�
(n1,n2)|0≤n2≤� C

b2
�,n1=�C−n2b2

b1
�
�
P (n1, n2) (43)

and

PB2 =
∑

�
(n1,n2)|0≤n1≤� C

b1
�,n2=�C−n1b1

b2
�
�
P (n1, n2) (44)

where is the largest integer smaller than x.
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Fig. 7. Simulation results for comparing the blocking probabilities of the
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Fig. 8. Long-term average cost incurred per unit time over a single run with
same traffic scenario as Fig. 7.

For the given numerical values above, the analytical values
for the blocking probabilities are PB1 = 0.1622 and PB2 =
0.3063. The allocation policy for this typical example is
obtained through the learning algorithm and its simulation
performance is depicted in Fig. 6. The controller observes
the system state at each event and learns the aggregated state
value functions on-line. When a call arrival of type-k occurs,
the controller selects an action based on the estimated average-
adjusted states values.

B. Single Traffic Class Case

We consider a particular cell within a cellular network with
C = 30 channels, λN = 20, λH = 10, μC = 1, wN = 1 and
wH = 5. The analytical solution reveals the optimal threshold
G = 28 and the corresponding blocking probabilities PHB =
0.0185 and PNB = 0.2354.

The simulation-based performance for the three policies
(CS: complete sharing, GC: guard channel, and RL: rein-
forcement learning) is depicted in Figs. 7-12. Fig. 7 shows
a single run accumulated blocking probabilities. For optimal
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Fig. 9. Simulation results for guard channel policy over 5 runs for different
traffic scenarios.
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Fig. 10. Simulation results for reinforcement learning policy over 5 runs for
different traffic scenarios.

guard threshold, the blocking probabilities are approximately
PHB = 0.0147 and PNB = 0.2305; and for the learning
approach PHB = 0.0248 and PNB = 0.2325 which are very
close to the analytical solutions. Fig. 8 compares the long-run
average cost incurred per time step. Again the performance
of the learning approach is very close to the optimal guard
threshold. Figs. 9 and 10 depict the blocking probabilities for
the guard channel and learning policies for five simulation
runs. Figs. 11 and 12 show the corresponding average over
the five runs. As seen the learning approach has a comparative
performance to the optimal guard threshold.

V. CONCLUSIONS AND FUTURE WORK

The call admission control in cellular mobile networks with
prioritized handoffs has been formulated as an average cost
continuous-time Markov decision process and a reinforce-
ment learning approach for finding a near-optimal admission
policy has been proposed. A key finding of this study is
that the reinforcement leaning algorithm has a comparative
performance, for a single traffic class case, to the optimal
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Fig. 11. Simulation results for guard channel policy and learning: new call
average blocking probabilities after 5 runs for different scenarios of Figures
9 and 10.
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Fig. 12. Simulation results for comparing handoff average dropping
probabilities for learning and optimal guard policies – the average is over
same 5 runs as Fig. 11.

guard threshold policy. For multiple traffic classes the learning
algorithm generalizes the concept of guard threshold to guard
states. This paper is part of a major study in which we are
currently exploring the application of the learning algorithm
for multimedia cellular mobile networks under diverse QoS
constraints. Open research topics include the study of the
handoff-prioritized channel allocation among multiple traffic
classes in multi-cell systems. Others are to incorporate the
information gained about the system model over time in the
learning process, and to study the performance of the learning
algorithm for non-stationary conditions.
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