Electronic Circuits – EE359A

Bruce McNair

B206
bmcnair@stevens.edu
201-216-5549

Lecture 22
Filters and Tuned Amplifiers

Ch 16
Two-port model of filter

Filter circuit

\[T(s) = \frac{V_o(s)}{V_i(s)} \]

General response:
Two-port model of filter

General response:

\[T(s) = \frac{V_o(s)}{V_i(s)} \]

Substituting \(s = j\omega \) and using polar representation:

\[T(j\omega) = |T(j\omega)|e^{j\phi(\omega)} \]
Two-port model of filter

General response:

\[T(s) = \frac{V_o(s)}{V_i(s)} \]

Substituting \(s = j\omega \) and using polar representation:

\[T(j\omega) = |T(j\omega)| e^{j\phi(\omega)} \]

Gain/Attenuation in dB:

\[G(\omega) = 20\log \left(|T(j\omega)| \right) \quad A(\omega) = -20\log \left(|T(j\omega)| \right) \]
Ideal filter characteristics (Low-pass)
Ideal filter characteristics
(High-pass)
Ideal filter characteristics (Band-pass)
Ideal filter characteristics
(Band-stop)
Practical limitations
(Low-pass)

<table>
<thead>
<tr>
<th>(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

\(\omega_p \) \hspace{2cm} \omega

Passband \hspace{2cm} Stopband
Practical limitations (Low-pass)

- Zero-width transition band
- Infinite attenuation in stop-band

Diagram showing: $|T|$ vs ω

- Passband
- Stopband

ω_p
Practical limitations (Low-pass)

- Zero-width transition band
- Infinite attenuation in stop-band
- Infinite complexity
- Infinite time delay
Practical limitations
(Low-pass) – impulse response

\[x(t) = \delta(t) \]

\[y(t) = \text{sinc}(t) = \frac{\sin(t)}{t} \]
Practical limitations
(Low-pass) – impulse response

\[x(t) = \delta(t) \]

\[y(t) = \text{sinc}(t) = \frac{\sin(t)}{t} \]

Response precedes input!!
Example Low-pass specification

- Pass-band edge
- Stop-band edge
- Pass-band variation
- Transition band
- Minimum stop-band attenuation

$|T|$, dB

ω_p, ω_s, ω_{ℓ_1}, ω_{ℓ_2}
Example Band-pass specification

- **Pass-band variation**
- **Lower stop-band edge**
- **Pass-band edges**
- **Upper stop-band edge**
- **Minimum stop-band attenuation**
Typical Low-pass specification

Often no constraints on filter curve
Typical Low-pass specification

Often no constraints on filter curve
Might be monotonic
Typical Low-pass specification

Often no constraints on filter curve
May have passband ripple
Typical Low-pass specification

Often no constraints on filter curve
May have stop band ripple
Typical Low-pass specification

Often no constraints on filter curve
May have both passband and stopband ripple
Typical Low-pass specification

Many different approximations to the ideal filter response
Describing $T(s)$

$$T(s) = \frac{a_M s^M + a_{M-1} s^{M-1} + \cdots + a_1 s + a_0}{b_N s^N + b_{N-1} s^{N-1} + \cdots + b_1 s + b_0}$$
Describing $T(s)$

\[T(s) = \frac{a_M s^M + a_{M-1} s^{M-1} + \cdots + a_1 s + a_0}{s^N + b_{N-1} s^{N-1} + \cdots + b_1 s + b_0} \]

N – filter order (number of poles)

For stability, $M \leq N$

Why?
Describing $T(s)$

$$T(s) = \frac{a_M s^M + a_{M-1} s^{M-1} + \cdots + a_1 s + a_0}{s^N + b_{N-1} s^{N-1} + \cdots + b_1 s + b_0}$$

Transfer function zeroes

$$T(s) = \frac{a_M (s - z_1)(s - z_2)\cdots(s - z_M)}{(s - p_1)(s - p_2)\cdots(s - p_N)}$$

Transfer function poles
Pole-zero diagram of $T(s)$

- Zeroes
- Peaks due to poles

$|T|$, dB

- A_{max}
- A_{min}

Passband

Stopband

Transition band

s plane

- ∞
- $j\omega$

- 0
- ω_p
- ω_s
- ω_t
- ω_{t1}
- ω_{t2}
- $\omega_{\ell1}$
- $\omega_{\ell2}$
- $-\omega_p$
- $-\omega_{\ell1}$
- $-\omega_{\ell2}$
Band-pass filter as a translated
Low-pass filter
Filter designs – approximations to ideal response

![Diagram of filter designs with Ideal filter and Butterworth response](image)
Filter designs – approximations to ideal response
Butterworth response

\[|T(j\omega)| = \frac{1}{\sqrt{1 + \varepsilon^2}} \left(\frac{\omega}{\omega_p} \right)^{2N} \]

\[|T(j\omega_p)| = \frac{1}{\sqrt{1 + \varepsilon^2}} \]

Passband variation
Filter designs – approximations to ideal response

Butterworth response

\[
|T(j\omega)| = \frac{1}{\sqrt{1 + \epsilon^2}} \left(\frac{\omega}{\omega_p} \right)^{2N}
\]

\[
|T(j\omega_p)| = \frac{1}{\sqrt{1 + \epsilon^2}}
\]

Maximally flat passband

Poor transition band response

Passband variation
Filter designs – approximations to ideal response

Butterworth response

Better response with increased filter order
Filter designs – approximations to ideal response

Butterworth response

\[T(s) = \frac{K \omega_0^N}{(s - p_1)(s - p_2)(s - p_3)\cdots(s - p_N)} \]

\[p_k = -\omega_p \sin \left(\frac{2k - 1}{N} \frac{\pi}{2} \right) \left(\frac{1}{\varepsilon} \right)^{\frac{1}{N}} + j\omega_p \cos \left(\frac{2k - 1}{N} \frac{\pi}{2} \right) \left(\frac{1}{\varepsilon} \right)^{\frac{1}{N}} \]

for \(k = 1, 2, \ldots, N \)
Filter designs – approximations to ideal response
Butterworth response

Tradeoffs of Butterworth

+ Maximally flat passband

+ Good phase shift characteristics
 (more on this later)

- Poor attenuation in stopband

-Large N (complex filter) needed for reasonable stopband attenuation, rolloff
Designing a filter

\[T(s) = \frac{a_M (s - z_1)(s - z_2)(s - z_3) \cdots (s - z_{M-1})(s - z_M)}{(s - p_1)(s - p_2)(s - p_3) \cdots (s - p_{N-1})(s - p_N)} \]

\[T(s) = \frac{a_M (s - z_1)(s - z_2)(s - z_3) \cdots (s - z_{M-1})(s - z_M)}{(s - p_1)(s - p_2)(s - p_3) \cdots (s - p_{N-1})(s - p_N)} \]

\[T(s) = (\prod (0 \text{ or more first order sections})) (\prod (0 \text{ or more second order sections})) \]
First order section

\[T(s) = \frac{a_1s + a_0}{s + \omega_0} \]

Pole at \(s = -\omega_0 \)

Zero at \(s = -a_0/a_1 \)
First order sections

| Filter Type and $T(s)$ | s-Plane Singularities | Bode Plot for $|T|$ | Passive Realization | Op Amp–RC Realization |
|------------------------|-----------------------|-------------------|--------------------|-----------------------|
| **(a) Low pass (LP)** | ![Diagram](image1.png) | ![Diagram](image2.png) | ![Diagram](image3.png) | ![Diagram](image4.png) |
| $T(s) = \frac{a_0}{s + a_0}$ | σ O at ∞ | $20 \log \frac{a_0}{\omega_0} \text{ dB}$ | $CR = \frac{1}{\omega_0}$ DC gain = 1 | $CR = \frac{1}{\omega_0}$ DC gain = $-\frac{R_2}{R_1}$ |
| **(b) High pass (HP)** | ![Diagram](image5.png) | ![Diagram](image6.png) | ![Diagram](image7.png) | ![Diagram](image8.png) |
| $T(s) = \frac{a_1 s}{s + a_0}$ | σ O at ∞ | $20 \log a_1 \text{ dB}$ | $CR = \frac{1}{\omega_0}$ High-frequency gain = 1 | $CR = \frac{1}{\omega_0}$ High-frequency gain = $-\frac{R_2}{R_1}$ |
| **(c) General** | ![Diagram](image9.png) | ![Diagram](image10.png) | ![Diagram](image11.png) | ![Diagram](image12.png) |
| $T(s) = \frac{a_1 s + a_0}{s + a_0}$ | σ O at ∞ | $20 \log \frac{a_0}{a_1} \text{ dB}$ | $C_1 R_1 = \frac{a_1}{a_0}$ DC gain = $\frac{R_2}{R_1 + R_2}$ HF gain = $\frac{C_1}{C_1 + C_2}$ | $C_1 R_1 = \frac{a_1}{a_0}$ DC gain = $\frac{R_2}{R_1}$ HF gain = $-\frac{C_1}{C_2}$ |
First order sections

$T(s)$	Singularities	$	T	$ and ϕ	Passive Realization	Op Amp–RC Realization		
All pass (AP)	$T(s) = -\frac{s - \omega_0}{s + \omega_0}$	$	T	$, dB	[Diagram of $	T	$ and ϕ]	[Diagram of Op Amp–RC Realization]

where $\omega_0 > 0$.

- $|T|$ dB: $20 \log |a_1|$
- ϕ: 0° at $\omega = 0$, -90° at $\omega = \omega_0$, -180° at $\omega = \infty$

Passive Realization

- $CR = 1/\omega_0$
- Flat gain $(a_1) = 0.5$

Op Amp–RC Realization

- $CR = 1/\omega_0$
- Flat gain $(a_1) = 1$
Second order section

\[T(s) = \frac{a_2 s^2 + a_1 s + a_0}{s^2 + \left(\frac{\omega_0}{Q}\right)s + \omega_0^2} \]

\[p_1, p_2 = -\frac{\omega_0}{Q} \pm \sqrt{1 - \frac{1}{4Q^2}} \]
Second order section

\[T(s) = \frac{a_2 s^2 + a_1 s + a_0}{s^2 + \left(\frac{\omega_0}{Q}\right)s + \omega_0^2} \]

\[p_1, p_2 = -\frac{\omega_0}{Q} \pm \sqrt{1 - \frac{1}{4Q^2}} \]

Numerator zeroes determine filter response: LP, HP, BP, BS, AP
Second order sections

Filter Type and \(T(s) \)	\(s \)-Plane Singularities	\(T	\)		
(a) Low pass (LP)	\[T(s) = \frac{a_0}{s^2 + s \frac{\omega_0}{Q} + \omega_0^2} \]	\[T	= \frac{	a_0	Q}{\omega_0 \sqrt{1 - \frac{1}{4Q^2}}} \]
DC gain = \[\frac{a_0}{\omega_0} \]	\[\omega_0 \]	\[\omega_{\text{max}} = \omega_0 \sqrt{1 - \frac{1}{2Q^2}} \]				

| **(b) High pass (HP)** | \[T(s) = \frac{\omega_0^2}{s^2 + s \frac{\omega_0}{Q} + \omega_0^2} \] | \[|T| = \frac{|a_2|Q}{\sqrt{1 - \frac{1}{4Q^2}}} \] |
| High-frequency gain = \(a_2 \) | \[\omega_{\text{max}} = \frac{\omega_0}{\sqrt{1 - \frac{1}{2Q^2}}} \] |

| **(c) Bandpass (BP)** | \[T(s) = \frac{a_1 s}{s^2 + s \frac{\omega_0}{Q} + \omega_0^2} \] | \[\omega_{\text{max}} - \frac{(a_1 Q / \omega_0)}{\omega_0} \] |
| Center-frequency gain = \[\frac{a_1 Q}{a_0} \] | \[\omega_0 \sqrt{1 + \frac{1}{4Q^2}} + \frac{\omega_0^2}{2Q} \] | \[\omega_1 \omega_2 = \omega_0 \] |

\[\omega_1, \omega_2 = \frac{\omega_0}{\sqrt{1 + \frac{1}{4Q^2}} + \frac{\omega_0^2}{2Q}} \]

\(\omega_0 \) = \(\omega_0 \sqrt{1 + \frac{1}{4Q^2}} + \frac{\omega_0^2}{2Q} \)

\(\omega_1 \omega_2 = \omega_0 \)
Second order sections

| Filter Type and $T(s)$ | s-Plane Singularities | $|T|$ |
|------------------------|-------------------------|------|
| (d) Notch | $T(s) = a_2 \frac{s^2 + a_0^2}{s^2 + s \frac{a_0}{Q} + a_0^2}$ | $|T|$ |
| DC gain | $\frac{a_0}{Q}$ | $\sqrt{2}$ |
| High-frequency gain $= a_2$ | ω_n | ω_n |
| | α_0 | α_0 |
| | ω_n | ω_n |
| | ω_j | ω_j |
| | $\omega_j(Q)$ | $\omega_j(Q)$ |

(e) Low-pass notch (LPN)	$T(s) = a_2 \frac{s^2 + a_0^2}{s^2 + s \frac{a_0}{Q} + a_0^2}$	$	T	$
DC gain	$\frac{a_0}{Q}$	$\frac{a_0}{Q}$		
High-frequency gain $= a_2$	ω_n	ω_n		
	ω_n^2	ω_n^2		
	α_0	α_0		
	ω_n	ω_n		
	$\alpha_0(Q)$	$\alpha_0(Q)$		

(f) High-pass notch (HPN)	$T(s) = a_2 \frac{s^2 + a_0^2}{s^2 + s \frac{a_0}{Q} + a_0^2}$	$	T	$
DC gain	$\frac{a_0}{Q}$	$\frac{a_0}{Q}$		
High-frequency gain $= a_2$	ω_n	ω_n		
	ω_n^2	ω_n^2		
	α_0	α_0		
	ω_n	ω_n		
	$\alpha_0(Q)$	$\alpha_0(Q)$		
Second order sections

\[T(s) = \frac{s^2 - s \alpha_0 + \alpha_0^2}{s^2 + s \alpha_2 + \alpha_0^2} \]

Flat gain = \(\alpha_2 \)
Second order LCR resonator

Basic resonator
Second order LCR resonator

Current drive

Voltage drive

Transfer function

\[
\frac{V_o}{I} \quad \frac{V_o}{V_i}
\]