This week

• Simulation software (beyond Chapter 4 in Banks, et. al.)

• System simulation considerations
Simulation Software

• General purpose programming languages
 – FORTRAN
 – C/C++

• Simulation programming languages
 – GPSS/H™
 – SIMIAN V®

• Simulation environments
 – OpNet
 – Matlab Simulink™
 – Arena
Evolution of simulation software

General purpose Languages
Simulation languages
Simulation environments

FORTRAN

Simscript
GASP
SLAM II
SIMIAN

ALGOL

Simula

PASCAL

C

GPSS GPSS/H

C++

Matlab

CSIM

Arena
AutoMod

OpNet

Simulink
Some Guidelines on Simulation Software Selection

• Consider multiple broad issues: Ease of use, accuracy, support, training, applicability to problem

• Execution speed is important: slow speed during debugging can impede development

• Caveat Emptor – vendors sometimes lie

• Try before you buy – run on sample problems. Evaluation downloads are extremely important (e.g., MathWorks offers complete 30 day evaluation copy)

• Beware of simple feature lists

• Extending package with your own C (et. al.) routines is extremely important

• Graphical interface is easiest for describing process flow. Programming language-like routines are best for describing procedural steps. You’ll need both.

• Sophisticated graphical display of complex output is essential (e.g., 3-D graphs)
Model-building features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model world view</td>
<td>Process interaction, events</td>
</tr>
<tr>
<td>Input data analysis</td>
<td>Estimate distributions from raw data</td>
</tr>
<tr>
<td>Graphical model building</td>
<td>Block diagrams to illustrate process flow, functional blocks, network</td>
</tr>
<tr>
<td>Conditional routing</td>
<td>Route entities thru simulation based on state of system</td>
</tr>
<tr>
<td>Simulation programming</td>
<td>Interface to allow programmatic control of simulation, preferably in standard HLL</td>
</tr>
<tr>
<td>Syntax</td>
<td>Easily understood, consistent, unambiguous, similar to a language user already understands</td>
</tr>
<tr>
<td>Input flexibility</td>
<td>Accepts data from external sources, e.g., sensors, files, user</td>
</tr>
<tr>
<td>Conciseness</td>
<td>Powerful actions, blocks, or nodes</td>
</tr>
<tr>
<td>Randomness</td>
<td>Random process generators for common distributions. Ability to randomize or repeat same sequence</td>
</tr>
<tr>
<td>Specialized components</td>
<td>Off-the-shelf components for your particular problem</td>
</tr>
<tr>
<td>User-built custom objects</td>
<td>Reusable objects, templates, and sub-models. Ideally, they should be indistinguishable from built-in features</td>
</tr>
<tr>
<td>Interface with GPL</td>
<td>E.g., model is C-callable, Model can include C routines</td>
</tr>
</tbody>
</table>
Runtime Environment

<table>
<thead>
<tr>
<th>Feature</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execution speed</td>
<td>Many short runs are needed during debugging. Long runs are needed during experimentation. Fast startup as well as efficient execution are required. Ability to compile/optimize/profile model needed</td>
</tr>
<tr>
<td>Model size</td>
<td>There should be no hard limits, other than those imposed by platform you are running on (e.g., available RAM, hard disk space)</td>
</tr>
<tr>
<td>Interactive debugger</td>
<td>Breakpoints, trap event, run until condition, single step, error recovery</td>
</tr>
<tr>
<td>Model status and statistics</td>
<td>Display at any time during simulation</td>
</tr>
<tr>
<td>Runtime license</td>
<td>Ability to design a model and then run it with same structure but different parameters on multiple platforms simultaneously. At $30k per license for some packages, you don’t want to have to buy 10 licenses to run 10 instances of same simulation</td>
</tr>
</tbody>
</table>
Simulation Packages

• Common characteristics:
 – GUI based,
 – Animated graphics
 – Automatic data collection

• Arena
 – modeling of business processes
 – built on SIMIAN

• AutoMod
 – focus on material handling and manufacturing processes
 – generated AVI movies of 3D animations, with pan/zoom

• Deneb/QUEST
 – robotic simulation

• OpNet Modeler/IT Guru
 – graphical modeling of complex networks

• Matlab/SIMULINK
 – block diagram focus
 – focus on scientific/technical applications
 – rich set of Blocksets/Toolboxes

• MathCAD
 – equation-based worksheets
 – includes symbolic programming (e.g., simplification/expansion of equations)
Trends in Simulation Packages

• High-fidelity simulation
 – High-accuracy simulation of complex systems
• Data exchange standards
 – Simulation input/output can be interfaced to other packages
• Distributed (client/server) computing support
 – Large organization/wide-area collaboration (e.g., across LAN, Internet)
• General purpose simulations vs. specialized simulations
 – Do it once, make it reusable
• Richer object libraries/reusable blocksets
• Multiple computer simulations to accelerate simulations
Implementation Directions

• Top Down
 – Define high level structure first, fill in details
 – Nothing is working until the details are done

• Bottom Up
 – Define the details first, stitch them together
 – Interfaces will change as more details are defined

• Straight through
 – Start at system input, progress through to final output (or vice versa)

• Outside In
 – Front and back interfaces are defined first, interior details later, meet in middle
 – Pieces may not join at the center properly

• Inside Out
 – Inner connections are completed, outer pieces are added
 – There is something to test from the beginning
The Problem

• Your (intentionally vague) hypothetical task:
 – Investigate alternatives for wireless LANs (802.11)
The Problem

• Your (intentionally vague) hypothetical task:
 – Investigate alternatives for wireless LANs (802.11)
 – This might involve
 • Research: extensions to current standards (802.11a/b/g)
 – Range, throughput, mobility, interference avoidance, other operating conditions
 • Systems engineering: does existing technology meet customer requirements for planned system?
 • Development: implementation choices, performance optimization
 • Deployment: site considerations, interference
The Problem

• Your (intentionally vague) hypothetical task:
 – Investigate alternatives for wireless LANs (802.11)
 – This might involve
 • Research: extensions to current standards (802.11a/b/g)
 – Range, throughput, mobility, interference avoidance, other operating conditions
 • Systems engineering: does existing technology meet customer requirements for planned system?
 • Development: implementation choices, performance optimization
 • Deployment: site considerations, interference

• **Modeling and simulation to be used as design tool** (obviously)

The Problem

• Your (intentionally vague) hypothetical task:
 – Investigate alternatives for wireless LANs (802.11)
 – This might involve
 • Research: extensions to current standards (802.11a/b/g)
 – Range, throughput, mobility, interference avoidance, other operating conditions
 • Systems engineering: does existing technology meet customer requirements for planned system?
 • Development: implementation choices, performance optimization
 • Deployment: site considerations, interference

• **Modeling and simulation to be used as design tool** (obviously)

• Questions:
 – What are the right tools to use?
 – Where do you start to define the problem?
The Network

- Do you model one link in the presence of many?
- Do you model the entire network - at what level of detail?

Access points

Wireless connections

Clients

Interferers
What level simulation?

- **Application**
- **Presentation**
- **Session**
- **Transport**
- **Network**
- **Link**
- **Physical**

ISO 7 layer protocol stack

- Top-level functionality
- Formatting
- Establishment, management, termination of interaction
- End-to-end interaction
- Connection, routing control
- Error control, flow control
- Bit-level interactions

High-level user visible effects

Complex cross-network interactions

Detailed bit-by-bit
References

Homework

• Study for final: In class next week
 – format similar to midterm
 – ~60% of final will be on material since midterm
 – today’s material will be included, but not emphasized