Figure 6: Modeling of the suspension system of a motorcycle
Demonstration of the exponential decay law using beer froth

A Leike
Ludwig-Maximilians-Universität, Sektion Physik, Theresienstr. 37, D-80333 München, Germany
E-mail: leike@theorie.physik.uni-muenchen.de

Received 22 June 2001, in final form 8 October 2001
Published 17 December 2001
Online at stacks.iop.org/EJP/23/21

Abstract
The volume of beer froth decays exponentially with time. This property is used
to demonstrate the exponential decay law in the classroom. The decay constant
depends on the type of beer and can be used to differentiate between different
beers. The analysis shows in a transparent way the techniques of data analysis
commonly used in science—consistency checks of theoretical models with the
data, parameter estimation and determination of confidence intervals.

Exponential laws are common to many physical phenomena. Examples are the amplitude
of an oscillator subject to linear friction, the discharge of a capacitor, cooling processes or
radioactive decays. The demonstration described here has the advantages that it is cheap, clear
and motivating because it investigates an everyday phenomenon. It can easily be repeated by
the students elsewhere.

The decay of beer froth is mentioned as a very short notice in [1]. It is described in
several German textbooks of mathematics. Recently, it also attracted the attention of Bavarian
pupils [2].

The data analysis proposed in this paper has much in common with real science—see, for
example, the determination of the Higgs mass by the LEP collaborations [3]. The techniques
involved are of great practical importance but are often poorly understood by students [4].

Exponential decay can be demonstrated using beer froth, the volume of which reduces
exponentially with time [1]. The exponential law can readily be derived from the assumption
that the volume of froth \(dV\) disappearing in the time between \(t\) and \(t + dt\) is proportional to
the volume \(V\) present at the time \(t\), \(dV = -(V/\tau)\, dt\). In a cylindrical beer mug with an area
\(A\), the volume is proportional to the height, \(dV = A\, dh\). The phenomenological theory of
exponential decay predicts the height as a function of time

\[h(t) = h(0) \exp \left(-\frac{t}{\tau} \right). \]

The constant \(\tau\) is a free parameter of the theory. It defines how fast the froth decays; during
the time \(\tau\) the amount \(1 - 1/e \approx 63\%\) of the froth disappears. Different kinds of beer have,
in general, different parameters \(\tau\).