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Abstract: This study considers the problem of detecting a multi-channel signal of range-spread targets in a homogeneous
environment, where the disturbances in both test signal and training signals share the same covariance matrix. To this end, a
generalised parametric Rao (GP-Rao) test is developed by modelling the disturbance as a multi-channel auto-regressive
process. The GP-Rao test uses less training data and is computationally more efficient, when compared with conventional
covariance matrix-based solutions. The theoretical detection performance of the GP-Rao test is characterised in terms of
the asymptotic distribution under both hypotheses. Numerical results indicate that the proposed GP-Rao test attains
asymptotically the constant false alarm rate property. Numerical results show that the GP-Rao test achieves better detection
performance and uses significantly less training signals than the covariance matrix-based approach.
1 Introduction

It is well known that range resolution in radar is normally
inversely proportional to the bandwidth of its transmitting
pulses. Nowadays, wideband high-resolution radars can
spatially resolve a target into a number of scattering centres
depending on the range extent of the target and range
resolution capabilities of the radar [1–5]. The high-
resolution radar conveys abundant target information and
has been successfully applied in target detection,
localisation, classification and imaging. Range-spread target
detection, which is very challenging in the high-resolution
radar, has received considerable attention over the past
decade [3–20]. It is shown to be statistically equivalent in
detecting a target across a number of adjacent range cells in
interferences with an unknown covariance matrix. In this
paper, we consider the range-spread target detection
problem in a high-resolution radar which employs multiple
sensors and multiple pulses. With multiple sensors and
pulses, the sensor array often uses space–time adaptive
processing (STAP) for its enhanced target discrimination
capability, compared with space- or time-only processing
[21, 22].

Detection of range-spread targets in white Gaussian
noise is addressed in [3], where some a priori statistical
knowledge about the range-spread target is incorporated
into the detection problem from a Bayesian framework. In
[4], a modified generalised likelihood ratio test (MGLRT)
is proposed for detecting range-spread targets embedded
in correlated Gaussian noise. However, it appears that the
statistical distribution of the MGLRT under the null
hypothesis is dependent on the unknown covariance matrix
and, as a result, does not achieve a constant false alarm rate
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(CFAR) property. An enhanced algorithm is proposed in [4]
and is shown to limit the CFAR property in a bounded
region. In [5], the range-spread target detection is addressed
by proposing two new detectors from the generalised
likelihood ratio test (GLRT) principle, using either a one-
step or a two-step procedure. The resulting detectors,
including the generalised adaptive matched filter (GAMF)
and the GLRT, use homogeneous training signals to
estimate the unknown disturbance covariance matrix. Both
detectors ensure the CFAR property. Recent additions to the
literature, by taking account into the subspace structure
of the disturbance, interferences because of sidelobe
(orthogonal) targets, and other uncertainties on the range-
spread targets, can be found in [10–14, 16]. Meanwhile,
the range-spread target detection problem in non-Gaussian
disturbances has been fully addressed in [6–8, 15] and
references therein. A challenging issue in non-Gaussian
environments is the covariance matrix estimation which
usually has no closed-form solution.

By exploiting the inherent structure of the disturbance
covariance matrix, a parametric approach is shown to be
essential in reducing the computational burden and also
mitigating the requirement of training signals [9, 23–33].
In [9], the spatial-only disturbance component is modelled
as a ‘scalar’ auto-regressive (AR) process, and parametric
detectors have been proposed to handle the mono-pulse
environment. In this paper, we extend the parametric AR
modelling of the disturbance into both the spatial and
temporal domains. Paralleling our parametric solutions to
the point-target case [26, 27, 30, 31], we propose a ‘multi-
channel’ AR process for the disturbance in the range-spread
scenario, which in addition to the spatial correlation across
multiple sensors, explicitly takes the temporal correlation
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across multiple pulses into account. In order to find a simple
and closed-form solution, we consider the Rao test which
only requires the maximum likelihood (ML) estimates of
the nuisance parameters under the null hypothesis. The
proposed Rao test for the range-spread target detection is
referred to as the generalised parametric Rao (GP-Rao) test.
Instead of the joint spatial–temporal processing of the
covariance matrix-based detectors, the GP-Rao test employs
successively a temporal whitening followed by a spatial
whitening. As verified by numerical results, the GP-Rao
test is seen to outperform its covariance matrix-based
counterparts, such as the GAMF and GLRT detectors.

The remainder of this paper is organised as follows.
Section 2 describes the signal model and the problem
statement. In Section 3, we first summarise the general
principle of the Rao test and then develop the GP-Rao test
step-by-step. Its detection performance is characterised by
the asymptotic distribution of the GP-Rao test variable in
both hypotheses. Numerical results are presented in Section
4 and concluding remarks are provided in Section 5.

2 Signal model

The problem of interest is to decide whether one of the
following two hypotheses is true

H0: xl(n) = dl(n)

H1: xl(n) = als(n) + dl(n)

l = 0, 1, . . . , L − 1, n = 0, 1, . . . , N − 1

where all vectors are of dimension J × 1, J denotes the
number of sensors or spatial channels, N is the number of
temporal observations or pulses, and L is the number of
range bins where the target spreads. Herein, xl(n) is referred
to as the nth array snapshot of the test signal at the lth
range bin, s(n) is the assumed known steering vector at the
nth array snapshot, al is the unknown complex target
amplitude at the lth range bin, and dl(n) is the disturbance
that is correlated in both space and time domains. Besides
the test signals xl(n), there are KL target-free training
signals xk(n) available

xk(n) = dk(n), k = L, . . . , (K + 1)L − 1 (1)

Define the following JN × 1 space–time vectors

s = [sT(0), sT(1), . . . , sT(N − 1)]T

dk = [dT
k (0), dT

k (1), . . . , dT
k (N − 1)]T

xk = [xT
k (0), xT

k (1), . . . , xT
k (N − 1)]T

where k ¼ 0, 1, . . . , (K + 1)L 2 1. The problem of interest
can be equivalently described as the following binary
composite hypothesis testing problem

H0: xl = dl, xk = dk

H1: xl = als + dl, xk = dk

l = 0, 1, . . . , L − 1

k = L, . . . , (K + 1)L − 1

A common assumption in the literature [3–5] is that:
disturbances {dl}

L−1
l=0 in the test signals and those in the
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training signals {dk}(K+1)L−1
k=L are assumed to be mutually

independent with the same statistical distribution CN (0, R),
where R is the unknown space–time covariance matrix. In
this paper, a multi-channel AR process is employed to model
the space–time disturbance and we have the following
parametric modelling for the disturbances [23, 26, 27, 30, 31]:

† AS1: The disturbances dk(n), k ¼ 0, . . . , (K + 1)L 2 1, in
both the test and training signals can be modelled as a
J-channel AR(P) process with model order P:

dk (n) = −
∑P

i=1

AH(i)dk(n − i) + 1k (n) (2)

where {AH(i)}P
i=1 denote the ‘unknown’ J × J AR coefficient

matrices, 1k(n) denote the J × 1 spatial noise vectors that are
temporally white but spatially coloured: 1k(n)� CN (0, Q)
and Q denotes the ‘unknown’ J × J spatial covariance matrix.

The problem of interest is finally to develop a decision rule
for the above composite hypothesis testing problem based on
the signal model and the assumption AS1.

3 GP-Rao test for range-spread target
detection

In fact, the above problem of interest is a composite
hypothesis test, which means that there is no a uniformly
most powerful (UMP) test for the problem. Suboptimum
alternatives such as the GLRT is commonly adopted in
practice and works well in many circumstances [34].
Nevertheless, the GLRT for the above range-spread target
detection in the AR modelled disturbance has no exactly
closed-form solution [27, 30]. Therefore we resort to the
Rao test, a simpler solution than the GLRT, which only
requires the ML estimates of the nuisance parameters under
H0. Moreover, the Rao test has been verified that it
achieves the CFAR property and may perform as well as
the GLRT asymptotically [26, 34, 35].

In general, the Rao test is computed as [34]

TRao = ∂ ln f (u)

∂ur

∣∣∣∣T

u=ũ[I−1(ũ)]ur ,ur

∂ ln f (u)

∂ur

∣∣∣∣u=ũ (3)

where according to the signal model of Section 2,

† f (u) denotes the joint probability density function (pdf) of
the test and training signals.
† ur = [aT

R, aT
I ]T = [<{aT}, ℑ{aT}]T denotes the 2L × 1

‘signal parameter’ vector, where < and = denote the real
and imaginary parts, respectively, and a ¼ [a1, a2, . . . , aL]
stacks the L target amplitudes into an L × 1 complex
vector. The joint pdf under H0 and the pdf under H1 differ
only in the value of ur, where ur0

= 02L×1 and
ur1

= [aT
R, aT

I ]T;

† us = [qT
R, qT

I , aT
R, aT

I ]T denotes the ‘nuisance parameter’
vector with aT

R = vec(<{AH}), aT
I = vec(ℑ{AH}), qT

R
contains the diagonal elements in Q and the real part of the
elements below the diagonal, whereas qT

I contains the
imaginary part of the elements below the diagonal;

† u = [uT
r , uT

s ]T contains all unknown parameters;

† ũ = [uT
r0

, ûT
s0

]T denotes the ML estimate of u under H0.
† I−1(ũ) is the inverse of the Fisher information matrix
(FIM) at the estimate of u under H0, and the FIM is
405
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partitioned as [34]

I (u) = Iur ,ur
(u) Iur ,us

(u)
Ius,ur

(u) Ius,us
(u)

[ ]
(4)

† [I−1(ũ)]ur ,ur
denotes the subblock matrix of the inverse

FIM corresponding to the signal parameter ur under H0,
which is computed as

[I−1(ũ)]ur ,ur
= (Iur ,ur

(ũ) − Iur ,us
(ũ)I−1

us,us
(ũ)Ius,ur

(ũ))−1 (5)

where we invoke the inverse of the FIM block matrix in (4).

As a result, the development of the GP-Rao test requires the
ML estimates of the nuisance parameters us, that is, ûs0

, under

the null hypothesis and the FIM-related term [I−1(ũ)]ur ,ur

corresponding to the signal parameter ur, which will be
sequentially addressed in the following two subsections.

3.1 ML estimation under the null hypothesis

In the following, we derive the ML estimates of the nuisance
parameters Q and A ¼ [A(1)T, A(2)T, . . . , A(P)T]T under H0.
Since the test signals and the training signals are independent,
the joint pdf fi(X|a, A, Q) ( fi(X|u) for short), conditioned on
the first P elements, can be expressed as

fi(X |a, A, Q) = 1

pJ |Q| e−tr{Q−1T i(a,A)}

[ ]L(K+1)(N−P)

(6)

where

L(K + 1)(N − P)T i(a, A)

=
∑L−1

l=0

∑N−1

n=P

1l(n)1H
l (n) +

∑(K+1)L−1

k=L

∑N−1

n=P

1k (n)1H
k (n) (7)

with 1l(n), l ¼ 0, 1, . . . , L 2 1, denoting the ‘temporally
whitened target-free’ test signals

1l(n) = x̃l(n) − al s̃(n)

= xl(n) +
∑P

p=1

AH(p)xl(n − p)

[ ]

− al s(n) +
∑P

p=1

AH(p)s(n − p)

[ ]
(8)

and, respectively, 1k(n), k ¼ L, L + 1, . . . , (K + 1)L 2 1,
denoting the ‘temporally whitened’ training signals

1k(n) = xk(n) +
∑P

p=1

AH(p)xk(n − p) (9)

Note here that a = 0 under H1 (i.e. i ¼ 1), and a ¼ 0 under
H0 (i.e. i ¼ 0), which results in the joint pdf f0(X|u) under H0

[as well as T0 and 1l(n)] being independent of the signal
parameter a.

By setting a ¼ 0 in (6), taking the derivative of the log-
likelihood, that is, ln f0(X|A, Q), with respect to (w.r.t.) Q,
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and equating it to zero, we obtain the ML estimate of Q as

Q̂ML(A) = T0(A) (10)

where T0(A) is defined in (7) by setting a ¼ 0.
Substituting Q̂ML(A) into the log-likelihood function

ln f (X|A, Q) yields

f0(X |A, Q̂ML) = (ep)−J

|T0(A)|

[ ]L(K+1)(N−P)

(11)

It is seen that maximising f0(X |A, Q̂ML) w.r.t. A is equivalent
to minimising |T0(A)|. Note that

L(K + 1)(N − P)T0(A)

=
∑L−1

l=0

∑N−1

n=P

1l(n)1H
l (n) +

∑(K+1)L−1

k=L

∑N−1

n=P

1k(n)1H
k (n)

= R̂xx + AHR̂yx + R̂H
yxA + AHR̂yyA

= (AH + R̂H
yxR̂

−1
yy )R̂yy(AH + R̂H

yxR̂−1
yy )H

+ R̂xx − R̂H
yxR̂−1

yy R̂yx

(12)

where

R̂xx =
∑L−1

l=0

∑N−1

n=P

xl(n)xH
l (n) +

∑L(K+1)−1

k=L

∑N−1

n=P

xk (n)xH
k (n) (13)

R̂yy =
∑L−1

l=0

∑N−1

n=P

yl(n)yH
l (n) +

∑L(K+1)−1

k=L

∑N−1

n=P

yk (n)yH
k (n) (14)

R̂yx =
∑L−1

l=0

∑N−1

n=P

yl(n)xH
l (n) +

∑L(K+1)−1

k=L

∑N−1

n=P

yk (n)xH
k (n) (15)

with two regressive vectors of the test signals and the training
signals defined, respectively, as follows

yl(n) = [xT
l (n − 1), xT

l (n − 2), . . . , xT
l (n − P)]T

l = 0, 1, . . . , L − 1
(16)

yk(n) = [xT
k (n − 1), xT

k (n − 2), . . . , xT
k (n − P)]T

k = L, L + 1, . . . , (K + 1)L − 1
(17)

From (12), since R̂yy is non-negative definite and the
remaining terms in (12) do not depend on A, it follows that

L(K + 1)(N − P)T0(A) ≥ L(K + 1)(N − P)T0(ÂML)

= R̂xx − R̂H
yxR̂−1

yy R̂yx

(18)

where

ÂML = −R̂−1
yy R̂yx (19)

with R̂yy and R̂yx defined in (14) and (15). Once T0(A) is
minimised, ÂML will minimise any non-decreasing function
including the determinant of T0(A).

In summary, the ML estimate of A is obtained in (19)
and the ML estimate of Q is obtained in (10) by replacing
IET Signal Process., 2012, Vol. 6, Iss. 5, pp. 404–412
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A with ÂML, that is

Q̂ML = T0(ÂML) =
R̂xx − R̂H

yxR̂−1
yy R̂yx

L(K + 1)(N − P)
(20)

where the second equality is due to (18).

3.2 Fisher information matrix

The second step to derive the GP-Rao test is to obtain the
FIM-related term [I−1(ũ)]ur ,ur

, which requires to evaluate
the first-order and second-order derivatives of the log-
likelihood function ln f1(X|a, A, Q) w.r.t. all unknown
parameters.

First, it is seen that the mean of the (Gaussian)
measurements is related to the signal parameter ur ¼ a,
whereas the covariance matrix of the measurements is a
function of A and Q (or, equivalently, us). Since the mean
and the covariance matrix are decoupled (they do not share
common parameters), the FIM of the estimates of all
unknown parameter u is block diagonal; see [34, Section
3.9]. In other words, we have

Iur ,us
(u) = 0, Ius ,ur

(u) = 0 (21)

By substituting the above results into (5), we simplify the
term [I−1(ũ)]ur ,ur

in the Rao test as

[I−1(ũ)]ur ,ur
= I−1

ur ,ur
(ũ) (22)

Therefore in the following, we concentrate on calculating the
block matrix of the FIM corresponding to the signal
parameters ur.

The first partial derivatives of the log-likelihood
function ln f1(X|u) w.r.t. the 2L × 1 signal parameters
ur = [aT

R, aT
I ]T are

∂ ln f1(X |u)

∂ur

=

∂ ln f1(X |u)

∂aR

∂ ln f1(X |u)

∂aI

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (23)

where we use the joint pdf of (6) and invoke the independence
across the test signal

∂ ln f1(X |u)

∂aR

[ ]
l

=
∑N−1

n=P

[s̃H(n)Q−11l(n) + 1H
l (n)Q−1s̃(n)] (24)

∂ ln f1(X |u)

∂aI

[ ]
l

= j
∑N−1

n=P

[s̃H(n)Q−11l(n) − 1H
l (n)Q−1s̃(n)]

(25)

where s̃(n) is the temporally whitened steering vector defined
in (8) and 1l is the temporally whitened test signal at the lth
range bin which is also defined in (8).
IET Signal Process., 2012, Vol. 6, Iss. 5, pp. 404–412
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The second partial derivatives of ln f1(X|u) w.r.t. ur are
shown below

∂2 ln f1(X |u)

∂{aR}l∂{aR}ℓ
= −2d(l − ℓ)

∑N−1

n=P

s̃H(n)Q−1s̃(n)

∂2 ln f1(X |u)

∂{aI}l∂{aI}ℓ
= −2d(l − ℓ)

∑N−1

n=P

s̃H(n)Q−1s̃(n)

∂2 ln f1(X |u)

∂{aR}l∂{aI }ℓ
= ∂2 ln f1(X |u)

∂{aI }l∂{aR}ℓ
= 0

where {vl} denotes the lth element of the vector v, and d(l ) is
the Kronecker delta function. Substituting the above elements
back into Iur

,ur
(u), we have

[I(u)]ur ,ur
= 2

∑N−1

n=P

s̃H(n)Q−1s̃(n)I2L (26)

where I2L denotes the identity matrix with a dimension of 2L.
According to (22), the FIM-related term [I−1(ũ)]ur ,ur

is
obtained as

[I−1(ũ)]ur ,ur
= I−1

ur ,ur
(ũ) = I−1

ur ,ur
(u)|u=ũ

= 1

2
∑N−1

n=P
ˆ̃sH(n)Q̂−1

ML
ˆ̃s(n)

I2L

(27)

where Q̂ML, as given by (20), is the ML estimate of Q under
H0, and the temporally whitened steering vector ˆ̃s is given by

ˆ̃s(n) = s(n) +
∑P

p=1

ÂH
ML(p)s(n − p) (28)

with ÂML given by (19).

3.3 GP-Rao test

From (8), we obtain

1l(n)|u=ũ = ˆ̃xl(n) = xl(n) +
∑P

p=1

ÂH
ML(p)xl(n − p) (29)

Then, based on (24) and (25), the first-order derivatives of the
log-likelihood function at u = ũ are simplified to

∂ ln f1(X |ũ)

∂aR

[ ]
l

=
∑N−1

n=P

[ˆ̃sH(n)Q̂−1
ML

ˆ̃xl(n) + ˆ̃xH
l (n)Q̂−1

ML
ˆ̃s(n)]

(30)

∂ ln f1(X |ũ)

∂aI

[ ]
l

= j
∑N−1

n=P

[ˆ̃sH(n)Q̂−1
ML

ˆ̃xl(n) − ˆ̃xH
l (n)Q̂−1

ML
ˆ̃s(n)]

(31)

In addition to the ML estimates of nuisance parameters under
H0 and the FIM-related item, the general Rao test of (3)
407
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reduces to the GP-Rao test

TGP−Rao =
2
∑L−1

l=0

∑N−1
n=P

ˆ̃sH(n)Q̂−1
ML

ˆ̃xl(n)
∣∣∣ ∣∣∣2∑N−1
n=P

ˆ̃sH(n)Q̂−1
ML

ˆ̃s(n)
_
H1

H0

gGP−Rao (32)

where gGP-Rao is the threshold subject to a given probability
of false alarm, Q̂ML denotes the ML estimate of the spatial
covariance matrix; see (20), and ˆ̃s(n) and ˆ̃xl(n) are,
respectively, the ‘temporally whitened’ steering vector and
the lth test signal by using the ML estimates of A; see (28)
and (29).

From (32), it is seen that the GP-Rao test preforms
successively a temporal whitening followed by a spatial
whitening. Particularly, the steering vector s(n) and the lth
test signal xl(n) are temporally whitened according to (28)
and (29) with the ML estimate ÂML, whereas the spatial
whitening is performed by using the ML estimate Q̂ML. It is
also noted that the temporal and spatial whitening use both
the test signals and training signal through the ML
estimates ÂML of (19) and Q̂ML of (20).

The proposed GP-Rao test can also be connected to the
conventional parametric Rao test for the point-target
detection [26]. Rewrite the GP-Rao test variable as

TGP−Rao =
∑L−1

l=0

2
∑N−1

n=P
ˆ̃sH(n)Q̂−1

ML
ˆ̃xl(n)

∣∣∣ ∣∣∣2∑N−1
n=P

ˆ̃sH(n)Q̂−1
ML

ˆ̃s(n)

=
∑L−1

l=0

TGP-Rao(l)

(33)

where TGP-Rao(l ) denotes the local GP-Rao test statistic for the
lth test signal. It is seen that the local GP-Rao test TGP-Rao(l )
shares the ‘same’ detection variable of the conventional
parametric Rao test TP-Rao(l ) for the lth range bin (see [26,
eq. (18)]) but with ‘different’ ML estimates of unknown
parameters A and Q. More specifically, the conventional
parametric Rao test TP-Rao(l ) for the lth test signal is given by

TP−Rao(l) =
2
∑N−1

n=P
ˆ̃sH

LML(n)Q̂−1
LML

ˆ̃xLML,l(n)
∣∣∣ ∣∣∣2∑N−1

n=P
ˆ̃sH

LML(n)Q̂−1
LML

ˆ̃sLML(n)
(34)

where ÂLML and Q̂LML are the local ML estimates [26, eqs.
(23)–(25)]

ÂLML = −R̂−1
yy,lR̂yx,l (35)

Q̂LML =
R̂xx,l − R̂H

yx,lR̂
−1
yy,lR̂yx,l

(KL + 1)(N − P)
(36)

with

R̂xx,l =
∑N−1

n=P

xl(n)xH
l (n) +

∑L(K+1)−1

k=L

∑N−1

n=P

xk(n)xH
k (n) (37)

R̂yy,l =
∑N−1

n=P

yl(n)yH
l (n) +

∑L(K+1)−1

k=L

∑N−1

n=P

yk(n)yH
k (n) (38)
408
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R̂yx,l =
∑N−1

n=P

yl(n)xH
l (n) +

∑L(K+1)−1

k=L

∑N−1

n=P

yk(n)xH
k (n) (39)

and ˆ̃sLML(n) and ˆ̃xLML,l(n) are the temporally whitened
steering vector and the lth test signal by using the above
local ML estimates ÂLML and Q̂LML.

It is seen that the local ML estimates of A and Q involve
‘only’ the lth test signal xl and all training signals. In
contrast, the ‘global’ ML estimates of the GP-Rao test (33)
use ‘all’ L test signals {xl}

L−1
l=0 and all training signals; see

(19) and (20) with (13), (14) and (15). In summary, the GP-
Rao test can be considered as a non-coherent integration
using the local parametric Rao test with the local ML
estimates of A and Q replaced by the global ML estimates
derived in (19) and (20) in this paper.

3.4 Detection performance

In this section, we analyse the asymptotic distribution of the
proposed GP-Rao test. It is known that the Rao test shares
the same asymptotic distribution of the GLRT. Following
[34], we obtain that

TGP−Rao �a
x2

2L, under H0

x′22L(r), under H1

{
(40)

where x2
2L denotes the central Chi-squared distribution with

2L degrees-of-freedom and x
′2
2L(r) the non-central Chi-

squared distribution with 2L degrees-of-freedom and a
non-centrality parameter r

r = 2
∑N−1

n=P

s̃H(n)Q−1s̃(n)
∑L−1

l=0

|al|2 (41)

where s̃ is the temporally whitened steering vector by using
the ‘true’ AR coefficient matrix A; see (8).

Based on the asymptotic distribution of (40), the
probability of false alarm is readily shown to be

Pf = Qx2
2L

(l) (42)

where Qx2
2L

(·) is the right tail of the central Chi-square x2
2L

pdf. As a result, the threshold l can be computed as
l = Q−1

x2
2L

(Pf ). The result of (42) also shows that the
statistical characteristic of the GP-Rao test under H0 is
independent of the nuisance parameters, including the AR
coefficient matrix A and the spatial covariance matrix Q,
and further implies that the GP-Rao test achieves a CFAR
property. Meanwhile, the probability of detection can be
computed as

Pd = Qx2
2L

(r)(l) (43)

where Qx2
2L

(r)(·) is the right tail of the non-central Chi-square

x2
2L(r) pdf with r given by (41).

3.5 Comparison to the covariance matrix-based
detectors

In this subsection, the proposed GP-Rao test is compared with
the covariance matrix-based detectors including the GLRT
[5], the GAMF [5], and the non-parametric Rao and Wald
IET Signal Process., 2012, Vol. 6, Iss. 5, pp. 404–412
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tests [8] for the range-spread target detection. Notably, these
covariance matrix-based detectors all rely on the sample
covariance matrix Ŝ from training signals

Ŝ =
∑(K+1)L−1

k=L

xkxH
k (44)

Particularly, the GLRT was developed in [5, eq. (12)] by
considering the test and training signal as a whole (i.e. the
so-called ‘one-step’ GLRT strategy [5]) and uses the
following test statistic

TGLRT = det (R0 + Ŝ)

det (R1 + Ŝ)
(45)

where |.| stands for the matrix determinant, and the matrices
R0 and R1 are given by, respectively

R0 =
∑L−1

l=0

xlx
H
l

R1 =
∑L−1

l=0

xl −
sHŜ−1xl

sHŜ−1s
s

( )
xl −

sHŜ−1xl

sHŜ−1s
s

( )H

The GAMF, on the other hand, was developed in [5, eq. (25)]
by treating the test and training signal as two separate
datasets, that is, the ‘two-step’ GLRT strategy, and uses the
following test statistic

TGAMF =
∑L−1

l=0

|sHŜ−1xl|2

sHŜ−1s
(46)

It is seen that the GAMF can be considered as the non-
coherent integration of the conventional AMF for the point-
target detection [36].

In addition, the ‘non-parametric’ Rao and Wald detectors
were developed in [8] for the compound-Gaussian noise
scenario by following the general principle of the Rao and
Wald tests. In the homogeneous scenario, the non-
parametric Rao and Wald detectors reduce to the following
test statistics

TRao =
∑L−1

l=0

|sHŜ−1xl|2

sHŜ−1s
∑L−1

ℓ=0
xH
ℓ Ŝ−1xℓ

(47)

which is a normalised version of the GAMF of (46), and

TWald =
∑L−1

l=0

|sHŜ−1xl|2

sHŜ−1s
∑L−1

ℓ=0 (xH
ℓ Ŝ−1xℓ − ((|sHŜ−1xℓ|2)/sHŜ−1s))

(48)

which can also be considered as a normalised version of the
GAMF. The difference between the non-parametric Rao and
Wald tests is the additional normalisation term in the
denominator. That is, the non-parametric Rao test computes
the normalisation term from the adaptively whitened test
signals, whereas the Wald test uses the components of the
test signal that are orthogonal to the signal subspace for
computation of the normalisation term.
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The use of sample covariance matrix usually requires a
demanding number of training signals and gives rise to high
computational complexity to invert it, especially when the
joint space–time dimension JN is large, for example, JN is
in the order of hundreds or even thousands. The proposed
GP-Rao test, on the other hand, exploits the structured
multi-channel AR process of the disturbance and
decomposes the jointly spatial–temporal whitening of the
covariance matrix-based detector into a successive temporal
and spatial whitening, which involves only the inverse of a
J × J matrix. The structured AR process also helps us to
mitigate the requirement of excessive training signals. As
verified in Section 4, the proposed GP-Rao test works well
when the number of training signals KL is significantly less
than the joint space–time dimension JN.

4 Numerical examples

In this section, simulation results are provided to verify the
analytical result in Section 3.4. Meanwhile, the proposed GP-
Rao test is numerically compared with the covariance matrix-
based detectors in Section 3.5 including the GLRT (45), the
GAMF (46), the non-parametric Rao detector (47), and the
Wald detector (48). The disturbance is generated as a multi-
channel AR(2) process with AR coefficient A and a spatial
covariance matrix Q. These parameters are set to ensure that the
AR process is stable and that Q is a valid covariance
matrix, but otherwise are randomly selected. The signal vector
s corresponds to a uniform equispaced linear array with J ¼ 4
antenna elements, N temporal pulses, and randomly
selected normalised spatial frequency vs and Doppler
frequency vd, that is

s = st(vd) ⊗ ss(vs) (49)

where st(vd) denotes the N × 1 temporal steering vector

st(vd) = 1���
N

√ [1, ejvd , . . . , ej(N−1)vd ]T (50)

and ss(vs) denotes the J × 1 spatial steering vector

ss(vs) =
1��
J

√ [1, ejvs , . . . , ej(J−1)vs ]T (51)

The signal-to-interference-plus-noise ratio (SINR) is defined as

SINR =
∑L−1

l=0 |al|2

L
sHR−1s (52)

where the JN × JN covariance matrix R can be uniquely
determined once A and Q are selected.

4.1 Limited-training case

We first consider the limited-training cases which are
particularly challenging in practice. Specifically, we
consider J ¼ 4 sensors and N ¼ 16 pulses. For the
proposed GP-Rao test, we set K ¼ 4 and, as a result, there
are KL ¼ 4L ¼ 16 training signals. In contrast, the
covariance matrix-based detectors including the GAMF, the
GLRT, the non-parametric Rao and Wald detectors use
K ¼ 96 and overall KL ¼ 96L ¼ 384 training signals. Fig. 1
shows the receiver operating characteristic (ROC) of the
GP-Rao test and the covariance matrix-based detectors for
409
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various numbers of target scatterers L when SINR ¼ 5 dB.
For different cases of L, the target amplitudes are
normalised to attain the same SINR. Also included in the
figure is the asymptotic detection performance of the GP-
Rao test derived in Section 3.4. It is seen that by exploiting
the inherent structure of the disturbance covariance matrix,
the proposed GP-Rao test with K ¼ 4 outperforms the
covariance matrix-based detectors with K ¼ 96, especially
for L ¼ 1 and 2. With KL ¼ 384 training signals, about six
times as large as the overall spatio-temporal dimension
JN ¼ 64, the performance of the four considered covariance
matrix-based detectors converges together. It is easy to
conclude that, with overall KL ¼ 16 training signals, the
GP-Rao test significantly improves the training efficiency
of the covariance matrix-based detectors. The asymptotic
detection performance of the GP-Rao test provides an
upper bound of the simulated results. Moreover, given the
same SINR, the more the target scatterers (the larger L is),
the better the detection performance. In other words,
effectively increasing the radar resolution and suitably
exploiting them can produce a potential detection
performance gain [4, 5].

Fig. 2 shows the detection probability as a function of
SINR in the case of two target scatterers L ¼ 2 when the
probability of false alarm is fixed at Pf ¼ 0.01. The result
confirms that the proposed GP-Rao test has better training
efficiency – in terms of the number of training signals
required to achieve a certain detection probability – than
the covariance matrix-based detectors. Particularly, the
performance gain achieved is about 0.5 dB for a detection
probability at Pd ¼ 0.9. Again, with sufficient training
signals, the GAMF, the GLRT, the non-parametric Rao
and Wald detectors show converged performance, which
has about 1.65 dB performance loss to the asymptotic
performance of the GP-Rao test at Pd ¼ 0.6. In this limited-
training scenario with N ¼ 16 and K ¼ 4, the simulated
performance of the GP-Rao test is about 1 dB away from its
asymptotic performance at Pd ¼ 0.6.

Fig. 1 ROC curves of the GP-Rao test with K ¼ 4 (circle) and the
covariance matrix-based detectors with K ¼ 96 including the
GAMF (square), the GLRT (cross), the non-parametric Rao
detector (plus) and the Wald detector (diamond) for various
values of L when J ¼ 4, N ¼ 16, P ¼ 2 and SINR ¼ 5 dB

Asymptotic performance of the GP-Rao test is plotted as the solid curve
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4.2 Large-training case

Next, we increase the value of K for both the parametric GP-
Rao test (K ¼ 32) and the covariance matrix-based detectors
(K ¼ 128). This scenario is considered to be a large-training
case since the number of training signals is now KL ¼ 128
for the GP-Rao test and KL ¼ 512 for the covariance
matrix-based detectors, which are at least twice larger than
the overall space–time dimension JN ¼ 64. As shown in
Figs. 3 and 4, the GP-Rao test with K ¼ 32 is able to
achieve the asymptotic performance and provides improved
performance over the covariance matrix-based detectors
with K ¼ 128. Note from Fig. 4 that the performance gain
is about 1 dB for a detection probability at Pd ¼ 0.9.

4.3 Asymptotic case

An asymptotic scenario with a large value of N (the number
of temporal samples) is simulated to verify the asymptotic

Fig. 3 ROC of the GP-Rao test with K ¼ 32, the GAMF detector
with K ¼ 128, and the GLRT with K ¼ 128 in the case of L ¼ 2
target scatters when J ¼ 4, N ¼ 16, P ¼ 2 and SINR ¼ 5 dB

Fig. 2 Probability of detection as a function of SINR in the limited-
training case with L ¼ 2 target scatters when J ¼ 4, N ¼ 16, P ¼ 2
and Pf ¼ 0.01
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performance of the GP-Rao test derived in Section 3.4.
Whereas keeping the other system parameters ( J, K, P and
SINR) the same as the ones in Fig. 1, we consider N ¼ 64,
which is comparatively much larger than the number of
sensors ( J ¼ 4). The result is shown in Fig. 5 for three
cases of L. It is seen that, even if the training signals are
limited (K ¼ 4), increasing the number of temporal
sampling (or, equivalently, the number of pulses), the
probability of detection can still approach the asymptotic
performance of the GP-Rao test. This observation has been
made for a point-target (L ¼ 1) case [26] and here extended
for the range-spread target (L ¼ 2 and 4) case as shown in
Fig. 5. This is equivalent to saying that the performance
loss of the GP-Rao test due to limited-training sises can be
compensated for by utilising longer temporal observation
interval, that is, N is large.

Fig. 4 Probability of detection as a function of SINR in the large-
training case with L ¼ 2 target scatters when J ¼ 4, N ¼ 16, P ¼ 2
and Pf ¼ 0.01.

Fig. 5 Asymptotic performance (N ¼ 64) of the GP-Rao test in
the limited-training (K ¼ 4) case for various values of L when
J ¼ 4, P ¼ 2 and SINR ¼ 5 dB
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5 Conclusion

In this paper, the problem of adaptive detection of a range-
spread target in a homogeneous environment was
considered. The disturbances in both the test signals and
training signals were modelled as a multi-channel AR
process, which enables a parametric detector for the range-
spread target detection. We adopted the Rao test and
developed the GP-Rao test for the range-spread target
detection case. The GP-Rao test was shown to be a non-
coherent integration of the local parametric Rao test by
replacing the local ML estimates by the globe ML estimates
of unknown parameters. The detection performance was
also characterised by the asymptotic distribution of the GP-
Rao test under both hypotheses. The analytical result
revealed that the GP-Rao test was a CFAR detector in an
asymptotic sense. Numerical results verified that the GP-
Rao test achieved improved performance over that of
covariance matrix-based detectors including the GAMF, the
GLRT, the non-parametric Rao and Wald tests, especially
in the case of training-limited scenarios.
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